自动控制原理第5章 频率响应法
合集下载
自动控制原理简明教程 第五章 频率响应法

这时,求扰动输入下的误差传递函数 en(s) ,
先求 E(s) 0 C(s) 1GG((s)s) N(s)
而
e(n s)
NE((ss))
1
G(s) G(s)
则 ess(2 t) An e(n j)sin(t en( j))
幅频特性
相频特性
二.频率特性的物理意义及求解方法
R
ur
C uc
RC网络微分方程为:
优点:
(1).可以根据系统的开环频率特性判断闭环系 统的稳定性,而不必求解特征方程。
(2).很容易研究系统的结构,参数变化对系统性 能的影响,并可指出改善系统性能的途径,便于
对系统进行校正。
(3).提供了一种通过实验建立元件或系统数 学模型的方法。
(4).可以方便地设计出使系统噪声小到规定 程度的系统。
一.比例环节
传递函数为G(s)=k
频率特性为 G( jw) ke j 0
幅频特性为 A(w)=k
相频特性为 (w) 0
极坐标图和伯德图为:
L(w)(dB)
20lgk
(w)(度) 0.1 1 10 100
w
0
w
-30
Bode图
j
w=0
w
0k
w
极坐标图
二.积分环节和微分环节
积分环节: G(s) C(s) R(s) 1/ s
w? ?
450 W=1/T
1 W=0 w
对数幅频特性:L(w) 20lg 1 T 2w2 1
20lg T 2w2 1
当wT≥1时,L(w)≈-20lgwT
当wT≥1时,L(w)可用一条斜率为-20dB/dec的渐近 直线来表示。
当wT≤1时,L(w)≈0,是一条与0分贝线重合的直线。 两直线交于横坐标w=1/T的地方。
自动控制原理简明教程第二版5 第五章 频率响应分析法

15
5.2.2. 典型环节的频率特性曲线绘制方法
(1)比例环节 ) (2)惯性环节 ) (3)振荡环节 ) (4)积分环节 ) (5)其他典型环节与最基本环节的关系 )
16
(1) 比例环节的幅相频率特性曲线
传递函数: 传递函数: G ( s ) = K ( K > 0) 由传递函数得频率特性表达式: 由传递函数得频率特性表达式:
2 2
ω 2ζ ωn ϕ (ω ) = −arctg ω 1 − ( )2 ωn
对数频率特性
2 2 ω 2 ω L(ω ) |= 20 lg A(ω ) = -10 lg 1 − ( ) + 2ζ ωn ωn ω
8
2.对数频率特性曲线(对数坐标图或伯德图) .对数频率特性曲线(对数坐标图或伯德图) 对数频率特性曲线包括对数幅频特性和对数相频特性两条曲线 由频率特性 G( jω) =
1 jϕ(ω) = A(ω)e 1+ jωT
对数幅频特性 L(ω) = 20lg G( jω) = 20lg A(ω) = −20lg
U2 (s) 1 = U1(s) Ts +1
G(s) =
输入正弦信号 u1 ( t ) = A sin ω t
1 1 Aω U1(s) = ⋅ 2 输出响应 U2 (s) = Ts +1 Ts +1 s +ω2
3
5.1.2 频率特性的定义
输出响应 U2 (s) = 输出响应
u2 t) = (
1 1 Aω U1(s) = ⋅ 2 Ts +1 Ts +1 s +ω2
13
5.2.1. 典型环节
自动控制原理第五章-频率响应法

Im
(K,0°)
0
Re
图5.5 比例环节乃氏图
南京工业职业技术学机械学院——自动控制原理
L( )
0
( )
dB K>1
K=1 K<1
lg
0
lg
图5.6 比例环节的Bode图
作用:比例环节只改变原系统的幅值(K<1,降低;K > 1, 抬高),不改变原系统的相位。
南京工业职业技术学机械学院——自动控制原理
➢ 乃氏图的绘制—— “三点法”
G(jω)= A(ω)ejφ(ω) →
A(ω):起止位置 φ(ω) :起止方向
