哈工大流体力学章十三讲解

合集下载

本——哈工大版理论力学课件(全套)

本——哈工大版理论力学课件(全套)
连,在图示位置圆柱作纯滚动,中心速度为vA,杆与水平线 的夹角=450,求该瞬时系统的动能。
解: T TA TAB
P
B
TA 3 Mv A 2 4
P为AB杆的瞬心 vA
PAw
C
vA
A
vA
wΑΒ lsin
JP 1 ml 2 3
TAB
2 JP wA2B
1 6si2n
mv 3
mvA2 AT
11 12
9M 4m 2 vA
z1 O
M
M2
mg z2
y
代入功的解析表达式得
z2
W 12 (mg)dz mg(z z z1
x
1 2)
质点系: W W imig(zi1 zi2) mg(zC1 zC2)
质点系重力的功,等于质点系的重量与其在始末位置重 心的高度差的乘积,而与各质点运动的路径无关。
h
4
理论力学
4
2、弹性力的功 弹簧原长l0,作用点的轨迹为图示曲线A1A2。在弹性极限内F k(r l0)r 0 k—弹簧的刚性系数,表示使弹簧发生单位变形时所需的力(N/m)。
F s
M1
s
2
单位:焦耳(J); 1J 1Nm
h
理论力学
F M2
2
2
2
二、变力的功 设质点M在变力F的作用下沿曲线运动,力F在微小弧
段上所作的功称为力的元功,记为dW,于是有
δW Fcos ds
ds M'
M2
力F在曲线路程M1M2中作功为
M
W
s
F cosds
0
自然法表示的 功的计算公式
dr F
等于零,但变形体内力功之和不为零。

哈工大工程流体力学部分习题详解

哈工大工程流体力学部分习题详解
[陈书3-13]设空间不可压缩流体的两个分速为:

其中 均为常数。试求第三个分速度 。已知当 时 。
解:
不可压缩流体的连续性方程为: ,
则:
(1)
将上式积分得:
利用条件 时 得到

(2)
将上式积分得:
利用条件 时 得到

[陈书3-30]如图所示水平放置水的分支管路,已知 , , , , , 。求 , , , , 。
[解]由平板等速下滑,知其受力平衡。
沿斜坡表面方向,平板下表面所受油液的粘滞力与重力沿斜面的分量平衡。
平板下表面承受的摩擦阻力为:
其中剪切应力:
因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故垂直于斜坡表面方向的流速梯度为:
所以:
而重力在平行于斜面方向的分量为:
因:
[解]取x坐标水平向右,y坐标垂直纸面向内,z坐标垂直向上,原点定在油罐的中轴线上。油液受到的体积力为:
由欧拉方程积分可得:
根据题意及所选的坐标系,当 时,
故:
所以:
因大气压的总体作用为零,故上式中可令
于是:
左侧盖形心的坐标:
故该处的压强:
左侧盖所受油液的作用力: (取 )
右侧盖形心的坐标:
故该处的压强:
其中转动角速度:
所以:
维持匀速转动时所消耗的功率为:
所以:
将:
代入上式,得:
当 时所消耗的功率为:
[陈书1-16]两无限大平板相距 平行(水平)放置,其间充满动力学粘性系数 的甘油,在两平板间以 的恒定速度水平拖动一面积为 的极薄平板。如果薄平板保持在中间位置需要用多大的力?如果置于距一板10mm的位置,需多大的力?

哈工大版理论力学课件(全套)课件

哈工大版理论力学课件(全套)课件
已知CE=EB=DE,角a =30o,CDB平面与水平面间的夹角∠EBF= 30o, 重物G=10kN。如不计起重杆的重量,试求起重杆所受的力和绳子的拉力。
解:1.取杆AB与重物为研究
对象,受力分析如图。
zD
E
F2
F 30o
B
C F1
z
E F1
F 30o
B
a
a
A FA
G
y
FA
A
G
y
x
侧视图
理论力学
10
4、空间任意力系简化为平衡的情形
当空间任意力系向一点简化时出现 主矢F'R=0, 主矩MO=0 ,这是空间任意力系平衡的情形。
理论力学
39
§3-5 空间任意力系的平衡
一、空间任意力系的平衡方程
F'R=0,MO=0
Fx 0, Fy 0, Fz 0 Mx(F) 0, M y(F) 0, Mz(F) 0
理论力学
16
理论力学
17
2、力对轴之矩的解析表达式
设力F在三个坐标轴上的投影分别为Fx,
z Fz
Fy,Fz,力作用点A的坐标为(x,y,z),则
F
B
M z(F) MO(Fxy)
A(x,y,z)
Fy
MO(Fx) MO(Fy) xFy yFx
同理可得其它两式。故有
M x(F) yFz zFy
Fx
O
先投影到坐标平面Oxy上,得到力Fxy,然后再把这个力投 影到x 、y轴上,这叫二次(间接)投影法。
z
Fx Fsing cosj
Fz
Fy Fsing sinj
gF
Fy y
Fz F cosg

流体力学完整讲义

流体力学完整讲义

流体力学一、流体静力学基础 包括内容三部分:01流体主要物理特性与牛顿内摩擦定律 02流体静压强 03流体总压力01流体主要物理特性与牛顿内摩擦定律 水银的密度13.6g/cm 3重度γ(也成为容重,N/m3),单位体积流体所具有的能量。

=g γρ流体的压缩系数:1=pa d dV V dp dpρρβ-=-(单位:) ,β值越大,流体的压缩性也越大。

压缩系数的倒数成为流体的弹性模量,用表示,21()dpdV V β=-k=单位:pa=N/m流体的体膨胀系数a :1=(:)d dVV a T dT dTρρ--=单位质量力:大小与流体的质量成正比(对于均质流体,质量与体积成正比,故又称为体积力)表面力:作用在流体表面的力,大小与面积成正比,它在隔离体表面呈连续分布,可分为垂直于作用面的压力和平行于作用面的切力。

