同济大学泰勒公式
最新考研高数重点知识泰勒公式汇总
最新考研高数重点知识泰勒公式汇总泰勒公式是高等数学中非常重要且常用的一个工具,在考研高数中也是必备的知识点之一、下面将针对泰勒公式进行详细汇总,以供大家复习。
首先,我们来了解一下泰勒公式的基本形式。
泰勒公式是指将一个光滑函数在其中一点处展开成无穷阶的幂级数的形式。
泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+...其中,f(x)代表原函数,f(a)代表在点a处的函数值,f'(a)代表函数在点a处的导数,f''(a)代表函数在点a处的二阶导数,f^n(a)代表函数在点a处的n阶导数,(x-a)^n代表x减去a的n次幂,n!代表n的阶乘。
了解了泰勒公式的基本形式后,我们来看一下泰勒公式的具体应用:1.求函数的近似值:泰勒公式可以将一个函数在其中一点的附近展开成一项项的幂级数,通过截取其中几项可以得到函数在该点附近的近似值。
通常情况下,我们会截取前几项,因为随着项数的增多,计算量会变得非常大。
2.求函数的极限:通过求出函数在其中一点的泰勒展开式,我们可以得到该函数在该点的极限。
如果一个函数在其中一点的泰勒展开式的前n项的系数构成的极限存在且有限,那么该极限就是函数在该点的极限。
3.求函数的高阶导数:泰勒公式可以展开到无穷阶,因此可以通过泰勒公式求出一个函数的高阶导数。
在实际应用中,经常会遇到需要求高阶导数的问题,泰勒公式能够很好地帮助解决这类问题。
4.求积分:泰勒公式对于求解积分也有很大的帮助。
我们可以通过一个函数在其中一点附近的泰勒展开式来求积分,从而得到积分的近似值。
这在实际应用中尤为重要,因为很多情况下,我们无法直接得到一个函数的积分表达式,只能通过近似的方式来计算积分值。
以上是泰勒公式的基本知识和应用,掌握了这些内容,相信对于考研高数的复习和应对考试会有很大的帮助。
同济大学《高等数学》(第四版)第三章习题课
上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当
2024考研数学常见泰勒公式展开式
2024考研数学常见泰勒公式展开式泰勒公式是数学分析中的一个重要定理,它给出了一个函数在其中一点附近的多项式逼近。
它的形式如下:设函数f在点x=a处n+1次可导,则它在点x=a处的泰勒展开式为:\[f(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x)\]其中,Rn(x)为泰勒余项,余项有以下形式:\[R_n(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}\]其中a<c<x为函数f在区间[a,x]上的其中一点。
常见的泰勒公式展开式如下:1.指数函数的泰勒展开式:\[e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n! }+R_n(x)\]其中\[R_n(x)=\frac{e^c}{(n+1)!}x^{n+1}\]2.正弦函数的泰勒展开式:\[\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+R_n(x)\]其中\[R_n(x)=(-1)^n\frac{\cos c}{(2n+2)!}x^{2n+2}\]3.余弦函数的泰勒展开式:\[\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots+(-1)^n\frac{x^{2n}}{(2n)!}+R_n(x)\]其中\[R_n(x)=(-1)^n\frac{\sin c}{(2n+1)!}x^{2n+1}\]4.自然对数函数的泰勒展开式:\[\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{n-1}\frac{x^n}{n}+R_n(x)\]其中\[R_n(x)=(-1)^n\frac{(1+c)^{-n}}{n+1}x^{n+1}\]5.三角函数的泰勒展开式:\[\begin{align*} \sin x &= x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots+\frac{(-1)^n}{(2n+1)!}x^{2n+1} \quad \text{(奇次项展开式)} \\ \cos x &= 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots+\frac{(-1)^n}{(2n)!}x^{2n} \quad \text{(偶次项展开式)} \end{align*}\]除了上述常见的泰勒展开式之外,还有一些其他函数的泰勒展开式,如二次函数、指数对数混合形式等,这些展开式在不同的数学问题中有着重要的应用。
《高等数学》(同济大学第七版)上册知识点总结
高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→x xx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
(同济大学)高等数学课件D3_3泰勒
4 3x
1( 9 n) o( x 2 n1 n1 x2 ) ( 1) 16 (1 x) 9 x 原式 lim 2 32 (n x0 1) ! x2
(2) 当 n = 1 时, 泰勒公式变为 可见
f ( ) ( x x0 ) 2 f (x) f ( x0 ) f ( x0 )( x x0 ) 2!
( 在 x0 与 x 之间)
df
返回 结束
误差
( 在 x0 与 x 之间)
机动 目录 上页 下页
在泰勒公式中若取 x0 0 , x (0 1) , 则有 f (0) 2 f ( n ) (0) n x x f (0) f (0) x 2! n!
其中 R2 m ( x)
sin() m x 2 x ) 2 m1 (1 cos(m 1 ) 2 (0 1) x (2m 1) !
机动
目录
上页
下页返回结束 Nhomakorabea类似可得
x2 x4 x 2m cos x 1 (1) m R2m1 ( x) 2! 4! ( 2 m) !
其中 Rn (x)
( 1)( n)
(n 1) !
(1 x) n1 x n1
(0 1)
机动 目录 上页 下页 返回 结束
已知 f 类似可得
(k )
( x) (1)
k 1
(k 1)! (k 1, 2 ,) k (1 x)
x 2 x3 xn ln(1 x) x (1) n 1 Rn (x) 2 3 n
其中
(1) m1 cos( x) 2 m 2 R2m1 ( x) x (2m 2) !
同济大学高等数学7.泰勒公式
注意到 f (n1) ( ) e 代入公式,得
ex 1 x x2 xn e xn1
2!
n! (n 1)!
(在x与0之间).
由公式可知
ex 1 x x2 xn
2!
n!
估计误差 (设 x 0)
Rn (x)
e xn1 (n 1)!
ex xn1(0
(n 1)!
x).
取x 1, e 1 1 1 1
于是(i) Rn (x)与f (x)有相同的连续性,可导性;
(ii )
Rn (x0 )
Rn (x0) Rn(x0)
R(n) n
(
x0
)
0.
lim x x0
Rn (x) (x x0 )n
lim
x x0
Rn (x) n(x x0 )n1
lim
Rn( x)
xx0 n(n 1)( x x0 )n2
a2.
P2 (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2
)
(
x
x0
)
2
P2(x)近似f (x)的误差:
f
(x) P2 (x) (x x0 )2
0
(x x0 )
f (x)
f
(x0 )
f (x0 )(x x0 )
f
(x0 2
)
(
x
x0
)2
o(x x0 )2.
)
f
(x2 )
2
2
证:不妨设 x1
x2 ,记
x0
x1
x2 2
,有
f (x)
f (x0 )
f (x0 )(x x0 )
同济大学第五版高数
设 f ( x )在 [a , b] 上连续, (a , b) 内可导, 在
x0 , x0 x (a , b ), 则有
f ( x 0 x ) f ( x 0 ) f ( x 0 x ) x (0 1).
也可写成 y f ( x 0 x ) x (0 1). 增量y的精确表达式.
1
分析:
例5. 试证至少存在一点
使
法2 令 f ( x) sin ln x sin1 ln x 则 f (x) 在 [ 1 , e ] 上满足罗尔中值定理条件, 因此存在 使
1 1 f (x) cos ln x sin1 x x
四、小结
罗尔定理、拉格朗日中值定理及柯西中值定理 之间的关系;
在(0,1)内至少存在一点, 有
f (1) f ( 0) f ( ) 1 0 2
即 f ( ) 2[ f (1) f (0)].