起点:ω→0,[A(0),φ(0)] 终点: ω→∞,[A(∞),φ(∞)] 与负实轴的交点:令φ(ω) =-180°→ ωx
相位截止频 率或相位剪
切频率
则交点为[A(ωg),-180°]
注意:由φ(0) → φ(∞)的变化范围可判断乃氏图所在 的 象限。
2 ( )
1 ( )
图5.8 积分、微分环节Bode图
南京工业职业技术学机械学院——自动控制原理
3. 纯微分环节
G(s) s
G( j) j e j90
传递函数与积分 环节互为倒数
Im
A()
(1)乃氏图 ( ) 90
起点:[0, 90°];终点: [∞, 90°]
0
Re
图5.9 微分环节乃氏图
I ( )
T 1 2T
2
联立消去ω可以得到实部和虚部 的关系式:
[R( ) 0.5]2 [I( )]2 0.52
故,惯性环节的乃氏图是圆心为点(0.5,j0)上,半径为 0.5的半园(ω=0~∞)。
(2)Bode图
自动控制原理(第三版)第五章频率响应法

频段的两条直线组成的折线近似表示, 如图5-18的渐近线所
示。 这两条线相交处的交接频率ω=1/T, 称为振荡环节的无阻尼
自然振荡频率。在交接频率附近, 对数幅频特性与渐近线存在
一定的误差, 其值取决于阻尼比ζ的值, 阻尼比越小, 则误差越大, 如表5-4所示。当ζ<0.707时, 在对数幅频特性上出现峰值。根
一个单位长度。设对数分度中的单位长度为L, ω0为参考点, 则 当ω以ω0为起点, 在10倍频程内变化时, 坐标点相对于ω0的距离
为表5-1中的第二行数值乘以L。
第五章 频 率 响 应 法
图 5-4 对数分度和线性分度
第五章 频 率 响 应 法
表 5-1 10倍频程内的对数分度
第五章 频 率 响 应 法
第五章 频 率 响 应 法
图 5-7 比例环节的伯德图
第五章 频 率 响 应 法
2. 积分环节 积分环节的频率特性为
其幅频特性和相频特性为
(5.18)
(5.19)
由式(5.19)可见,它的幅频特性与角频率ω成反比, 而相频特性恒
为-90°。对数幅频特性和相频特性为
(5.20)
第五章 频 率 响 应 法
T), 则有
因此有
这表明φ(ω)是关于ω=1/T, φ(ω)=-45°这一点中心对称的。 用
MATLAB画出的惯性环节的伯德图如图5-14所示(T=1)。
第五章 频 率 响 应 法
图 5-14 MATLAB绘制的惯性环节的伯德图
第五章 频 率 响 应 法
5. 一阶微分环节 一阶微分环节的频率特性为 幅频特性和相频特性为
即 所以, 惯性环节的奈氏图是圆心在(0.5, 0), 半径为0.5的半圆 (
见图5-12)。 对数幅频特性和相频特性为
示。 这两条线相交处的交接频率ω=1/T, 称为振荡环节的无阻尼
自然振荡频率。在交接频率附近, 对数幅频特性与渐近线存在
一定的误差, 其值取决于阻尼比ζ的值, 阻尼比越小, 则误差越大, 如表5-4所示。当ζ<0.707时, 在对数幅频特性上出现峰值。根
一个单位长度。设对数分度中的单位长度为L, ω0为参考点, 则 当ω以ω0为起点, 在10倍频程内变化时, 坐标点相对于ω0的距离
为表5-1中的第二行数值乘以L。
第五章 频 率 响 应 法
图 5-4 对数分度和线性分度
第五章 频 率 响 应 法
表 5-1 10倍频程内的对数分度
第五章 频 率 响 应 法
第五章 频 率 响 应 法
图 5-7 比例环节的伯德图
第五章 频 率 响 应 法
2. 积分环节 积分环节的频率特性为
其幅频特性和相频特性为
(5.18)
(5.19)
由式(5.19)可见,它的幅频特性与角频率ω成反比, 而相频特性恒
为-90°。对数幅频特性和相频特性为
(5.20)
第五章 频 率 响 应 法
T), 则有
因此有
这表明φ(ω)是关于ω=1/T, φ(ω)=-45°这一点中心对称的。 用