流体的黏性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质叫做黏性。

此内摩擦力成为黏制力。

du d T AA dy dtθμμ== 式中:T 流体的内摩擦力μ为流体的动力黏度,单位Pa s •。

A 为流体与管壁的接触面积dudy为速度梯度,表示速度沿垂直于速度y 轴方向的变化率 d dtθ为角变形速度 气体动力黏度随温度的升高而增加。

液体动力黏度随温度的升高而降低,例如:油。

运动黏度v (单位:2/m s )(相对黏性系数):v μρ=理想流体:假想的无黏性的流体,即理想流体流过任何管道均不会产生能量损失。

[推导过程]:tan()dudt d d dy θθ≈=,即:d dudt dyθ=。

02流体静压强流体净压强的特性:①流体静压强方向与作用面垂直;②各向等值性:静止或相对静止的流体中,任一点的静压强的大小与作用面方向无关,只于该点的位置有关。

帕斯卡定律:0P P gh ρ=+式中:P 为液体内某点的压强0P 为液面气体压强 h 为某点在液面下的深度等压面:流体中压强相等的点所组成的面成为等压面。

哈工大多相流体力学讲义

哈工大多相流体力学讲义

三、本课程的其他教学环节 无。
四、考核方式 成绩为百分制。考试内容基本覆盖全部授课内容。
第一章 绪 论
1.1 两相与多相的定义与分类
两相流就是指必须同时考虑物质两相共存且具有明显相界面的 混合物流动力学关系得特殊流动问题。
在不同的学科中,根据研究对象的不同特点,对相各有特定的说 明。比如物理学中,单相物质的流动称为单相流,两种混合均匀的气 体或液体的流动也属于单相流。同时存在两种及两种以上相态的物质 混合体的流动就是两相或多相流。在多相流动力学中,所谓的相不仅 按物质的状态,而且按化学组成、尺寸和形状等来区分,即不同的化 学组成、不同尺寸和不同形状的物质都可能归属不同的相。在两相流 研究中,把物质分为连续介质和离散介质。因为颗粒相可以是不同物 态、不同化学组成,不同尺寸或不同形状的颗粒,这样定义的两相流 不仅包含了多相流动力学中所研究的流动,而且把复杂的流动概括为 两相流动,使问题得到简化。此外还有动力学意义上的相及物理上的 相。
4
气力输送的流型 4 、稀相输送时颗粒群在直管中运动微分方程
6. 4 气力、水力输送能量损失估算
6.5 固体颗粒在流体中的沉降分离与旋流分离
第七章 两相流动的测量技术与实践
7.1 汽液两相流的测量
4
7.2 气固两相流的测量
7.3 多相流测量实践
4 针对课堂讲授内容的总结,问题讨论、教学效果探讨及答疑备考
气体和固体颗粒混合在一起共同流动称为气固两相流。 严格的说,固体颗粒没有流动性,不能作流体处理。但当流体中 存在大量固体小粒子流时,如果流体的流动速度足够大,这些固体粒 子的特性与普通流体相类似,即可以认为这些固体颗粒为拟流体,在 适当的条件下当作流体流动来处理。引入拟流体假设后,气固两相流 动就如同两种流体混合物的流动,可以用流体力学、热力学的方法来 处理问题,使两相流的研究大为简化。又由于其假定的前提,使用拟 流体假设时要特别注意适用条件。处理颗粒相运动时,某些方面把其 看作流体一样,但另一些方面则必须考虑颗粒相本身的特点。 3. 液固两相流 液体和固体颗粒混合在一起共同流动称为液固两相流。如工程大 量使用的水力输送等。 4. 液液两相流 两种互不相溶的液体混合在一起的流动称为液液两相流。油田开 采与地面集输、分离、排污中的油水两相流,化工过程中的乳浊液流 动、物质提纯和萃取过程中大量的液液混合物流动均是液液两相流的 工程实例。 5. 气液液、气液固和液液固多相流

哈工大流体力学课件

哈工大流体力学课件
Vρ κ = 1 dρ
ρ dp
可压缩流体:流体密度随
0.56 0.54
水的压缩系数/(*10-9/P
压强变化不能忽略的流体。 0.52 0.5
5at 10at
20at
不可压缩流体:流体密度 0.48 0.46
40at 80at
随压强变化很小,流体的 0.44
0.42
密度可视为常数的流体。
0
10
20
αv
=1 V
dV dT
=−
1
ρ

dT
水的热膨胀系数/(*10-4/oC
8 7 6 5 4 3 2 1 0
1
100
200
压强/a t
1-10oC 10-20oC 40-50oC 60-70oC 90-100oC
2)反复的风振引起结构物或结构构件发生疲劳损害; 3)超高层建筑、高耸结构、大跨度屋盖、膜结构建筑。。。
超高层建筑风工程问题
风阻尼器
4 流体的力学特征
固体:既能承受压力,也能承受拉力,抵抗拉伸变形。 可保持固定的形状和体积; 流体:只能承受压力,一般不能承受拉力,抵抗拉伸 变形。任何微小切力作用,都会使流体流动,直到切 力消失,流动才会停止。不能保持固定形状;
流体力学
第一章 绪 论
第一节 流体力学及其任务 第二节 作用在流体上的力 第三节 流体的主要物理性质
第一节 流体力学及其任务
1 定义
流体力学:研究液体(主要是水)和气体的平衡和机械运动
的规律及其应用的科学。→ 水力学
工程流体力学:包括流体力学(或水力学)的基本原理及其 在工程(水利、环境、土木、交通)上的应用。
运动黏度ν: ν = μ 单位:m2/s。