例5. 试证至少存在一点
使
证: 法1 用柯西中值定理 . 令
f ( x) sin ln x ,
F ( x) ln x
则 f (x) , F(x) 在 [ 1 , e ] 上满足柯西中值定理条件, f (e) f (1) f ( ) , (1, e ) 因此 F (e) F (1) F ( ) 1 cos ln 即
F ( 2 )F (b)
x
f (b) f (a ) ( x ) f ( x ) f ( a ) [ F ( x ) F (a )]. F (b) F (a ) ( x ) 满足罗尔定理的条件,
证 作辅助函数
则在(a , b)内至少存在一点, 使得 ( ) 0.
同济大学高等数学第六版上册第三章第三节Taylor泰勒公式
o
x0
x
LL LL
假设
0
Pn( k ) ( x0 ) = f ( k ) ( x0 ) k = 1,2,L, n
a = f ( x ),
1 ⋅ a = f ′( x ),
1 0
2!⋅a = f ′′( x )
2 0
L L , n!⋅a n = f ( n ) ( x 0 ) 1 (k ) 得 ak = f ( x0 ) ( k = 0,1,2,L , n ) k!
f ( x ) = f ( x 0 ) + f ′(ξ )( x − x 0 ) (ξ在x 0与x之间)
2.取 x 0 = 0, ξ 在0 与 x 之间,令ξ = θx
(0 < θ < 1) f ( n + 1) (θx ) n + 1 x 则余项 Rn ( x ) = ( n + 1)!
四、简单的应用
即 Rn ( x ) = o[( x − x0 )n ].
M ≤ ( x − x0 )n+1 (n + 1)!
皮亚诺形式的余项
∴ f ( x) = ∑
k =0
n
f
(k )
( x0 ) ( x − x0 )k + o[( x − x0 )n ] k!
注意:
1. 当 n = 0 时,泰勒公式变成拉氏中值公式
(n + 1) !
(1 + θ x)α −n−1 x n+1 (0 < θ < 1)
(5) f ( x) = ln(1 + x) ( x > −1) k −1 ( k − 1) ! (k ) (k = 1, 2 ,L) 已知 f ( x) = (−1) k (1 + x) 类似可得 x 2 x3 xn n −1 ln(1 + x) = x − − L + (−1) + + Rn (x) 2 3 n
同济大学-高等数学微积分教案
第一章:函数与极限1。
1 初等函数图象及性质1。
1.1 幂函数函数(m 是常数)叫做幂函数。
幂函数的定义域,要看m 是什么数而定。
例如,当m = 3时,y=x3的定义域是(-∞ ,+∞);当m = 1/2时,y=x1/2的定义域是[0,+∞ );当m = —1/2时,y=x-1/2的定义域是(0,+∞)。
但不论m 取什么值,幂函数在(0,+∞)内总有定义。
最常见的幂函数图象如下图所示:[如图]1。
1.2 指数函数与对数函数1.指数函数函数y=a x(a是常数且a>0,a≠1)叫做指数函数,它的定义域是区间(-∞ ,+∞)。
因为对于任何实数值x,总有a x〉0,又a0=1,所以指数函数的图形,总在x轴的上方,且通过点(0,1)。
若a〉1,指数函数a x是单调增加的。
若0<a〈1,指数函数a x是单调减少的.由于y=(1/a)—x=a-x,所以y=a x的图形与y=(1/a)x的图形是关于y轴对称的(图1-21)。
[如图]2.对数函数指数函数y=a x的反函数,记作y=log a x(a是常数且a〉0,a≠1),叫做对数函数。
它的定义域是区间(0,+∞)。
对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。
y=log a x的图形总在y轴上方,且通过点(1,0)。
若a〉1,对数函数log a x是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞)内函数值为正.若0<a<1,对数函数log a x是单调减少的,在开区间(0,1)内函数值为正,而在区间(1,+∞)内函数值为负.[如图] 1。
1.3 三角函数与反三角函数1.三角函数正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都是区间(—∞ ,+∞),值域都是必区间[—1,1]. 正弦函数是奇函数,余弦函数是偶函数.正切函数和余切函数都是以π为周期的周期函数,它们都是奇函数。
2.反三角函数反三角函数是三角函数的反函数,其图形都可由相应的三角函数的图形按反函数作图法的一般规则作出。
高等数学-第三章-泰勒公式-同济大学
代入⑹式, 得
ex 1 x 1 x2 2!
1 n!
xn
e x
n 1!
xn1
0 1.
因而相应的近似表达式为
ex 1 x 1 x2 2!
1 xn. n!
当 x 0 时, 相应的误差估计式为
Rn x
e x xn1
n 1!
ex xn1,
n 1!
如果取 x 1, 即得到 e的近似表达式:
2!
f n 0 xn.
⑺
n!
上式称为函数 f x的n阶麦克劳林多项式. 而相应的误
差估计式为
Rn x
M
n 1!
x
n1 .
⑻
例2 求出函数 f x ex 的n 阶麦克劳林展开式.
解 因 f x f x f x f n x ex ,
所以: f 0 f 0 f 0 f n 0 1,
来近似表示 f x 并给出误差的具体表达式.
为了使所求出的多项式与函数 f x在数值与性质方 面吻合得更好, 进一步要求 Pn x 在点 x0处的函数值以 及它的n 阶导数值与 f x在 x0处的函数值以及它的n
阶导数值分别相等. 即
Pnk x0 f k x0 k 0,1, ,n.
e 11 1 1 . 2! n!
例3
求
y
x
x
1
在
x0
2 处的三阶泰勒展开式.
解因
y x 1 1 , y2 2,
x 1 x 1
y
x
1
12
,
y2 1, y2 2,
y
2
6,
y4
x
x
4!
15
,
y4 2 24 4!