MATLAB画出的惯性环节的伯德图如图5-14所示(T=1)。
第五章 频 率 响 应 法
图 5-14 MATLAB绘制的惯性环节的伯德图
第五章 频 率 响 应 法
5. 一阶微分环节 一阶微分环节的频率特性为 幅频特性和相频特性为
即 所以, 惯性环节的奈氏图是圆心在(0.5, 0), 半径为0.5的半圆 (
见图5-12)。 对数幅频特性和相频特性为
自动控制原理 第五章 频率法

频率特性
在稳态下输出:e2 = E2Sin(wt +υ ) 仍是正弦信号, 频率不变, 幅值和相角发生变化. 变化与w有关. 1/jwC 1 写成矢量形式:e2 = ————— e1 = ———— e1 R + 1/jwC 1+jwRC e2 1
-— = ———— e1 1+jwRC
与电路参数RC有关、与输入电压的频率有关
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
输出输入的振幅比(幅频特性): A(w) = Ac/Ar = | G(jw)| = G(S) | 输出输入的相位差(相频特性): υ (w) = υ - 0 =∠G(jw) =∠G(S) | 所以:G(jw) = G(S)|S=jw 频率特性 传递函数 证毕
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10
(a )
( )
0o
90o
(b)
180o
图5-20 一阶不稳定环节 的对数频率特性
自动控制原理
蒋大明
时滞环节
传递函数: G(S) = e-τ
S
幅相频率特性:
G(jw) = e-jτ
A(w) = 1 υ (w) = -τ w
w
自动控制原理
蒋大明
时滞环节
对数频率特性: L(w) = 20 lg A(w) = 20lg 1 = 0 υ (w) = -τ w
(横坐标对数分度,曲线)
自动控制原理
蒋大明
第三节
1.
自动控制原理第五章频率响应法

智能化和自适应频率响应分析方法
随着人工智能和机器学习技术的发展,将人工智能和机器学习技术应用于频率响应分析中 ,可以大大提高分析的准确性和效率,是未来研究的一个重要方向。
06
参考文献
参考文献
01
《现代控制系统分析与设计(第八版)》作者: Richard C. Dorf and Robert H. Bishop
01
频率响应法的起源可以追溯到20世纪30年代,当时研究者开始 使用频率响应法来分析电气系统的稳定性。
02
随着计算机技术和信号处理技术的发展,频率响应法的应用范
围不断扩大,分析精度和计算效率也不断提高。
目前,频率响应法已经成为自动控制原理中最重要的分析方法
03
之一,广泛应用于控制系统的分析和设计。
02
非线性系统的频率响应分析
非线性系统的频率响应分析是研究非线性系统对不同频率输入信号的响应特性。由于非线性系统的输出与输入之间不存在明 确的函数关系,因此需要采用特殊的方法进行分析。
在实际应用中,非线性系统的频率响应分析广泛应用于音频处理、图像处理、通信等领域。通过分析非线性系统的频率响应 特性,可以揭示系统的内在规律,为系统设计和优化提供依据。
02
《自动控制原理(第五版)》作者:孙亮
03
《控制系统设计指南(第二版)》作者:王树青
感谢您的观看
THANKS
对数坐标图分析法
对数坐标图分析法也称为伯德图,通过将系统 的频率响应以对数坐标的形式表示出来,可以 方便地观察系统在不同频率下的性能变化。
在对数坐标图中,幅值响应和相位响应分别以 对数形式表示,这样可以更好地展示系统在不 同频率下的变化趋势。
对数坐标图分析法适用于分析各种类型的系统 和多输入多输出系统,对于非线性系统也可以 进行一定的分析。
随着人工智能和机器学习技术的发展,将人工智能和机器学习技术应用于频率响应分析中 ,可以大大提高分析的准确性和效率,是未来研究的一个重要方向。