哈工大多相流体力学讲义

哈工大多相流体力学讲义

1.2 多相流体力学的发展史
4
1.3 多相流的研究和处理方法
1.4 国内多相流领域的最近研究课题
1.5 多相流中的专用术语及常见参数
第二章 多相流相场空间结构
2.1 概 述
2.2 相速度和相含率分布
1、 微分分析法 2、积分分析方法
4
2.3 流型及其转变特性
1、气液两相流流型及流型图
2、 流型转变界限积机理
自然界和工业过程中常见的两相及多相流主要有如下几种,其中 以两相流最为普通。 1. 气液两相流
气体和液体物质混合在一起共同流动称为气液两相流。它又可以 分单组分工质如水—水蒸气的汽液两相流和双组分工质如空气—水 气液两相流两类,前者汽、液两相都具有相同的化学成分,后者则是
两相各有不同的化学成分。单组分的汽液两相流在流动时根据压力和 温度的变化会发生相变,即部分液体能汽化为蒸汽或部分蒸汽凝结成 液体;双组分气液两相流则一般在流动中不会发生相变。 2. 气固两相流
通过本课程的学习,可使学生掌握两相共存时流体力学中基本理论、基本概 念,以及在土木工程领域的具体应用以及表现形式;了解国内外研究动态;在多 相流领域寻求科技创新点。
二、本课程的主要内容,各章节内容及学时如下表:
时数
教学 ( 授 课 或 讨 论 ) 内 容
第一章 绪 论
1.1 两相与多相的定义与分类
工程具有重要的理论和实用意义,并可取得重要经济效益。 林宗虎教授在热能、核电、石化等工程的重要理论-气液两相流与
传热学科领域取得多方面开创性成果。在气液两方面: 他创建的两 相流孔板流量计算式可通用于各种压力、不同组分、多种两相流体和 变压力工况,被国际上推荐为最佳式,称林氏公式,并被收入国内外 6 本著作,被引用数十次。他首先对U型管内两相流体压力降型脉动 机理进行系统研究,创建其 计算程序和脉动判别法并解决过电站锅炉 严重脉动问题。他创建了 3 种两相摩阻计算法和一种截面含汽率计算 式并被广泛应用。在沸腾传热方面:创立了国际上第一个脉动流动时 的沸腾传热计算式,可用于光管和多种强化传热管,开拓了传热研究 新方向。对过冷沸腾传热、稳定流动沸腾传热均有研究成果。在多相 流测量方面:在林氏公式基础上,他首先解决了用一个元件同时测定 两相流量和组分两个参数的国际难题并得到专利和应用,经济效益显 著。

哈尔滨工业大学精品课程流体力学-精选

哈尔滨工业大学精品课程流体力学-精选

第三章 流体动力学
§3-1 描述流体运动的两种方法 §3-2 流体运动中的一些基本概念 §3-3 连 续 方 程 式 §3-4 理想流体的运动微分方程 §3-5 伯 努 利 方 程 及 其 应 用 §3-6 动 量 方 程 及 其 应 用
第四章 相似和量纲分析
§4 – 1 相 似 原 理
§4 -2 定 理 和 量 纲 分 析 的 应 用
则 = 常数
或:

0
t x y z
三、液体的粘性
1、粘性的概念及牛顿内摩擦定律
y
流体分子间的内聚力
流体分子与固体壁面
间的附着力。
dy

内摩擦力 —— 相邻
y
流层间,平行于流层
v。
v0
F
v+dv
v

表面的相互作用力。
x
定义:流体在运动时,其内部相邻流层间要产
6
6
则:Fmx6dxdy dfx z

Fmy6d xd y dfy z
质量力在三个坐 标方向上的投影

Fmz6dxdydfzz
<3> x 方向上的力平衡方程式(Fx= 0)
^ px1/2dydz pn ·ABC·cos(n, x) + 1/6dxdydz fx
=0
证明:在平衡流体中取出一微小四面体ABOC, 考察其在外力作用下的平衡条件。
<1>表面力
1
Fx

px
dydz 2
Fy

py
1dxdz 2
Fz

pz
1dxdy 2
Fn pnABC
各个面上的静压力
ABC — 斜面面积

哈工大流体力学教学大纲

哈工大流体力学教学大纲

哈工大流体力学教学大纲哈尔滨工业大学(以下简称哈工大)流体力学教学大纲是该校流体力学课程的重要组成部分,它为学生提供了系统而全面的流体力学知识体系。

本文将从流体力学教学大纲的编制背景、主要内容和教学目标三个方面进行探讨。

一、编制背景流体力学作为一门基础性学科,广泛应用于工程领域。

哈工大作为国内著名的工科院校,流体力学教学一直处于领先地位。

为了适应工程技术的发展和学生的需求,哈工大制定了流体力学教学大纲,旨在培养学生的流体力学基本理论和实践能力,为他们未来的工程实践打下坚实的基础。

二、主要内容哈工大流体力学教学大纲主要包括以下几个方面的内容:1. 流体力学基础知识:介绍流体力学的基本概念、基本假设和基本方程,包括连续性方程、动量方程和能量方程等。

同时,还会涉及到流体的性质和流动的基本规律。

2. 流体静力学:重点介绍静力学基本原理和应用,包括压力、密度和浮力等概念,以及流体静力学的基本方程和定理。

学生将学会分析和计算静止流体的力学性质。

3. 流体动力学:介绍流体动力学的基本理论和方法,包括流体的运动描述、速度场和压力场的计算,以及流体力学的控制体和流线的概念。

此外,还会涉及到流体的旋转和湍流等现象。

4. 流体力学应用:介绍流体力学在工程实践中的应用,包括流体力学在航空航天、能源、环境和生物医学等领域的具体应用案例。

通过学习这些案例,学生将了解流体力学的实际应用和解决实际问题的能力。

三、教学目标哈工大流体力学教学大纲的主要教学目标如下:1. 理论知识掌握:学生能够掌握流体力学的基本理论知识,包括流体力学的基本方程和基本原理,理解流体力学的基本概念和基本假设。

2. 分析和计算能力培养:学生能够运用流体力学的理论知识,分析和计算流体的运动和力学性质,解决流体力学相关的问题。

3. 实践能力培养:学生能够将所学的流体力学知识应用于实际工程实践中,理解流体力学在工程领域的应用和意义。

4. 创新思维培养:学生能够培养创新思维和解决问题的能力,通过学习流体力学的案例,发现问题和解决问题的方法。

哈工大-流体力学概念必考点

哈工大-流体力学概念必考点

1.连续介质模型:在流体力学的研究中,将实际的分子组成的结构用流体微元代替。

流体微元是由足够数量的分子组成,连续充满它所占据的空间,这就是连续介质模型。

2.表面力:作用在所研究流体外表面上与表面积大小成正比的力。

3.应力:单位面积上的表面力。

4.质量力:处于某种力场中的流体,所有质点均受到与质量成正比的力。

5.流体的相对密度:某均质流体的质量与4℃同体积的纯水的质量比称为该流体的相对密度。

ρρd w = 6.体胀系数α:当压强不变而流体温度变化1K 时,其体积的相对变化率。

ΔTΔVV α1=7.压缩率k :当流体温度不变,所受压强改变时,其体积的相对变化率。

ΔPΔV V k 1-= 8.体积模量K :压缩率的倒数。

ΔV P V k K ∆-==1 9.粘性:当流体在外力作用下,流体微元间出现相对运动时,随之产生阻碍流体层相对运动的内摩擦力,流体产生内摩擦力的这种性质称为粘性。