泰勒公式判断级数敛散性的方法
教学方法课程教育研究学法教法研究 123引言大学数学课程中,级数部分是该课程知识体系中重要的组成部分。
数学专业的后续课程,如《复变函数论》等都和级数有密切的关系,对于工科的学生来讲,傅立叶级数和傅立叶变换主要应用在信号分析领域,包括滤波、数据压缩、电力系统的监控和电子产品的制造等领域,因此级数和这些内容的相应的课程紧密相关。
作为函数项级数基础的数项级数部分自然尤为重要。
判断数项级数敛散性是学习级数的重要环节,关系到后面各类函数项级数的学习。
数项级数敛散性的判断如果掌握了一些特定的技巧,则可以帮助我们巧妙地解决这个问题。
关于数项级数敛散性的判断,有一些基本方法,如:敛散性的定义、级数收敛的必要条件、比较审敛法、比值审敛法、根值审敛法等,这些方法针对一些特定形式的级数敛散性判断都非常有效,该部分在文献[4]中有详细讲解,这里不再赘述。
但是,这里存在的普遍问题是,以上方法只是针对一些特定形式的数项级数能够确定其敛散性,对于一般级数的问题,需要探索新的方法,比如对于交错级数,只有级数满足Leibniz 定理[4]的两个条件时,才能判断它是收敛的,显然这个方法有一定的局限性。
泰勒公式是高等数学课程中一个功能强大的工具,我们熟知的在近似计算、误差估计、极限计算等方面都有广泛的使用[3]。
用泰勒公式判定级数的敛散性在一些文章已有所提及[5],但这些论证没有深入挖掘它的奇妙之处及具体使用方法。
下面,本文将论证用泰勒公式判定级数的敛散性的方法::该等式称为按的幂展开的带有拉格朗日型余项的n 。
2.在几类基本初等函数中,幂函数是形式简单,容易确定极限的一类函数,借助泰勒公式可以把各类函数转化为幂函数的问题。
泰勒公式中,参照点取零,展开式各项都是关于的幂函数,余项是当变量趋向零时的无穷小量,这样无论原始级数什么形式都可以通过幂函数的次数判断该项的敛散性。
以下通过三个实例分别说明用泰勒公式判别交错级数、任意项级数、正项级数的敛散性的方法。
泰勒公式在近似计算中的研究
淮北师范大学2013届学士学位论文泰勒公式在近似计算中的研究学院、专业数学科学学院数学与应用数学研究方向计算数学学生姓名白冰学号***********指导教师姓名王福章指导教师职称讲师2013 年 3 月23 日摘要泰勒公式是数学分析中非常重要的内容,集中体现了微积分“逼近法”的精髓,在微积分的各个方面都有重要的应用。
本文论述了泰勒公式的一些基本内容,主要采用举例分析的方法,讨论了泰勒公式在近似计算方面的应用及技巧。
通过本文的论述,可知泰勒公式可以使近似计算问题的求解简便。
关键词:泰勒公式,近似计算,应用AbstractTaylor's formula is very important mathematical analysis of the contents of a concentrated expression of the calculus "approximation" of the essence, the calculus of various important aspects of the application. This paper discusses some of the basic content of the Taylor formula, mainly using the example analysis, the Taylor formula in the approximate calculation and skills. Through the discussion of this article, we can see the Taylor formula can approximate calculation problem solving is simple.Key words:Taylor's formula, Approximate calculation, Applications,目录第一章前言 (1)第二章预备知识 (2)2.1 Taylor公式 (2)2.2 Taylor公式的各种余项 (3)第三章泰勒公式在近似计算中的应用 (6)3.1 近似计算估值 (6)3.2 定积分的近似计算 (8)结论 (11)致谢 (12)第一章前言随着计算机和通信技术的迅速发展,在自然科学和工程技术等众多领域中,利用计算机进行近似计算,已成为科学研究和工程设计中不可缺少的一个重要环节,也就是说近似计算方法是一种很重要的科学研究方法[1]。
同济高数(第七版)--第三章
第三章:泰勒公式以及导数运用1.泰勒公式(注意:麦克劳林公式是特殊的泰勒公式,即00=x )(1))(!!212x xxe n nx o n x +++= 证:令e x x f =)(,e f x n x x f x f x f ='''=''=')()()()()( ,那么就有1)0()0()0()0()(='''=''='f n f f f ,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()(x x fennn xo n x f f +'+==)(!!212x xxn no n x +++ (2))()!12(!5!3sin 121253)1(x xxxm m mo m x x ++++++-=- 证:令x x f sin )(=,)2sin()()(π⋅+=n x x f n ,故 2,1,0,12,2,02sin )0()1()(=⎪⎩⎪⎨⎧+===⋅=-m m n m n n mn f π,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+= ,故)()!12(!5!3)(121253)1(x xxxm m mo m x x f ++++++-=- (3))()!2(!4!21cos 2242)1(x xx x m mm o m x +++-=- 证:令x x f cos )(=,)2cos()()(π⋅+=n x x f n ,故 2,1,0,12,02,2cos )0()1()(=⎪⎩⎪⎨⎧+===⋅=-m m n mn n m n f π,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+=,故)()!2(!4!21)(2242)1(x xxxm mmo m x f +++-=- (4))(!)1()1(!2)1(12)1(x x x x n n o n n x ++--+-++=+ααααααα 证:令)1()(x x f +=α,)1()1()1()()(x fnn n x +-+--=αααα ,故)1()1()0()(+--=n f n ααα ,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+=,故)(!)1()1(1)(x x n no n n x x f ++--++=αααα(5))(3!2)1ln()1(132x x x x n nn o nx x ++-=+-- 证:令)1ln()(x x f +=,)1()1()!1()(1)(x f nn n n x +--=-,故)!1()0()1(1)(-⋅=--n n n f,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+=,故)(3!2)()1(132x x x x n nn o nx x f +++-=-- (6)按(4-x )的幂展开多项式435)(234+-+-=x x f x x x 由32154)(23-+-='x x f x x ,23012)(2+-=''x x f x ,3024)(-='''x x f ,24)()4(=x f ,)5(0)()(≥=n x f n ,而21)4(='f ,74)4(=''f ,66)4(='''f ,根据泰勒公式得!)4()4)(4()4()()4()(n x f f x f x fnn -+-'+=(未带有余项),故)4()3()4(4321137)4(2156)(---+++-+-=x x x x x f 解:x x f 2121)(-=',x x f 2341)(--='',x x f 2583)(-=''',x f x 27)4(1615)(--=,故41)4(='f ,321)4(-=''f ,2563)4(='''f ,ξ27)4(1615)(--=f,故根据带有拉格朗日余项的泰勒公式则有)!1()(!)4()4)(4()4()()4()4(1)1()(+++-'+=--++n n x f f x f x fx f n n nn ξ)4()4()4(42732384155121641)4(412)(-----+--+=⇒x x x x x f ξ(ξ在x 与4之间)(8)求函数x x f ln )(=按)2(-x 的幂展开的带有佩亚诺余项的n 阶泰勒公式解:xf n n n n x 1)!1()()1(1)(-=--2)1(1)!1()2(1)(n n n n f -=⇒--,故根据带有佩亚诺余项的泰勒公式则有][!)2()2)(2()2()()2()2()(--+++-'+=⇒x x fnnn o n x f f x f ][81)2(212ln )()2()2()1()2(12----+⋅+--+=⇒-x x x nnnn o n x x f解:⇒=+-xfn nn n x 1)(1!)()1()1()1(1)(1!)1(--+=-n nn n f)1()1(!)1()(++-=-⇒x x fnnn n ,故根据带有拉格朗日余项的泰勒公式得)!1()(!)1()1)(1()1()()1()1(1)1()(++-+-'+-=++++n n x f f x f x fx fn n n n ξξ2112)1()1()1()1()1(1)(++++-+++--+--=⇒n n n nx x x x x f ξ在1-与x 之间。
同济第3版-高数-(3.3) 第三节 泰勒公式
(1) 泰勒中值定理及其意义
泰勒中值定理
如果函数 f( x )在含有 x 0 的某个开区间( a ,b )内具 有直到 n + 1 阶的导数,则对任一 x ( a ,b ),有
f x
f x0
f x0 x x0
1 2!
f x0 x x0 2 L
究竟有多小,即 R n( x )具体是( x - x 0 )的几阶无穷小。 由高阶无穷小阶的定义,就是要由极限
lim
xx0
Rn x x x0k
A0
去推断 k 的值有多大。
因此余项 R n( x )定量估计的问题最终归结为确定 k
的值。从计算精度考虑,自然希望 k 的值越大越好。
从形式上看
lim
于 x 和 0 之间,故可表为 = x ,0 < < 1 . 通常称此
时的泰勒公式为马克劳林公式,即
f x
f 0
f 0 x
1 2!
f 0 x 2 L
1 n!
f n 0 x n
f n1 x
n 1 !
x n1.