06
参考文献
参考文献
01
《现代控制系统分析与设计(第八版)》作者: Richard C. Dorf and Robert H. Bishop
01
频率响应法的起源可以追溯到20世纪30年代,当时研究者开始 使用频率响应法来分析电气系统的稳定性。
02
随着计算机技术和信号处理技术的发展,频率响应法的应用范
围不断扩大,分析精度和计算效率也不断提高。
目前,频率响应法已经成为自动控制原理中最重要的分析方法
03
之一,广泛应用于控制系统的分析和设计。
02
非线性系统的频率响应分析
非线性系统的频率响应分析是研究非线性系统对不同频率输入信号的响应特性。由于非线性系统的输出与输入之间不存在明 确的函数关系,因此需要采用特殊的方法进行分析。
在实际应用中,非线性系统的频率响应分析广泛应用于音频处理、图像处理、通信等领域。通过分析非线性系统的频率响应 特性,可以揭示系统的内在规律,为系统设计和优化提供依据。
02
《自动控制原理(第五版)》作者:孙亮
03
《控制系统设计指南(第二版)》作者:王树青
感谢您的观看
THANKS
对数坐标图分析法
对数坐标图分析法也称为伯德图,通过将系统 的频率响应以对数坐标的形式表示出来,可以 方便地观察系统在不同频率下的性能变化。
在对数坐标图中,幅值响应和相位响应分别以 对数形式表示,这样可以更好地展示系统在不 同频率下的变化趋势。
对数坐标图分析法适用于分析各种类型的系统 和多输入多输出系统,对于非线性系统也可以 进行一定的分析。
自动控制原理 矿大05第五章 频率响应法1 (1)

微分方程
G (s )
传递函数 控制系统 频率特性
G( jω)
s = jω
8
线性、定常、 线性、定常、零初始值的系统
频率特性(极坐标表示) 频率特性(极坐标表示)
-----Nyquist图 图
幅相频率特性曲线, 幅相频率特性曲线,又称为极坐标图
G( jω ) = A(ω)e
jϕ (ω )
变化时, 当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化, 的幅值和相位也随之作相应的变化,其端点在复平 面上移动的轨迹称为极坐标图: 奎斯特(Nyquist) 面上移动的轨迹称为极坐标图:奈奎斯特 曲线,又称奈氏图 曲线 又称奈氏图 Im
n
稳态响应
趋向于零( →∞ →∞) 瞬态响应 趋向于零(t→∞)
C ss (t ) = Ae − jω t + A e jω t
A = G(s)
系数 A、A 用留数法获取
Arω Arω −A (s + jω) s=− jω = G(− jω) (s + jω) s=− jω = G(− jω) r s2 +ω2 (s + jω)(s − jω) 2j
结论
同频率的正弦,幅值随频率变 相角也随频率变 同频率的正弦,幅值随频率变,相角也随频率变。 的正弦
Ar=1 ω=0.5
=1
=2
=2.5
=4
3
频率特性(公式推导 频率特性 公式推导) 公式推导
设稳定的线性定常控制系统
b0 sm + b1sm−1 +L+ bm 传递函数: 传递函数: G(s) = a0sn + a1sn−1 +L+ an
自动控制原理05频率响应法

9
(2)通过截止频率c的斜率为-40dB/dec 宽度:2 c 3
假设系统是稳定的,并近似认为整个开环特性为-40dB/dec
则,开环传递函数为
G(s)
K s2
c2
s2
对单位反馈系统,其闭环传递函数为
(s) G(s) c2 / s2 c2 1 G(s) 1c2 / s2 s2 c2
相位裕度为0,系统处于临界稳定状态,动态过程持续振荡。
1
(1
2 n2
)2
(2
n
ቤተ መጻሕፍቲ ባይዱ
)2
0 0.707 时,产生谐振
2
(
)
arctg
1
n 2
n2
令
dM
d