10.动力粘度μ:单位速度梯度时内摩擦切应力的大小。

dhdv τμ=11.运动粘度υ:动力粘度与流体密度的比值。

ρμυ=12.恩氏粘度:被测液体与水粘度的比值。

13.连续介质模型:在流体力学的研究中将实际的由分子组成的结构用一种假想的流体模型——流体微元来代替。

流体微元由足够数量的分子组成连续冲满了它所占据的空间,彼此间无任何间隙。

这就是1753年欧拉首先建立的“连续介质模型”14.质量力:处于某种立场中的流体,所有质点均受有与质量成正比旳力,这个力称为质量力,如重力(外质量力)和离心力(惯性力)15.表面力:表面力是指作用在所研究流体外表面上与表面积大小成正比的力16.粘性:当流体在外力作用下,流体微元间出现相对运动时,随之产生阻抗流体层间相对运动的内摩擦力,流体产生内摩擦力的这种性质称为粘性17.理想流体:一种假想的没有粘性的流体18.牛顿流体:在流体力学研究中,凡切应力与速度梯度呈线性关系,即服从牛顿内摩擦定律的流体,称为牛顿流体。

哈工大理论力学笔记

哈工大理论力学笔记

第一章静力学公理和物体的受力分析§1—1静力学公理一.公理1:力的平行四边形法则①作用在物体上同一点的两个力,可以合成一个合力②合力的作用点在该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定或:合力矢等于这两个边矢的几何和,即21R F F F +=※:也可另作一三角形,求两汇交力合力的大小和方向二.公理2:二力平衡条件作用在刚体上的两个力(如1F 与2F ),使刚体保持平衡的必要和充分条件是:这两个力的大小相等,方向相反,且作用在同一直线上三.公理3:加减平衡力系原理在已知力上加上或减去任意的平衡力系,并不改变原力系对刚体的作用四.两个推理:1.推理1:力的可传性(1)内容:作用于刚体上的某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用(2)证明:用加减平衡力系原理先加一平衡力系,再减一平衡力系(3)说明的问题:①作用于刚体上的力的三要素:力的大小、方向、作用线②作用于刚体上的力可以沿着作用线移动→滑动矢量2.推理2:三力平衡汇交定理(1)内容:作用于刚体上三个力相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三个力的作用线通过汇交点(2)证明:用力的可传性、平行四边形法则、二力平衡的条件证明五.公理4:作用和反作用定律作用力和反作用力总是同时存在,两力的大小相等、方向相反,沿着同一直线,分别作用在两个相互作用的物体上F F '-=※:作用力与反作用力不能看成平衡力系六.公理5:刚化原理(1)内容:变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持不变(2)说明的问题:①变形体看作刚体模型的条件:在某一力系作用下处于平衡②刚体平衡条件与变形体平衡条件的关系:刚体平衡是变形体平衡的必要条件,而不是充分条件§1—2约束和约束力一.约束1.自由体和非自由体:(1)自由体:位移不受限制的物体(2)非自由体:位移受到限制的物体2.约束:对非自由体的某些位移起限制作用的周围物体二.约束力1.约束力的含义:约束对物体所施加的,阻碍物体位移的力2.约束力的方向:与该约束所能阻碍的位移方向相反※:利用这个准则可以确定约束力的方向或作用线的位置3.约束力的大小:(1)特点:约束力的大小是未知的(2)静力学中的求法:约束力与主动力组成平衡力系→用平衡条件求约束力三.几种常见的约束及相应约束力的方向1.具有光滑接触面的约束(1)约束的特点:不能限制物体沿约束表面切线的位移,只能阻碍物体沿接触表面法线并向约束内部的位移(2)约束力:作用在接触点处,方向沿接触表面的公法线,并指向被约束的物体→法向约束力F表示※:用N2.由柔软的绳索、链条或胶带等构成的约束F表示(1)绳索对物体的约束力,作用在接触点,方向沿着绳索背离物体,用F或T(2)绕在轮子上的链条或胶带对轮子的约束力沿轮缘的切线方向3.光滑铰链约束1)向心轴承(径向轴承)(1)结构与简图(2)约束的特点:①轴可在孔内任意转动,也可沿孔的中心线移动②轴承阻碍着轴沿径向向外的位移(3)约束力:①作用位置与方向:作用在接触点,且沿公法线指向轴心,并且与轴线垂直②特点:主动力不同,轴和孔的接触点的位置不同→主动力不确定时,约束力的方向预先不能确定③通常的处理:用通过轴收的两个大小未知的正交分力Ax F ,Ay F 表示,且Ax F ,Ay F 的方向暂可任意假定2)圆柱铰链和固定铰链支座(1)一个示例:(2)圆柱铰链(铰链):①结构:由销钉将两个钻有同样大小孔的构件连接在一起而成②简图:(3)固定铰链支座(固定铰支):①结构:铰链连接中有一个固定在地面或机架上作为支座②简图:(3)分析约束力时销钉的处理:①铰链处约束力的分析:常将销钉固连在其中一个构件上→相互连接的两构件互为约束②固定铰链支座处的销钉:将销钉固连在支座上③说明:当需要分析销钉受力时,才将销钉分离出来单独研究(4)约束力的实质:①约束的实质:轴与光滑孔的配合②约束力情况:与轴承具有同样的约束,即约束力的作用线不能预先定出,但约束力垂直并通过铰链中心(5)约束力分析图3)光滑铰链约束的特点:只限制两物体径向的相对移动,而不限制两物体绕铰链中心的相对转动及沿轴向的位移4.其他约束:1)滚动支座:(1)结构:在固定铰链支座与光滑支承面之间装有几个辊轴而构成(辊轴支座)(2)约束特点:可以沿支承面移动※:约束性质与光滑面约束相同(3)约束力:垂直支承面,且通过铰链中心2)球铰链(1)结构:通过圆球和球壳将两个构件连接在一起的约束(2)约束的特点:使构件的球心不能有任何位移,但构件可绕球心任意转动(3)约束力:①通过接触点与球心,但方向不能预先确定的一个空间约束力②处理方法:用三个正交分力表示3)止推轴承(1)约束特点:除了能限制轴的径向位移外,还能限制轴沿轴向的位移(2)约束力特点:有三个正交分量(3)简图与约束力:§1—3物体的受力分析和受力图一.物体受力的类型:(1)主动力(一般是已知的)(2)被动力:约束对于物体的约束力二.