马克劳林公式形式简单,应用方便,且以马克劳
林公式对函数进行讨论并不会损失讨论的一般性。
(2) 多项式系数的选择及相应条件的设置 考虑在点 x = x0 的邻域内用多项式 P n( x )表示函数
f( x ),就是选择合当系数 a 0 ,a1,a 2,… , a n,使多项式 曲线 y = Pn( x )与函数曲线 y = f( x )尽可能“吻合”。
从理论和实际两个方面考虑,选择多项式 P n( x ) 的适当系数 a 0 ,a1,a 2,… , a n 在点 x 0 的邻域内表示函数 f( x )应满足两个基本要求: • 有较好的精度,使得 f( x ) P n( x ); • 能够估计误差,即能对误差 R n( x )= f( x )- P n( x )作
同济版《高等数学》 多元函数泰勒展开
同济大学的《高等数学》教材是一部经典的数学教材,其中关于多元函数的泰勒展开是数学学习者所必须掌握的重要内容。
本文将从多元函数泰勒展开的基本概念、公式推导和具体实例分析三个方面来详细介绍该内容。
一、多元函数泰勒展开的基本概念1.1 多元函数的概念多元函数是指自变量不止一个的函数,通常表示为$f(x_1, x_2,\cdots, x_n)$,其中$x_1, x_2, \cdots, x_n$为自变量,$f$为因变量。
在实际问题中,常常遇到多个自变量同时改变而导致因变量发生变化的情况,所以研究多元函数的泰勒展开对于理解函数的性质和应用具有重要意义。
1.2 泰勒展开的定义若函数$f(x)$在某点$x=a$处有各阶导数,那么$f(x)$在点$x=a$处可以展开为以$a$为中心的幂级数,即泰勒展开式:$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)(x-a)^2}{2!}+\cdots+\frac{f^{(n)}(a)(x-a)^n}{n!}+R_n(x)$$其中$R_n(x)$为泰勒余项。
1.3 多元函数的泰勒展开对于多元函数$f(x_1, x_2, \cdots, x_n)$,若其各阶偏导数在点$(a_1, a_2, \cdots, a_n)$处存在,那么可以利用多元函数的偏导数来推广泰勒展开式,得到多元函数的泰勒展开式:$$f(x_1, x_2, \cdots, x_n)=f(a_1, a_2, \cdots,a_n)+\sum_{i=1}^n\frac{\partial f}{\partial x_i}(a_1, a_2, \cdots, a_n)(x_i-a_i)$$$$+\sum_{i=1}^n\sum_{j=1}^n\frac{\partial^2 f}{\partialx_i\partial x_j}(a_1, a_2, \cdots, a_n)(x_i-a_i)(x_j-a_j)+\cdots+R_n(x)$$其中$R_n(x)$为多元函数的泰勒余项。
泰勒公式的几种证明及应用
泰勒公式的几种证明及应用摘要:泰勒公式是高等数学中的重要公式,它在理论上和使用上都有很重要的作用.本文将运用分析法或数学归纳法对带有佩亚诺型余项、拉格朗日型余项、积分型余项这三种带有不同型余项的泰勒公式进行简单易懂的证明,从而能更好地理解泰勒公式的内容及性质.在深刻理解的基础上,对泰勒公式在高等数学中有关近似计算及误差估计、求极限、研究函数的极值问题、证明等式或不等式和关于界的估计等方面的应用给予一定的介绍,然后分别给出例题.关键词:泰勒公式 佩亚诺型余项 拉格朗日型余项 积分型余项 应用Several Proofs and Applications of Taylor FormulaAbstract: Taylor formula is an important formula in higher mathematics, it plays a very important role intheoretical and methodological. In order to better understand the content and nature of Taylor formula, this article will use the method of analysis or mathematical induction to prove three different kinds of Taylor formula with remainder terms: Peano remainder term, Lagrange remainder term, and Integral remainder term. On the basis of deep understanding, then the article gives some introductions about the applications of Taylor formula in these aspects: approximate calculation and error estimation, work out limit, research problem of function’s extreme value, the proving of equality or inequality, and about boundary estimate, also supported by examples.Keywords: Taylor formula; Peano remainder term; Lagrange remainder term; Integral remainder term;application1. 引言大家都知道,多项式函数是各类函数中结构较简单、计算较方便的一种,用多项式逼近函数是近似计算和理论分析的一个重要内容.可以看到用00()()()f x f x x x '+-这个)(0x x -的一次多项式近似代替)(x f 且求其在0x 附近的函数值是很方便的,但是它的精确度往往并不能满足我们的实际需求,这就要求我们能够找到一个关于)(0x x -的n 次多项式.由此,著名数学家泰勒在1912年7月给其老师梅钦的信中提出了著名的定理——泰勒定理,用泰勒公式可以很好地解决用多项式近似代替某些较复杂函数这类复杂的问题.2.泰勒公式的证明泰勒公式有几种不同的形式,在这里我们将对三种带有不同型余项的泰勒公式给予逻辑严谨、简单易懂的证明. 2.1带有佩亚诺型余项的泰勒公式定理1[1] 若函数f 在点o x 存在直至n 阶导数,则有()()()()()()()()()()()()2000000002!!n n n f x f x f x f x f x x x x x x x o x x n '''=+-+-++-+-证:设()()()()()()()()200000002!!n n n f x f x T f x f x x x x x x x n '''=+-+-++-(1) ()()n n R f x T x =- ()0()nn Q x x x =-现在只要证 ()()0lim0n x x nR x Q x →=由关系式(1)可知()()()()0000n n n n R x R x R x '====并易知()()()()10000,n n n n Q x Q x Q x -'==== ()()0!n n Q x n =因为()()0n f x 存在,所以在点o x 的某邻域()0U x 内f 存在1n -阶导函数.于是,当()0x U x ︒∈且0x x →时,允许接连使用洛必达法则1-n 次,得 到 ()()()()()()()()0011lim lim lim n n n n n x x x x x x n nn R x R x R x Q x Q x Q x --→→→'===' ()()()()()()()()()110000lim12n n n x x f x f x f x x x n n x x --→---=--()()()()()()0110001lim !n n n x x f x f x f x n x x --→⎡⎤-=-⎢⎥-⎢⎥⎣⎦0= 所以有()()()()()()()()()()()2000000002!!n n n f x f x f x f x f x x x x x x x o x x n '''=+-+-++-+-则此式得证.2.2带有拉格朗日型余项的泰勒公式定理2[2] 设函数f 在某个包含0x 的开区间),(b a 中有1到n +1阶的各阶导数,则(),x a b ∀∈,有()()()()()()()()()200000002!!n n f x f x f x f x f x x x x x x x n '''=+-+-++-()()()()1101!n n f x x n ξ+++-+ (2)其中ξ是介于0x 与x 之间的某个点,当0x 固定之后,ξ只与x 有关. 