0
得谐振频率r
n
1 2 2
将 r 代入M表达式,得谐振峰值 M r 2
1
1 2
M= 2 时的频率值 B 称截止频率。
5
2
时域指标与二阶系统参数 ,n 有下面的关系:
% e / 12 100%
▪ 谐振峰值 Mr 和峰值频率r
谐振峰值 Mr 表征了系统的相对稳定性 Mr 越大,则系统的稳定性越差
1.0 Mr 1.4(0 : 3dB) 时,相当于有效阻尼比在(0.4~0.7), 系统可以获得满意的瞬态响应特性。
M r 1.5 时,阶跃瞬态响应将出现较大的超调。 M
Mr
r
tr
M (0)
开环幅频特性
G(
j)
(
K (1 j 1)( 2 j 1) ( m j j) (T1 j 1)(T2 j 1) (Tn
1)
j 1)
▪ 闭环幅频特性的零频值M(0)
对单位反馈系统,若系统为无静差系统,在常值信号作用 下,稳态时输出等于输入,有:
(2)通过截止频率c的斜率为-40dB/dec 宽度:2 c 3
假设系统是稳定的,并近似认为整个开环特性为-40dB/dec
则,开环传递函数为
G(s)
K s2
c2
s2
对单位反馈系统,其闭环传递函数为
(s) G(s) c2 / s2 c2 1 G(s) 1c2 / s2 s2 c2
相位裕度为0,系统处于临界稳定状态,动态过程持续振荡。
1
(1
2 n2
)2
(2
n
ቤተ መጻሕፍቲ ባይዱ
)2
0 0.707 时,产生谐振
2
(
)
arctg
1
n 2
n2
令
dM
d
0
得谐振频率r
n
1 2 2
将 r 代入M表达式,得谐振峰值 M r 2
1
1 2
M= 2 时的频率值 B 称截止频率。
5
2
时域指标与二阶系统参数 ,n 有下面的关系:
% e / 12 100%
▪ 谐振峰值 Mr 和峰值频率r
谐振峰值 Mr 表征了系统的相对稳定性 Mr 越大,则系统的稳定性越差
1.0 Mr 1.4(0 : 3dB) 时,相当于有效阻尼比在(0.4~0.7), 系统可以获得满意的瞬态响应特性。
M r 1.5 时,阶跃瞬态响应将出现较大的超调。 M
Mr
r
tr
M (0)
开环幅频特性
G(
j)
(
K (1 j 1)( 2 j 1) ( m j j) (T1 j 1)(T2 j 1) (Tn
1)
j 1)
▪ 闭环幅频特性的零频值M(0)
对单位反馈系统,若系统为无静差系统,在常值信号作用 下,稳态时输出等于输入,有:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G( j ) G(s)
s j
这里的结论同RC网络讨论的结果是一致的。
11
5.3 频率特性的图示方法
频域分析法是一种图解方法,采用频域法分析闭环系统的特 性时,通常需画出系统开环频率特性曲线。频率特性的图示 方法主要有三种,即极坐标图、对数坐标图和对数幅相图, 现分述如下。 5.3.1 极坐标图 频率特性G(jw)是频率w 的复变函数,其模|G(jw)|与相角 ∠G(jw)可以在复平面上用一个矢量来表示。当频率w从 0 变化时,矢量端点的轨迹就表示频率特性的极坐标 图。极坐标图又称幅相图或奈魁斯特(Nyquist)图。在极坐标 图上,规定矢量与实轴正方向的夹角为频率特性的相位角, 且按逆时针方向为正进行计算。
G ( j )
T
0
如果τ>T,则∠G(jw)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T,则 ∠G(jw)<0°,极坐标曲线在第Ⅳ象限变化,如图5.12所示。
18