受力分析的要求:(1)要将受力物分离出来,画出它的简图→取研究对象或分离体(2)画出物体所受的所有力,注意每个力的作用位置与作用方向三.有用模型→二力构件(二力杆):只在两个力作用平衡的构件,两个力必沿两作用点的连线,且等值反向第二章平面汇交力系与平面力偶系§2—1平面汇交力系合成与平衡的几何法一.平面汇交力系合成的几何法、多边形法则1.平面汇交力系的含义:各力的作用线都在同一平面内且汇交于一点的力系2.平面汇交力系可合成:①力的可传性→将各力沿作用线移至汇交点②平行四边形法则→所有的力可合成一个合力3.平面汇交力系合成的几何法:①平行四边形法则;②多边形法则4.结论:平面汇交力系可简化为一合力,其合力的大小与方向等于各分力的矢量和(几何和),合力的作用线通过汇交点∑==+++=n1i in 21R F F F F F 二.平面汇交力系平衡的几何条件:1.平面汇交力系平衡的充要条件:该力系的合力等于零F =∑=n1i i 2.平面汇交力系平衡的几何条件:该力系的力多边形自行封闭3.求解平面汇交力系平衡问题的几何法:①按比例先画出封闭的力多边形,量得所要求的未知量②根据图形的几何关系,用三角公式计算出所要求的未知量§2—2平面汇交力系合成与平衡的解析法一.平面汇交力系合成的解析法ji F F F y x Ry Rx R F F +=+=⎪⎪⎩⎪⎪⎨⎧=+++==+++=∑∑==n 1i yi yn y2y1y n 1i xi xn x2x1x F F F F F F F F F F ,()()()()⎪⎪⎩⎪⎪⎨⎧====+=+=∑∑∑∑R yi R y R R xi R x R 2yi 2xi 2y 2x R F F F F ,cos ,F F F F ,cos F F F F F j F i F 二.平面汇交力系的平衡方程:1.平面汇交力系的平衡条件:各力在两个坐标轴上的投影的代数和分别等于02.平面汇交力系的平衡方程:0F xi =∑,0F yi =∑§2—3平面力对点之矩的概念及计算一.力对点之矩(力矩)1.问题的提出:(1)力对刚体的作用效果:使刚体的运动状态发生改变(2)刚体的运动状态:移动与转动(3)力对刚体的移动效应由力矢量度2.力臂:某点O 到力的作用线的垂直距离h 称为力对O 点的力臂※:点O 称为矩心3.力对点之矩(力矩):(1)含义:①是一个代数量②力对点之矩的绝对值等于力的大小与力臂的乘积③力对点之矩的正负为:力使物体绕矩心逆时针转向时为正,反之为负(2)力矩的表达式:Fh)(M O ±=F (3)力矩的单位:m N ⋅,m kN ⋅,mm N ⋅,mmkN ⋅(4)力矩的物理意义:力矩表示力对刚体的转动效应二.合力矩定理与力矩的解析表达式1.合力矩定理:平面汇交力系的合力对于平面内任一点之矩等于所有各分力对于该点之矩的代数和∑==n1i i O R O )(M )(M F F 2.力矩的解析表达式:x y O yF xF )(M -=F ,()∑=-=n 1i xii yi i R O F y F x )(M F §2—4平面力偶一.力偶与力偶矩1.力偶的定义:①力偶:由两个大小相等,方向相反且不共线的平行力组成的力系※:两力分别记作F ,F '②力偶臂:力偶的两力之间的垂直距离d③力偶的作用面:力偶所在的平面2.力偶的作用效果:①力偶的矢量和为零→力偶对刚体没有移动效应②力偶对各点的力矩不等于零→力偶改变刚体的转动状态※:力与力偶是静力学中的两个基本要素3.力偶矩:(1)力偶对作用面内任意点的力矩的代数和:①大小等于力与力偶臂的乘积,正负一定②大小、正负都与矩心位置无关(2)力偶矩的定义:力偶矩是一个代数量,其绝对值等于力的大小与力偶臂的乘积,正负号表示力偶的转向:以逆时针转向为正,反之为负FdM ±=※:力偶矩等于力偶中两个力对任意点的力矩的代数和二.同平面内力偶的等效定理1.定理:在同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效※:理由:①力偶只改变物体的转动状态②力偶对物体的转动效应由力偶矩度量2.推论:①任一力偶可以在它的作用面内任意移转,而不改变它对刚体的作用→力偶对刚体的作用与力偶在其作用面内的位置无关②只要保持力偶矩的大小和力偶的转向不变,可以同时改变力偶中力的大小和力偶臂的长短,而不改变力偶对刚体的作用3.结论:力偶矩是平面力偶作用的唯一量度,而力偶的臂和力的大小都不是力偶的特征量三.平面力偶系的合成和平衡条件:1.平面力偶系的合成:在同一平面内的任意个力偶可合成一个合力偶,合力偶矩等于各个力偶矩的代数和∑==n1i iM M ※:推导过程:①将各力偶在保持力偶矩不变的前提下同时改变力偶臂与力的大小,使各力偶的力偶臂大小相等②在平面内将各偶移转,使它们的作用线重合③分别求两作用线上的合力2.平面力偶系的平衡条件:平面力偶系平衡的必要和充分条件是:所有各力偶矩的代数和等于零M n1i i =∑=第三章平面任意力系§3—1平面任意力系向作用面内一点简化一.力的平移定理:可以把作用在刚体上点A 的力F 平行移到任一点B ,但必须同时附加一个力偶,这个力偶的矩等于原来的力对新作用点B 的矩※:证明过程:在B 点加一对大小与F 相等,方向与F 平行的平衡力,其中与F相反的力与F 组成一个力偶二.平面任意力系向作用面内一点简化·主矢和主矩1.平面任意力系向作用面内一点简化1)平移:力的平移定理→将作用在刚体上的平面任意力系1F ,2F ,…,n F 中的各力向简化中心O 平移,同时附加一个相应的力偶→平面任意力系等效为两个简单力系:平面汇交力系1F ',2F ',…,n F '和平面力偶系1M ,2M ,…,n M※:i i F F =',)(M M i O i F =2)合成:(1)主矢:将平面汇交力系1F ',2F ',…,n F '合成为一个通过简化中心的合力R F '→主矢∑∑==='='n1i i n 1i i RF F F (2)主矩:将平面力偶系1M ,2M ,…,n M 可合成为一个力偶O M →主矩∑∑====n1i i O n 1i i i )(M M M F (3)说明:主矢与简化中心无关,主矩与简化中心有关3)结论:平面任意力系向作用面内任选一点简化,可得一个力和一个力偶。