证:(2)式可以改写成()()()()()()()()()200000002!!n nf x f x f x f x f x x x x x x x n ⎡⎤'''-+-+-++-⎢⎥⎢⎥⎣⎦()()()()1101!n n f x x n ξ++=-+ 或者()()()()(1)101!n n n R x f n x x ξ++=+-. (3) 为了证明(3)式,我们对于(3)式左端连续运用柯西中值定理(已推出()()()()0000n n n n R x R x R x '====): ()()()()()()()()011100101n n nn n nR x R x R x R x x x x n x ξξ++'-==--+-()()()()()()()1021102011nn nnn R R x R n xn n x ξξξξ-''''-==+-+-()()()()201201nn n R R x n n x ξξ-''''-==+-()()()()0231n n n n R n n x ξξ=⋅+-()()()()()()00231n n n n n n R R x n n x ξξ-=⋅+-()()()11!n n R n ξ+=+ (4)在此推导过程中,1ξ是介于0x 与x 之间的某个点;2ξ是介于0x 与1ξ之间的某个点,,ξ是介于0x 与n ξ之间的点.因而,ξ介于0x 与x 之间. 又注意到 ()()()()11n n n R f ξξ++= ,所以(4)式就可以得到(3)式 ,进而推出(2)式. 即定理得证.在这里定理1和定理2我们都是用分析法来证明的,实际上,我们还可以用递推法或数学归纳法来进行证明,下面的定理3我们就是用数学归纳法来证明的. 2.3带有积分型余项的泰勒公式定理3[3] 设函数()f x 在点0x 的某邻域()0U x 内有n +1阶连续导函数,则()()()()()()()()()200000002!!n n f x f x f x f x f x x x x x x x n '''=+-+-++-()()()011!x nn x f t x t dt n ++-⎰ ,0[,].t x x ∈ (5) 证:从已知条件可知()1,,,n f f f +'在0[,]x x 上是连续的.那么我们有()()()00x x f x f x f t dt '-=⎰ (6) 在(6)中令(),()u f t v x t '==-- 则(),du f t dt dv dt ''==.利用分部积分公式 我们就有()()()()()0||xxx xx x x x x x f t dt uv vdu f t x t x t f t dt ''''=-=--+-⎰⎰⎰(7)结合(6)式和(7)式得到()()()()()()0000x x x t f f x f d x x t x f x t '''=---+⎰这就是1n =时的情形,符合公式(5).我们同理可容易看出2n =时也成立. 假设1n -(此时指的是2n ≥的情形)时仍然可以得到(5)式是成立的, 即是有()()()()()()()()()()1200000002!1!n n f x f x f x f x f x x x x x x x n -'''-=-+-++--()()()()0111!x n n x x t f t dt n -+--⎰ (8) 在(8)式中令()()(),!n n x t u ft v n -==- 则()()()()11,1!n n x t du f t dt dv dt n -+-==-. 利用推广分部积分公式我们就有()()()()011!n xn x x t f t dt n ---⎰()()()()()()01!!xn n nxn x x x t x t f d n t f n t t +--=-+⎰()()()()()()0100!!nxn nn x x t x f x x n dt n f t +--=+⎰(9) 将(9)式代入(8)式得到(5)式,即在n 的情形下(5)式仍然成立. 故证得此泰勒公式成立.定理3运用分部积分法的推广公式结合数学归纳法来证明的,但实际上定理3也是可以用分析法来证明的.经过三个定理的证明我们可以清楚地看到这几种带不同型余项的泰勒公式是可以相互转化的,例如:在定理3中存在),(0x x ∈ξ有由推广的积分第一中值定理得到=)(x R ()()()011!x nn x f x t dt n ξ+-⎰=10)1())(()!1(1++-+n n x x f n ξ.这就转化成了定理2中的余项形式,这就是说带有积分型余项的泰勒公式和带有拉格朗日型余项的泰勒公式是可以相互转化的,经过实际演算我们还可以很容易地得到其它几种型余项的泰勒公式之间的相互转化.那么也可以说只需要知道其中一种余项的泰勒公式的证明,我们就可以轻松证明出其它型余项的泰勒公式,当然这其中也包括很重要的带有柯西型余项的泰勒公式.3.泰勒公式的应用泰勒公式是解决高等数学问题的很重要的工具,但是很多同学仅仅对泰勒公式的展开式比较熟悉,而对泰勒公式的其它应用方法没有深入的了解.实际上,泰勒公式在近似计算及误差估计、求极限、研究函数的极值问题等问题的解决过程中也有很重要的应用.下面举几个例子进行阐述. 3.1近似计算及误差估计例1.=3273=,所以可以设()f x = 先求027x =处()f x 的三阶泰勒公式:因 ()2313f x x -'=,()5329f x x -''=-,()831027f x x -'''=. 所以得(27)3f = , 31(27)3f '= , 72(27)3f ''=- , 1110(27)3f '''= 及 11(4)3480()3fx x -=- ,故23411371243115803(27)(27)(27)(27).3334!3[27(27)]x x x x x θ=+---+---⋅+-其中()0,1θ∈, 又30x =, 于是43114380||(3027)4!3[27(27)]R x θ=-⋅+-454111280103 1.88104!333-<⋅=≈⨯⋅⋅2591153333≈+-+30.1111110.0041150.000254≈+-+ 3.10725=计算时,分数化小数取六位小数,合起来误差不超过50.310,-⨯再加上余项误差,总误差不超过52.210.-⨯用多项式逼近函数进行近似计算是泰勒公式的重要应用,且应用高阶导数可以进一步精确地求出近似值,减小误差.本题用已知函数的泰勒公式的值(其项数可根据实际需要取),作为已知函数的近似值,用来进行近似计算,且用泰勒公式的余项来估计所产生的误差.一般如果对我们已经确定的n ,我们先令M x f n ≤+|)(|)1(,则有估计误差110)1()!1()()!1()(||+++-+≤-+=n n n n x x n Mx x n f R ξ.3.2求极限例2:求()2220112lim cos sin x x x x e x→+-- 的极限值.解: 在这里由于22~sin x x ,把其它各项分别展开成带有佩亚诺型余项的泰勒公式,则有)(8121114422x o x x x +-+=+,那么分子变为244111()28x x o x +=+, 分子式4=n ,则分母中可以将括号里展开成2=n 的情形,即有)(211cos 32x o x x +-= , )(1222x o x e x ++= , 则有 )(23cos 222x o x e x x +-=-,所以此求极限的式子可以简化为244220022211()1182lim lim 312(cos )sin ()2x x x x o x x x e x x o x x →→++==-⎡⎤--+⎢⎥⎣⎦. 故所求极限值是121-. 对于求0型的极限问题,常可以用洛必达法则,但对于像此例这种要连求几次导数,运算非常麻烦的情形我们可以考虑用带有佩亚诺型余项的泰勒公式加以解决.由此例可以看出泰勒公式是进行无穷小量分析比较的一个非常精细的工具.有些求极限的问题并非0型的,我们仍然需要用到泰勒公式去求极限,如下例:例3:求⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→x x x x 11ln lim 2 的极限值.解:因为⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+221121111ln x o x x x ,)(∞→x ,所以得到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→x x x x 11ln lim 22211lim 12x o x x →∞⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎢⎥=+⎢⎥⎢⎥⎣⎦12=得到极限值是12.3.3研究函数的极值问题在研究函数的极值问题时我们往往也可以应用泰勒公式达到化整为零、快速解题的效果.