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形,称为对数坐 称图或波德(Bode)图。 对数坐标图在频率法中应用最为广泛。它的主要优点是:①利用对数 运算可以将串联环节幅值的乘除运算转化为加减运算;②可以扩大所表 示的频率范围,而又不降低低频段的准确度;③可以用渐近线特性绘制 近似的对数频率特性,从而使频率特性的绘制过程大大简化。 1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分组成。 对数幅频特性和相频特性的横坐标都是频率w ,采用对数分度,单位 为弧度/秒(rad/s)。 对数幅频特性的纵坐标表示幅值比的对数值,定义为 L(w)=20lg|G(jw)| (5-26) 采用线性分度,单位是分贝,用字母dB表示。 对数相频特性的纵坐标表示相位差j =∠G(jw),采用线性分度, 单位是度(°)。
14
(4)一阶微分环节 (5)振荡环节
(6)延滞环节
2.不稳定环节频率特性的极坐标图 如果某环节在右半s平面有极点,则称该环节为不稳定环 节。不稳定环节的幅频特性表达式与稳定环节完全相同,但 相频特性却有较大差别。
15
K 例5-1 设有两个不稳定环节的传递函数分别为 G1 ( s ) Ts 1 和 G 2 ( s ) 1 Ts
i 1 k j i
i 1 k
(5-23)
系统开环频率特性可根据各串联环节频率特性的模及相角公式, 令w 从0→∞变化,按照“幅值相乘、相角相加”的原则进行计 算,从而绘制极坐标图。
绘制系统开环极坐标图可按如下步骤:
(1)确定曲线的起始点和终止点 (2)确定曲线与实轴或虚轴的交点 (3)分析曲线的变化区域
20 lg 20 lg 2 1 2 2 n )
2
2 1 2 40 lg 2 n n n
16
3.系统开环频率特性的极坐标图 系统的开环传递函数是由一系列典型环节组成的,因此, 系统的开环频率特性通常是若干典型环节频率特性的乘积,即
G( j ) G1 ( j )G2 ( j )Gk ( j ) Gi ( j )
i 1 k
若写成极坐标形式,为
G( j ) Gi ( j ) e
17
例5-2 单位反馈系统的开环传递函数为 G ( s ) 解 开环频率特性
s 1
Ts 1
, 试绘制其极坐标图。
j 1 2 2 1 G ( j ) (arctan arctan T ) 2 2 j T 1 T 1
确定极坐标曲线的起始点和终止点: 当w =0时,G(jw)=1∠0°; 当w =∞时,
普通高等教育“十一五”国家级规划教 材
自动控制原理
第5章 频域分析法
机械工业出版社
第5章 频域分析法
5.1 概述 5.2 频率特性的基本概念 5.3 频率特性的图示方法 5.4 频域稳定性判据 5.5 控制系统的稳定裕度 5.6 控制系统的闭环频率特性 5.7 频域性能指标与瞬态性能指标之间的关系
表列出了RC网络幅频特性和相频特性的计 算数据。
6
根据表中数据绘制的幅频特性曲线和相频特性曲 线如下:
7
5.2.2 频率特性的求取
一般线性定常系统输入、输出关系如图所 示。
系统的传递函数为 C ( s ) G ( s )
R( s)
假定输入信号r(t)为
r (t ) A sin t
A A R( s) L[ A sin t ] 2 2 ( s j )(s j ) s
23
(4)振荡环节 振荡环节的传递函数为
2 n 1 G( s) 2 2 2 T s 2Ts 1 s 2 2 n s n
(0 1)
其频率特性为
1 G( j ) 2 ( 1 2 ) j 2
n
n
24
用两条渐近线近似表示振荡环节的对数幅频特性曲线也将 产生误差,误差最大值发生在振荡环节的转角频率w =wn处, 误差的表达式为
1 1 A U c ( s) U r ( s) Ts 1 Ts 1 s 2 2
t T
ur A sin t
取拉普拉斯反变换,得输出信号
AT uc 2 2 e T 1
A
2T 2 1
sin(t arctan T )
式中第一项为输出的瞬态分量,第二项为稳态分量。随着t趋于 无穷大,瞬态分量趋于零,于是