理论力学(哈工大第八版)-教学课件-第13章

理论力学(哈工大第八版)-教学课件-第13章
§ 13-1 惯性力·质点的达朗贝尔原理
ma F FN
F FN ma 0
令 FI ma
惯性力
有 F FN FI 0
质点的达朗贝尔原理:作用在质点的主动力、
约束力和虚加的惯性力在形式上组成平衡力系.
例13-1
已知: m 0.1kg, l 0.3m, 60
求:惯性力系向点O简化的结果(方向在图上画出).
解:
FItO

m
l
2
FIOn

m
l 2
2
M IO

1 3
ml 2
例13-5
已知:如图所示,电动机定子及其外壳总质量为m1,质心位于O
处.转子的质量为m2 ,质心位于C 处,偏心矩OC=e ,
图示平面为转子的质量对称面.电动机用地角螺钉固定
于水平基础上,轴O与水平基础间的距离为h.运动开始时,
解得
fs

Fs FN

3m1
2m1 m2
A
mg
D m2 g
FN
FS
M IA
FIA
FIC
B
§ 13-4 绕定轴转动刚体的轴承动约束力
Fx 0 FAx FBx FRx FI x 0 Fy 0 FAy FB y FR y FI y 0
Fz 0 FBz FRz 0
M IO ri FIi ri (miaC ) ( miri ) aC
mrC aC
惯性力系向质心简化. 只简化为一个力
M IC 0 FIR maC
平移刚体的惯性力系可以简化为通过质心的合力, 其大小等于刚体的质量与加速度的乘积,合力的方向与 加速度方向反向。

哈尔滨工程大学流体力学课后题答案

哈尔滨工程大学流体力学课后题答案




(2) Fx P 0

1 1 h h 1 P0 h h 2 2 2
h z h h h Fz P0 1 dz 1 P0 h a a 0 a a

0
h a
h 2 h ax dx P0 h a 3 a
流体力学课后题答案
1-1 连续介质的条件 物理上就是不考虑流体分子结构, 把流体看成是一种在一定范围内均匀、 密实而连续分布的 介质,或者说流体是由连续分布的流体质点组成。适用条件是所研究问题的特征尺度 L 远 远大于流体分子的平均自由程。 1-2 (1)不成立。人造地球卫星的特征尺度与分子自由行程可比拟。 (2)成立。地球半径远大于分子自由行程。 1-3 (1)粘性流体静止时没有切应力。 (2)理想流体的前提是 0 ,无切应力。 (3)不 是。粘性是流体的固有属性,前提无论是静止还是运动,粘性都客观存在。 1-4 ( 1 ) 风 洞 : 10 时 , 1 4 . 1 9 10 m s
2
(3) Fx P 0 zc h
arcsin
1 h h arcsin b a P h h h b h a 1 a h arcsin h a sin bxdx 0 arcsin arcsin cos b arcsin a b a b a b a a b a b 0
Fz P0 S Z v P0
h h h cos arcsin sin arccos 1 a a a
2
h P h Fz 0 arcsin a b b
2-6 左
1 1 Fx P0 , Fz P0 2 2

哈工大 工程流体力学

哈工大 工程流体力学

2007工程流体力学一.说明下列基本概念(30分) 1. 连续介质模型在流体力学的研究中,将实际由分子组成的结构用流体微元代替。

流体微元有足够数量的分子,连续充满它所占据的空间,这就是连续介质模型。

2. 流体动力粘度和运动粘度动力粘度:单位速度梯度时内摩擦力的大小dzdv /τμ=运动粘度:动力粘度和流体密度的比值 ρμυ=3. 断面平均流速和时间平均流速流经有效截面的体积流量除以有效截面积而得到的商A q v v a =在某一时间间隔内,以某平均速度流经微小过流断面的流体体积与以真实速度流经此微小过流断面的流体体积相等,该平均速度称为时间平均流速。

4. 层流、紊流层流:定向的恒定流动 紊流:不定向混杂的流动5. 沿程阻力、局部阻力流体沿流动路程所受的阻碍称为沿程阻力局部阻力之流体流经各种局部障碍(如阀门、弯头、变截面管等)时,由于水流变形、方向变化、速度重新分布,质点间进行剧烈动量交换而产生的阻力。

6. 有旋流动、无旋流动有旋流动:流体微团的旋转角速度不等于零的流动称为有旋流动。

无旋流动:流体微团的旋转角速度等于零的流动称为无旋流动。

二. 推求流线的微分方程(10分)s d 0d和v s v ⇒=⨯方向相同某瞬时在流线上任取一点),,(z y x M ,位于M 点的流体质点速度为v ,其分量为z y x v v v ,,,在流线上取无穷小线段s d,其在三个坐标轴上的投影为dz dy dx ,,,由空间几何关系及有s d和v 方向相同:⎪⎪⎪⎭⎪⎪⎪⎬⎫=========ds dz z s d z v v v ds dy y s d y v v v ds dx x s d x v v v z y x ),cos(),cos(),cos(),cos(),cos(),cos( ⇒v ds v dz v dy v dx z y x ===(流线微分方程) 三. 推求流体静平衡微分方程(10分)在静止流体中取如图所示微小六面体。

哈工大流体力学章十三讲解

哈工大流体力学章十三讲解

13-33
© 2014 HIT
空泡稳定性与控制技术
气泡振荡不稳定性是由于环境压力的波动而 引起的。Parishev运用Logvinovich独立性原 理将空泡界面描述为一系列独立的界面。得 到迟滞量与欧拉数、空泡数和空泡内气体的 绝热指数之间的函数表达式
0
12 Eu 1