例4:设f 在0x 的某邻域内存在直到1n -阶导数,在0x 处n 阶可导,且0)(0)(=x f k)1,,2,1(-=n k ,0)(0)(≠x fn ,证明:若n 为偶数,则0x 是)(x f 的极值点;若n 为奇数,则)(x f 在0x 处不取极值.证:由定理1我们知道f 在点0x 处的n 阶泰勒公式即为()()()()()()()()()()()()2000000002!!n n n f x f x f x f x f x x x x x x x o x x n '''=+-+-++-+-又由题目条件可以看到0)()()(0)1(00===''='-x f x f x f n ,则上式可以简化成))(())((!1)()(000)(0n n n x x o x x x f n x f x f -+-+=,因此有n n x x o x f n x f x f )()1()(!1)()(00)(0-⎥⎦⎤⎢⎣⎡+=- (10)又因为0)(≠n f,故存在正数δδ'≤,当);(0δ'∈x U x 时,)(!10)(x f n n 与)1()(!10)(o x f n n +同号.所以, 若n 为偶数,则当0)(0)(<x f n 时(10)式取负号,从而对任意);(0δ'∈x U x 有)()(0x f x f <,则此时f 在0x 处取得极大值;同理0)(0)(>x fn 时f 在0x 处取得极小值. 故若n 为偶数,0x 是)(x f 的极值点.若n 为奇数,则任取),(001δ'+∈x x x ,),(002x x x δ'-∈,且0)(01>-n x x ,0)(02<-n x x 当0)(0)(<x f n 时,有)()()(201x f x f x f << ,在0x 处取不到极值;同理当0)(0)(<x f n 时也在0x 处取不到极值.故若n 为奇数,)(x f 在0x 处不取极值.题目中提到了几阶导数的问题,而我们有时感觉到无从下手,此时我们就应该想到应用泰勒公式,常常能达到意料不到的效果,事半功倍. 3.4证明等式或不等式证明等式或不等式的方法有很多种,但是在含有一阶以上的导数时一般可运用泰勒公式进行证明.3.4.1证明等式问题例5:证明:若()f x 在[,]a b 上有n 阶导数存在,且()()()()()()10n f a f b f b f b f b -'''======,则在(,)a b 内至少存在一点ξ,使得()()0n f ξ=.证:由于()f x 在[,]a b 上有n 阶导数,故可在x b =处展成1-n 阶泰勒公式()()()()()()1112()()()()()().2!(1)!!n n n n f b f f b f x f b f b x b x b x b x b n n ξ--'''=+-+-++-+-- 其中1ξ在x 与b 之间. 又因为()()()()()10,n f b f b f b f b -'''=====故由上式可得()()()()11!nn f x f x b n ξ=-. 当x a =时,有()()()()()1,!nn f a f a b a b n ξξ=-<<.又()()0,0,nf a a b =-≠故知在(),a b 内必有一点,ξ使得()()0.nf ξ=3.4.2证明不等式问题例6:证明:若函数()f x 在[,]a b 上存在二阶导数,且()()0f a f b ''==,则在(),a b 内存在一点c ,使()()()()24||||f c f b f a b a ''≥--.证:将2a b f +⎛⎫⎪⎝⎭分别在点a 和点b 展成泰勒公式,并注意()()0f a f b ''==,有()()211,22!22f a b b a a b f f a a ξξ''+-+⎛⎫⎛⎫=+<< ⎪ ⎪⎝⎭⎝⎭; ()()222,22!22f a b b a a b f f b b ξξ''+-+⎛⎫⎛⎫=+<< ⎪ ⎪⎝⎭⎝⎭. 令 ()()()12||max{||,||}f c f f ξξ''''''=.则 ()()()()||22a b a b f b f a f b f f f a ++⎛⎫⎛⎫-≤-+- ⎪ ⎪⎝⎭⎝⎭()()22212222f f b a b a ξξ''''--⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭()()()()2211||||24b a f f ξξ-⎡⎤''''=+⎢⎥⎣⎦ ()()2||4b a fc -''≤即()()()()24||||f c f b f a b a ''≥--.由例4、例5可以看出用泰勒公式证明问题这类题目中往往涉及函数的高阶导数.应用的关键在于如何选择要展开的函数,在哪一点展开,以及展开的次数(一般比最高阶导数低一阶)等,这些都要根据题设的条件进行具体问题具体分析. 3.5关于界的估计泰勒公式在有关界的估计方面的应用也是非常巧妙的.例7:设函数f 在(,)-∞+∞上有三阶导数,如果()f x 与()f x '''有界,试证()f x '与()f x ''也有界.证: 设 ()0||,f x M ≤ ()3||,()f x M x '''≤-∞<<+∞, 其中03,M M 都是常数.将f 在任意一点x 处展开成带有拉格朗日型余项的二阶泰勒公式 即有()()()()()()()()()()111,26111,26f x f x f x f x f f x f x f x f x f ξη''''''+-=++''''''--=-+-其中()(),1,1,x x x x ξη∈+∈-.以上两式加减分别得到 ()()()112f x f x f x ++--()()()1[],6f x f f ξη''''''''=+-()()()()()1112[],6f x f x f x f f ξη'''''''+--=++ 由以上两式分别得到 ()()()()()()1||112[]6f x f x f x f x f f ξη''''''''=++---- 0314,3M M ≤+ ()()()()()1|2|11[]6f x f x f x f f ξη'''''''=+---+ 03123M M ≤+, 即()f x '与()f x ''在(,)-∞+∞上也有界.4.总结从泰勒公式在微积分的重要地位可以看出对泰勒公式进行证明是非常有必要的,进一步加深了我们对泰勒公式的理解及应用.通过上述证明及应用举例,我们能够知道:①泰勒公式是应用高阶导数研究函数性态的工具,凡是已知函数()f x 的高阶导数研究函数()f x 的性态都要应用泰勒公式;②泰勒公式有两种不同类型的余项:一种是定性的,如佩亚诺型余项;一种是定量的,如拉格朗日型余项等.参考文献:[1] 华东师范大学数学系.数学分析(上)[M].北京:高等教育出版社,2001.134-140页.[2] 韩云端,扈志明. 微积分教程(上)[M].北京:清华大学出版社,1999.188-203页.[3] S.I.Grossmon ,周性伟.微积分及其应用[M].天津:天津科学技术出版社,1988. 51-56页.[4] 蔡光兴,李德宜.微积分(经管类)[M].北京:科学出版社,2004.127页.[5] 王元殿.带不同型余项泰勒公式的证明[J].电大理工,2000,第205期:36-38页.[6] 同济大学数学系.高等数学(上)[M].北京:高等教育出版社,2007.139-145页.[7] 王素芳,陶荣,张永胜.泰勒公式在计算及证明中的应用[N].洛阳工业高等专科学校学报,2003-6-第13卷第2期.[8] 耿晓哲.Taylor公式及其应用[J].潍坊高等职业技术教育,2009,第5卷第3期:45页.[9] 刘云,王阳,崔春红.浅谈泰勒公式的应用[N].和田师范专科学院学报,2008-7-第28卷第1期.[10] 董斌斌.泰勒公式及其在解题中的应用[J].科技信息,2010,第31期:243页.[11] 郭顺生,微积分入门指导(一元函数部分)[M].河北:河北人民出版社,1985.247-266页.[12] 刘红艳.一元泰勒公式在解题中的应用[J].林区教学,2008,第8期:140-141页.[13] 刘玉琏,杨奎元,吕凤. 数学分析讲义学习指导书——附解题方法提要[M].北京:高等教育出版社,1787.225-232页.[14] 潘劲松.泰勒公式的证明及应用[N].廊坊师范学院学报,2010-4-第10卷第2期.。
基于全国大学生数学竞赛的理念下泰勒公式的应用
从而- - ? E' "(
C"FJ$
?
' "J=() E\' ( C"#
=
3=
两边取绝对值"得!
式来解决的问题"不同的问题中用带有不同余项的泰勒公 式"为了有效地提升数学解题质量"应当准确辨析所有解 题方法"但泰勒公式不是万能公式"它有它特有的条件"必
- - ? E' "( C"F
$
=
3
?
= ' "J=() E\' ( C"
须是函数可以A 阶的连续可导函数"如选用泰勒公式可以 起到事半功倍的效果"但解题过程中不能局限于套用泰勒
?
- 5 $ ' "J=() E\' ( C" 3 =
?