U ( )
V ( )
配方后可得
K (T ) 2 1
KT (T ) 2 1
(U
K 2 K ) V 2 ( )2 2 2
所以,在复平面上G(jw)为一圆心在(K/2,0)点, 半径为K/2的半圆,如图下半部分所示。当-∞w 0时,因为G(-jw)与G(jw)互为共轭关系,关于实 轴对称,即如上半圆所示。
系统输出c(t)的拉普拉斯变换为
K (s z1 )(s z 2 )(s z m ) A C(s)=G(s)R(s)= (s s1 )(s s2 )(s sn ) (s j )(s j )
9
展成部分分式为
bn b1 b2 a a C ( s) s j s j s s1 s s2 s sn
lim uc
t
A
T 1
2 2
sin( t arctan T )
5
如果取s=j代入,则
1 1 1 1 jarctanT e 2 2 jT 1 jT 1 jT 1 T 1
该式能完全描述RC网络在正弦函数作用下稳 态输出的幅值和相位随输入频率变化的情况。因此, 将1 / (jwT+1)称做该RC网络的频率特性。
8
K ( s z1 )(s z 2 ) (s z m ) G( s) ( s s1 )(s s 2 ) ( s s n )
nm
式中-z1, -z2 ,…,-zm是传递函数G(s)的零点, -s1 , -s2 ,…, -sn 是传递函数G(s)的极点。这些极点可能是 实数,也可能是共轭复数,但对于稳定系统来说,它们都 具有负实部。
3
5.2 频率特性
5.2.1 频率特性的基本概念
首先以图RC网络为例,说明频率特性的概念。
RC网络的输入和输出的关系可由下面微分方程 描述 du c
T
dt
uc ur
式中,T=RC为时间常数。网络的传递函数为
U c ( s) 1 U r (s) Ts 1
4
设输入是一个正弦信号,即
可得
21
(2)积分环节和微分环节
1)积分环节 积分环节的传递函数为
G (s) 1 s
2)微分环节 微分环节的传递函数为
G( s) s
22
(3)惯性环节和一阶微分环节
1)惯性环节 惯性环节的传递函数为
G( s) 1 Ts 1
2)一阶微分环节 一阶微分环节的传递函数为
G(s) Ts 1
本章将讨论频率特性的基本概念、典型环节和 系统的频率特性、奈魁斯特稳定判据、频域性能指标 与时域性能指标间的联系等。
2
5.1 概述 频域分析法是应用频率特性研究 线性系统的一种图解方法。频率特性 和传递函数一样,可以用来表示线性 系统或环节的动态特性。 建立在频率特性基础上的分析控 制系统的频域法弥补了时域分析法中 存在的不足,因而获得了广泛的应用。 所谓频率特性,是指在正弦输入信号 的作用下,线性系统输出的稳态响应。
19
对数频率特性的坐标如图所示。
在对数分度的横坐标中,当变量增大或减小10倍,称为十倍频程(dec), 坐标间距离变化一个单位长度。此外,零频率不能表示在对数坐标图中。
20
2. 典型环节的对数频率特性曲线
(1)比例环节 比例环节的频率特性函数为 G (jw) =K∠0° (K >0) 由于幅值和相角都不随频率w变化,所以,对数幅频特性 是一条平行于横轴且纵坐标值为20lg|G(jw)|=20lgK(dB)的直线。 对数相频特性恒为0°。
通过上述分析,得到频率特性的定义,即:系统对正弦输入信号的稳态响应特 性,就称为频率特性。一般记为
G ( j ) G ( j ) e jG ( j ) G ( j ) e j
它包含了两部分内容:幅值比是依赖于角频率w 的函数,|G(jw)|称为系统的幅 频特性;稳态输出信号对正弦输入信号的相移φ称为系统的相频特性。系统的频率 特性G(jw)可以通过系统的传递函数G(s)来求取,即
a G( s)
A ( s j ) ( s j )(s j ) A G ( j ) 2j