13-34
0 0 2
© 2014 HIT
带空泡航行体的稳定性技术
浮力缺失 升力集中于空化器和尾舵 尾部滑行力或尾拍力的存在
13-35
© 2014 HIT
带空泡航行体的稳定性技术
13-36
© 2014 HIT
带空泡航行体的稳定性技术
超空泡内弹体处于平衡位置
超空泡内弹体尾部上摆
13-37
超空泡内弹体尾部下摆
超空泡技术试验研究进展
莫斯科大学的主要试验设备是大型高 速水洞。乌克兰科学院流体力学研究所具 有多个大型超空泡试验设备,其中一个多 功能的水利试验台,主要进行小模型的约 束 模 弹 射 或 自 推 力 飞 行 试 验 ; 在 1986 年 建 成的高速开路型水洞,最大水流速度32m/s ,是其最主要的试验装置。
ARL试验室和宾州大学研制了超空泡射 弹模型,美国水下武器作战中心研制开发 了自由航行的高速水下武器系统为了测试 AHSUM的性能,美国水下武器作战中心在 ARL实验室位于马里兰州阿伯丁市的特大 试验水池中进行了自由射击试验。
13-48
© 2014 HIT
超空泡技术试验研究进展
德国早在第二次世界大战期间德国就 开始了超空泡的理论与实践研究。为了完 成超空泡射弹和超空泡火箭武器的研制, 启用了两个主要的试验场地 。 德国南方第 52技术中心的垂直水洞,水深60米,直径5 米,可以研究空泡与深度的关系及气体发 生器的性能。

哈尔滨工业大学精品课程-流体力学课件

哈尔滨工业大学精品课程-流体力学课件
恩氏粘度: 恩氏粘度:ºE 赛氏粘度 : SSU 雷氏粘度: 雷氏粘度 R 中、俄、德使用 美国使用 英国使用 法国使用
巴氏粘度: 巴氏粘度 ºB 用不同的粘度计测定
3、粘压关系和粘温关系 、 〈1〉粘压关系 〉 压强↑→其分子间距离↓ 被压缩) 压强↑→其分子间距离↓(被压缩)→内聚 ↑→其分子间距离 力↑→粘度↑ ↑→粘度↑ 粘度 一般不考虑压强变化对粘度的影响。 一般不考虑压强变化对粘度的影响。 〈2〉粘温关系(对于液体) 〉粘温关系(对于液体) 温度↑→内聚力↓ 粘度↓ 温度↑→内聚力↓ →粘度↓ ↓ ↓ ↑→内聚力 温度变化时对流体粘度的影响必须给于重视。 温度变化时对流体粘度的影响必须给于重视。
Байду номын сангаас
2、液体和气体 、 气体远比液体具有更大的流动性。 气体远比液体具有更大的流动性。 气体在外力作用下表现出很大的可压缩性。 气体在外力作用下表现出很大的可压缩性。 二、流体质点的概念及连续介质模型 流体质点—— 流体中由大量流体分子组成的, 流体中由大量流体分子组成的, 流体质点 宏观尺度非常小, 宏观尺度非常小,而微观尺度又足够大的物理实 。(具有宏观物理量 体。(具有宏观物理量 ρ、T、p、v 等) 、 、 连续介质模型—— 流体是由无穷多个,无穷 流体是由无穷多个, 连续介质模型 小的,彼此紧密毗邻、 小的,彼此紧密毗邻、连续不断的流体质点所组 成的一种绝无间隙的连续介质。
µ =τ
dv dy
代表了粘性的大小
µ 的物理意义:产生单位速度梯度,相邻流 的物理意义:产生单位速度梯度, 层在单位面积上所作用的内摩擦力(切应力) 层在单位面积上所作用的内摩擦力(切应力)的 大小。 大小。 常用粘度表示方法有三种: 常用粘度表示方法有三种: <1>动力粘度 µ 动力粘度 单位 : Pa ⋅ s (帕 • 秒) 1 Pa ⋅ s = 1 N/m2 ⋅ s

哈工大水力学(流体力学)课件

哈工大水力学(流体力学)课件

第10章渗流§10.1 概述102§10.2 渗流的达西定律§10.3 地下水的渐变渗流§10.4 井和井群10§10.5 渗流对建筑物安全稳定的影响一、渗流(seepage flow)概述1 定义:流体在孔隙介质中的流动流体→水地下水流动(地下水流)多孔介质→土壤、岩石2 应用2应用1) 生产建设部门:如水利、石油、采矿、化工等部门。

2)2) 土木工程地下水源开发、降低地下水位、防止建筑物地基发生渗流变形二、水在土中的状态气态水:以蒸汽状态散逸于土壤孔隙中,数量极少,不需考虑。

附着水:以最薄的分子层吸附在土壤颗粒表面,呈固态水的性质,数量很少。

薄膜水:以厚度不超过分子作用半径的薄层包围土壤颗粒,性质与液态水近似,数量很少。

毛细水:因毛细管作用保持在土壤孔隙中,除特殊情况外,因毛细管作用保持在土壤孔隙中除特殊情外一般也可忽略。

重力水:在重力作用下在土壤孔隙中运动的那部分水,是渗在重力作用下在土壤孔隙中运动的那部分水是流理论研究的对象。

三、渗流模型忽略土壤颗粒的存在,认为水充满整个渗流空间且满足:1)对同一过水断面,(对同一过水断面模型的渗流量等于真实的渗流量。

(2)作用于模型任意面积的渗流压强应面积上的渗流压强,应等于真实渗流压强。

(3)模型任意体积内所受的阻力等于同体积真实渗流所受的阻力。

“取走”实际存在的土壤骨架,“代之”以连续水流。

QΔ渗流平均流速意义:1、渗流简化模型将渗流作为连续空间内连续义介质的运动,使得前面基于连续介质建立起来的描述流体运动的方法和概念,能直接应用于渗流中。

2、渗流的速度很小,流速水头忽略不计。

过流断面的总水头等于测压管水头。

四、渗流的分类★渗流空间点运动要素是否随时间变化恒定渗流※非恒定渗流★运动要素与坐标关系一元渗流(渗流地层广阔)※二元、三元渗流元元渗流★流线是否平行直线均匀渗流※非均匀渗流渐变渗流※渐变渗流急变渗流★有无自由水面有压渗流无压渗流※∵渗流在孔隙介质中流动—>有阻力—>能量损失~1855法国工程师达西(Darcy)通过大量实18521855法国工程师达西(D)通过大量实验研究,总结出渗流能量损失与渗流速度之间的基本关系,后人称之为达西定律——渗流理论中最基本最要的关系式最基本最重要的关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fr
4

