八年二次根式、勾股定理综合复习经典

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、知识点复习讲解

1.二次根式:式子a(a≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:

⑴被开方数中不含开方开的尽的因数或因式;

⑵被开方数中不含分母;

⑶分母中不含根式。

3.同类二次根式:

二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:

(1)(a )2=a (a ≥0); (2)==a a 2

5.二次根式的运算:

(1)因式的外移和移:如果被开方数中有的因式能够开得尽方,那么, 就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式, 那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根 号外面的正因式平方后移到根号里面.

(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次 根式.

(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所 得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. (a ≥0,b ≥0)

; =

b ≥0,a>0) (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的 分配律以及多项式的乘法公式,都适用于二次根式的运算. 1.勾股定理

容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222

a b c +=

0 (

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理

常见方法如下:

方法一:

4EFGH

S S S ∆+=正方形正方形ABCD

,22

14()2ab b a c ⨯+-=,

化简可证. 方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角

形的面积与小正方形面积的和为22

1

422S ab c ab c =⨯+=+ 大正方形面积为

c

b a

H

G F E

D

C

B A b

a

c b

a

c c

a

b

c

a b a b

c

c b

a

E

D C

B

A

222()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()2S a b a b =+⋅+梯形,

2

112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形, 化简得证

3.勾股定理的适用围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用

①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,

则c =,b =,a

②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题

5.勾股定理的逆定理

如果三角形三边长a ,b ,c 满足222

a b c +=,

那么这个三角形是直角三角形,其中c 为斜边

①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它

通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两

小边的平方和22

a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c

为三边的三角形是直角三角形;若222

a b c +<,时,以a ,b ,c 为三边的三

角形是钝角三角形;若222

a b c +>,时,以a ,b ,c 为三边的三角形是锐角

三角形;

②定理中a ,b ,c 及222

a b c +=只是一种表现形式,不可认为是唯一的,如若

三角形三边长a ,b ,c 满足222

a c

b +=,那么以a ,b ,

c 为三边的三角形是直

角三角形,但是b 为斜边

③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角 边的平方和时,这个三角形是直角三角形 6.勾股数

①能够构成直角三角形的三边长的三个正整数称为勾股数,即222

a b c +=中,

a ,

b ,

c 为正整数时,称a ,b ,c 为一组勾股数

②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:

22

1,2,1n n n -+(2,n ≥n 为正整数); 22

21,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)

7.勾股定理的应用

勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用

相关文档
最新文档