- 5 $ HCN E\' "( ' "J=() C" 3 ="? =
F$ HCN E\' "( ' "J=(( ?
$) ="?
$ "4
于是!
拉格朗日余项的泰勒公式"再适当地放缩来证明"不仅如 此"如果函数E' "( 是高阶导数都存在"且已知各阶导数的 上下界"就用带有拉格朗日余项的泰勒公式证明"还可以
( ) 槡 A/H "( E$ "J>C- $ N$"J5 $E"0
"&E
)
"
用类似的方法证明一些复杂函数或抽象函数的不等式# 例 已知 在 3! E'"( %%")&上二阶可导"且
同济大学高等数学5.7 泰勒公式与极值
x y 14, z 116,
| 1 1 1 1| d 4 4 4
2
18
8
方法二:当曲面4z 3x2 2xy 3y2上点M处的
切平面与平面x y 4z 1 0平行时,切点到
平面的距离即为所求的最短距离。
曲面4z 3x2 2xy 3y2上点M (x, y, z)处的
法向量为n (6x 2 y,6 y 2x,4),
对 (1, 1) : A 10, B 2, C 10, AC B2 96 0, A 0 f ( 1, 1) 2为极小值 对 ( 0, 0 ) : A B C 2, 0. 沿 y x,有 f (x,x) 2 x4 f ( 0, 0 ) 0 沿 x 0, | y | 1, 有 f (0, y) y 2 ( y 2 1) f (0, 0) 0 ( 0, 0 ) 不是极值点
S 为一定值
周长
u a 2h
sin
S
h
h
cot
2h
sin
h
a
S
h
2
cos sin
h
求 u ( h, )在区域 D : h 0, 0 2 上的最小值
由
S 2 cos
uhLeabharlann h2sin 0,
u
1 2 cos sin 2
h0
解得
cos
1 2
S 3 h2
3,
h S 43
令 F 1 (x y 4z 1)2 (3x2 2xy 3y 2 4z)
18
Fx
1 9
(x
y
4z
1)
(6x
2y)
0
Fy
1 9
(x
y
4z
泰勒公式在极限中的几种应用
泰勒公式在极限中的几种应用摘要:泰勒公式在解决数学问题的过程中有着重要的作用,本文主要讨论了泰勒公式在极限运算中的一些应用。
关键词:泰勒公式;极限The application of the Taylor formula in limitAbstract :The Taylor formula is very important in maths problems , this paper discusses the application in limit. Key words :Taylor formula; limit泰勒公式在解决具体的数学问题的时候有着重要的作用,它的一般形式为()()20000000()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中()n R x 为拉格朗日余项()(1)10()()1!n n f x x n ξ++-+或皮亚若余项()()0nx x ο-[1].在求极限的过程中就有好几种形式可以借助于泰勒公式来解决,本文主要介绍泰勒公式在极限中的几种具体的应用。
1、利用泰勒展开求极限在求极限的过程中可以将其中一项进行泰勒展开,将原问题转化为多项式的形式求极限。
例1[2] 求21lim ln 1x x x x →∞⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦解 根据泰勒展开式 ()231111ln 123n x x x x xο⎛⎫+=-+++ ⎪⎝⎭,在本题中,x 的指数最高为2,因此可以展开至2阶就可以了, 原极限222111lim 2x x x x xx ο→∞⎡⎤⎛⎫⎛⎫=-⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎣⎦()1lim 12x x x ο→∞⎡⎤=-++⎢⎥⎣⎦12=. 2、求满足泰勒公式的θ的极限例2 已知()f x '在D 上连续,()0f x ''≠,对0x h D +∈有()()()()00001f x h f x hf x h θθ'+=++<<,求0lim h θ→. 解 已知()()()000f x h f x hf x h θ'+=++则利用泰勒公式有()()()()20000112f x h f x hf x f x h h θ'''+=+++ 两式相减得到 ()()()2000112hf x h hf x f x h h θθ''''+-=+ 即()()()000112f x h f x f x h h θθ''+-''=+ ()()()()000100011limlim 22h h f x h f x f x h f x h θθ→→''+-''''=+= 又因为 ()()000lim h f x h f x hθ→''+-()()()00000limlim h h f x h f x f x hθθθθ→→''+-''=⋅=⋅最终得到 01lim 2h θ→=. 同样的,若已知()()()()2000012f x h f x hf x f x h h θ'''+=+++ 则利用泰勒公式有()()()()()230000011126f x h f x hf x f x h f x h h θ''''''+=++++两式相减可以得到 ()()()223000113f x h h f x h f x h h θθ'''''''+-=+ 即()()()000113f x h f x f x h h θθθθ''''+-'''⨯=+ ()()()0001001limlim 3h h f x h f x f x h hθθθθ→→''''+-'''⨯=+得到 ()()00001lim lim3h h f x f x θ→→''''''= 最终得到 01lim 3h θ→=. 3、泰勒公式在变上限积分的等价无穷小替换中的应用在变上限积分()()x f t dt ϕ⎰中,如果()0x ϕ→,那么该变上限积分就是一个无穷小,对被积函数()f t 进行泰勒展开,则()200000000()()()()()()()()(())2!!n n n f t f t f t f t f t t t t t t t t t n ο'''=+-+-++-+-我们可以展开2阶得到000()()()()f t f t f t t t '≈+- 则()()()()()()()()()20000001()2x x f t dt f t f t t t dt f t x f t x ϕϕϕϕ''≈+-≈+⎡⎤⎣⎦⎰⎰又因为()()()()()()200()lim12x x f t dtf t x f t x ϕϕϕϕ→'+⎰()()()()()()()000lim x f x x f t x f t x x ϕϕϕϕϕϕ→'⎡⎤⎣⎦='''+()()()()()00limx f x f t f t x ϕϕϕ→⎡⎤⎣⎦='+1=得到 ()()()()()20001()2x f t dtf t x f t x ϕϕϕ'+⎰例如()0sin x tdt ϕ⎰中,当()0x ϕ→时,我们可以取00t =,得到()()201sin ~2x tdt x ϕϕ⎰同理得到()()201tan ~2x tdt x ϕϕ⎰;()()201arcsin ~2x tdt x ϕϕ⎰;()()201arctan ~2x tdt x ϕϕ⎰;()()()2011~2x te dt x ϕϕ-⎰; ()()()201ln 1~2x t dtx ϕϕ+⎰; ()()()3011cos ~6x t dt x ϕϕ-⎰;()()()20[11]~2x t dt x ϕααϕ+-⎰. 例3 求()21cos 0arctan lim1x xx tdt dt-→⎰⎰解: 在2arctan x tdt ⎰中,()2x x ϕ=,当0x →时,根据公式,2401arctan ~2x tdt x ⎰; 在)1cos 01xdt -⎰中,()1cos x x ϕ=-,当0x →时,根据公式得)()1cos 240111~1cos ~416xdt x x --⎰; 极限()2401cos 00401arctan 2limlim 81116x xx x xtdtdt x -→→==⎰⎰. 除了在极限中,泰勒公式在求导数、定积分的证明、不等式的证明、级数敛散性判断、求近似值等一系列题型中都有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 3x
1 9 x 2 o( x 2 ) ( 1) (16 n) n 1 x n 1 2 9 ( 1 x ) 原式 lim 2 32 (0 n 1) ! x x
第三节 泰勒 ( Taylor )公式
用多项式近似表示函数 — 应用
第三章
理论分析 近似计算
一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用
机动 目录 上页 下页 返回 结束
一、泰勒公式的建立
在微分应用中已知近似公式 :
f ( x) f ( x0 ) f ( x0 )( x x0 )
n 1 n a ( x x ) a1 2a2 ( x x0 ) n 0
( n) pn ( x) a0 pn ( x0 ) f ( x0 ) ,
1 p ( x ) a2 2 ! n 0
2 !a2 n(n 1)an ( x x0 ) n!an ( x0 ) f ( x0 ) , a1 pn
(2) 当 n = 1 时, 泰勒公式变为 可见
f ( ) ( x x0 ) 2 f ( x) f ( x0 ) f ( x0 )( x x0 ) 2!