2]
13-26
© 2014 HIT
通气超空泡的生成与控制
13-27
© 2014 HIT
通气超空泡的生成与控制
通气角度的影响:
13-28
© 2014 HIT
通气超空泡的生成与控制
重力的影响:
13-29
V = 8.9 m/s
© 2014 HIT
通气超空泡的生成与控制
通气超空泡的形态:
13-30
13-40
© 2014 HIT
带空泡航行体的稳定性技术
被动控制指的是依赖航行体设计阶段进 行的适当的流体动力布局及若干非人工控制 的稳定措施来保证运动稳定性的控制方法, 如空化器、模型弹身及尾翼等的形态及流体 动力的设计。
13-41
© 2014 HIT
超空泡技术试验研究进展
乌克兰/俄罗斯 美国 德国 国内
13-42
© 2014 HIT
超空泡技术试验研究进展
俄罗斯和乌克兰的超空泡研究工作实 为一体,多数超空泡试验都在乌克兰进行 。俄罗斯莫斯科大学数学力学系流体力学 教研室、莫斯科大学力学研究所以及中央 空气、水动力学研究院、乌克兰科学院流 体力学研究所等部门开展了超空泡问题的 试验研究。
13-43
© 2014 HIT
© 2014 HIT
空泡稳定性与控制技术
通气不稳定性 自由剪切层不稳定014 HIT
空泡稳定性与控制技术
通气不稳定性主要与通气率和自然空化数有 关,Parishev等应用线形稳定性理论对轴对 称空泡进行了研究,认为通气超空泡的主要 动力学特性取决于无量纲参数
© 2014 HIT
空化器设计
圆盘空化器
Dc cx0 (1 )
Dn

Lc 1
Dn
c
x
0
(1


)
ln
1

13-25
© 2014 HIT
通气超空泡的生成与控制
通气的作用:形成空泡、维持空泡 通气系统的组成 通气规律的研究
Q

Q V Dn2
Q


g
0.27
[
3 g
流体动力学理论基础
超空泡减阻技术
哈尔滨工业大学航天学院 2014年4月
库尔斯克号沉没
俄罗斯核潜艇 1994年5月下水,造价10亿美元 长150米,宽18.2米,高13.1米 独特的双壳艇身和9个防水隔舱 2000年8月沉没 118人遇难
13-2
© 2014 HIT
伊朗试射超级鱼雷
超空泡技术试验研究进展
莫斯科大学的主要试验设备是大型高 速水洞。乌克兰科学院流体力学研究所具 有多个大型超空泡试验设备,其中一个多 功能的水利试验台,主要进行小模型的约 束 模 弹 射 或 自 推 力 飞 行 试 验 ; 在 1986 年 建 成的高速开路型水洞,最大水流速度32m/s ,是其最主要的试验装置。
© 2014 HIT
带空泡航行体的稳定性技术
超空泡射弹入水过程
13-38
© 2014 HIT
带空泡航行体的稳定性技术
超空泡射弹结构破坏状态
13-39
© 2014 HIT
带空泡航行体的稳定性技术
主动控制是首先对航行体的姿态进行实 时监控,再利用主动调控设施(调整喷气量 和喷射方向,调整空化器攻角等等)产生反 馈的闭环控制系统。
13-16
© 2014 HIT
研究意义
美国AHSUM水下超空泡射弹
13-17
© 2014 HIT
研究意义
美国AHSUM水下超空泡射弹试验方案
13-18
© 2014 HIT
研究意义
美国AHSUM水下超空泡射弹试验照片
13-19
© 2014 HIT
研究意义
德国“棱鱼” 超空泡导弹
13-20
© 2014 HIT
© 2014 HIT
带空泡航行体的稳定性技术
浮力缺失 升力集中于空化器和尾舵 尾部滑行力或尾拍力的存在
13-35
© 2014 HIT
带空泡航行体的稳定性技术
13-36
© 2014 HIT
带空泡航行体的稳定性技术
超空泡内弹体处于平衡位置
超空泡内弹体尾部上摆
13-37
超空泡内弹体尾部下摆
13-33
© 2014 HIT
空泡稳定性与控制技术
气泡振荡不稳定性是由于环境压力的波动而 引起的。Parishev运用Logvinovich独立性原 理将空泡界面描述为一系列独立的界面。得 到迟滞量与欧拉数、空泡数和空泡内气体的 绝热指数之间的函数表达式
0
12 Eu 1

13-34
0 0 2
13-7
© 2014 HIT
研究意义
“暴风”超空泡鱼雷
13-8
© 2014 HIT
研究意义
13-9
© 2014 HIT
研究意义
美国正在研制的超空泡鱼雷原理图
13-10
© 2014 HIT
研究意义
美国正在研制的超空泡鱼雷原理图
13-11
© 2014 HIT
超空泡鱼雷结构
1 空化器 2 通气口 3 导引系统 4 推进及通气系统 5 尾翼
13-12
© 2014 HIT
研究意义
美国RAMICS机载超空泡射弹
13-13
© 2014 HIT
研究意义
13-14
© 2014 HIT
研究意义
美国RAMICS机载超空泡射弹
13-15
© 2014 HIT
研究意义
利于稳定飞行的尾翼 标准 GAU-8 弹药筒 接口兼容 Mk44/Bushmaster II 30mm链炮 弹丸质量:0.55 lb (250 g) 弹丸长度:7.5 inches (190.5 mm)
研究意义
德国“棱鱼” 超空泡导弹
13-21
© 2014 HIT
研究意义
德国“棱鱼” 超空泡导弹
13-22
© 2014 HIT
研究意义
超空泡武器的未来发展 超空泡导弹 超空泡水雷 超空泡运输艇 超空泡潜艇 潜射超空泡武器 ……
13-23
© 2014 HIT
空化器设计
13-24
v g
1 2.645
13-32
© 2014 HIT
空泡稳定性与控制技术
自由剪切层的不稳定性在两种互不渗透液体 通过一个界面进行接触时发生,当两种介质 在界面处的相对速度较大时更为明显。应用 线性稳定性理论得到自由剪切层稳定性要求 如下
uwater u gas 6.6m / s
2006年4月,伊朗大规模军演 超级鱼雷“鲸” 水下运动速度约193.9节 击中靶艇
13-3
© 2014 HIT
研究意义
F ma
Fd
Cd
1 2
V2
A
13-4
© 2014 HIT
研究意义
13-5
© 2014 HIT
超空泡减阻机理
13-6
© 2014 HIT
研究意义
“暴风”超空泡鱼雷
相关文档
最新文档