( 在 x0 与 x 之间)
df
返回 结束
误差
( 在 x0 与 x 之间)
机动 目录 上页 下页
在泰勒公式中若取 x0 0 , x (0 1) , 则有 f (0) 2 f ( n ) (0) n x x f (0) f (0) x 2! n!
1 1 e 11 (0 1) 2! n ! (n 1) ! 由于 0 e e 3, 欲使 3 6 10 Rn (1) (n 1) !
由计算可知当 n = 9 时上式成立 , 因此
1 1 e 1 1 2.718281 2! 9!
下页
返回
结束
( x) sin( x k ) 2 k 2m 0, (k ) ( m 1 , 2 , ) f (0) sin k 2 (1) m1 , k 2m 1 f
(k )
2 m 1 x3 x5 x sin x x (1) m1 R2m ( x) 3! 5! (2m 1) !
f ( x0 )( x x0 ) 2
机动 目录 上页 下页 返回 结束
2. 余项估计
令 Rn ( x) f ( x) pn ( x) (称为余项) , 则有
Rn ( x) ( x x0 ) n1 (1 ) Rn Rn ( x) Rn ( x0 ) (1 在 x0 与 x 之间) n n 1 (n 1)(1 x0 ) ( x x0 ) 0 (1 ) Rn ( 2 ) Rn Rn ( x0 ) ( 2 在 x0 与 n (n 1)(1 x0 ) 0 (n 1)n( 2 x0 ) n1 1 之间)
6
机动
目录
上页
下页
返回
结束
例2. 用近似公式
计算 cos x 的近似值,
使其精确到 0.005 , 试确定 x 的适用范围.
解: 近似公式的误差
令
解得
x x R3 ( x) cos( x) 24 4! 4 x 0.005 24 x 0.588
4
4
即当 x 0.588 时, 由给定的近似公式计算的结果 能准确到 0.005 .
其中 R2 m ( x)
m m 1 ) sin( x 2 (1) cos( 2 x) x 2 m1 (0 1) (2m 1) !
机动
目录
上页
下页
返回
结束
类似可得
2m x2 x4 x cos x 1 (1) m R2m1 ( x) 2! 4! ( 2 m) !
机动 目录 上页 下页 返回 结束
2. 利用泰勒公式求极限
例3. 求
用洛必塔法则 不方便 !
解: 用泰勒公式将分子展到 x 2 项, 由于
x 3x 4 2 1 3 4
2 1 1 ( 3 x) 1 1 ( 1 1) ( 3 x) 2 o( x 2 ) 4 2! 2 2 2 4 2 2 3 9 1 x x o ( x ) 2 4 4 16
其中 Rn ( x)
( 1)( n)
(n 1) !
(1 x) n1 x n1
(0 1)
机动 目录 上页 下页 返回 结束
已知 f 类似可得
(k )
( x) (1)
k 1
(k 1)! (k 1, 2 ,) k (1 x)
n x 2 x3 x ln(1 x) x (1) n 1 Rn ( x) 2 3 n
其中
(1) m1 cos( x) 2 m 2 R2m1 ( x) x (2m 2) !
(0 1)
机动
目录
上页
下页
返回
结束
f ( k ) ( x) ( 1)( k 1)(1 x) k
(k 1, 2 ,) f ( k ) (0) ( 1)( k 1) ( 1) 2 (1 x) 1 x x 2! ( 1)( n 1) n x Rn ( x) n!
称为麦克劳林( Maclaurin )公式 .
(n) f (0) 2 f ( 0 ) n f ( x) f (0) f (0) x x x f ( x0 ) 2 2 ! n ! x0 ) f ( x) f ( x0 ) f ( x0 )( x ( x x0 ) ( n1) 2 ! , 则有误差估计式 若在公式成立的区间上 f ( x ) M ( n 1) f ( n ) ( x0 ) f ( ) n n 1 ( x x0 ) M n 1 ( x x0 ) n ! Rn ( x) (n x 1) ! ( 在 x0 与 x 之间) (n 1) !
机动 目录 上页 下页 返回 结束
说明: 注意舍入误差对计算结果的影响.
1 1 本例 e 1 1 2! 9!
若每项四舍五入到小数点后 6 位,则 各项舍入误差之和不超过 7 0.5 10 , 总误差为 7 0.5 106 10 6 5 106 这时得到的近似值不能保证误差不超过 10 6. 因此计算时中间结果应比精度要求多取一位 .
其中
(1) n x n 1 Rn ( x) n 1 (1 x) n 1
(0 1)
机动
目录
上页
下页
返回
结束
三、泰勒公式的应用
1. 在近似计算中的应用
f (0) 2 f ( n ) (0) n x f ( x) f (0) f (0) x x 2! n! M n 1 x 误差 Rn ( x) (n 1) !
Rn ( x) f ( x) pn ( x)
( 在 x0 与 x 之间)
( n1) ( n1) pn ( x) 0 , Rn ( x) f ( n1) ( x)
Rn ( x)
f ( n1) ( ) (n 1) !
( x x0 ) n1 ( 在 x0 与 x 之间)
当在 x0 的某邻域内 f ( n1) ( x) M 时 M n 1 Rn ( x) x x0 (n 1)! n Rn ( x) o(( x x0 ) ) ( x x0 )
机动 目录 上页 下页 返回 结束
泰勒中值定理 :
时, 有 f ( x0 ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! (n) f ( x0 ) n ( x x0 ) Rn ( x) ① n! 其中 Rn ( x) 阶的导数 , 则当
1 2!
n2
1 2!
1 p ( n) ( x ) 1 f ( n) ( x ) f ( x0 ) , , an n 0 0 ! n n!
故 pn ( x) f ( x0 ) f ( x0 )( x x0 )
( n) n 1 n f ( x )( x x ) 0 0 !
④ 式成立
机动 目录 上页 下页 返回 结束
( x0 ) f f ( x) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! ( n 1) f ( n ) ( x0 ) f ( ) n ( x x0 ) ( x x0 ) n1 n! (n 1) ! ( 在 x0 与 x 之间) 特例: 给出拉格朗日中值定理 (1) 当 n = 0 时, 泰勒公式变为 f ( x) f ( x0 ) f ( )( x x0 ) ( 在 x0 与 x 之间)
(n) ( n 1) R ( x ) R ( ) n 0 n ( 在 x0 与 xn 之间) (n 1) 2( n x0 ) 0 (n 1) !
(n) Rn ( n )
机动 目录 上页 下页 返回 结束
(n) ( x0 ) Rn Rn ( x0 ) Rn ( x0 ) 0
f ( x0 ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! f ( n ) ( x0 ) ( x x0 ) n o[( x x0 ) n ] ④ n!
公式 ③ 称为n 阶泰勒公式的佩亚诺(Peano) 余项 .
* 可以证明:
麦克劳林 目录 上页 下页 返回 结束
由此得近似公式