原点矩和中心矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k阶原点距和k阶中心距各是说明什么数字特征
在数学的概率领域中有一类数字特征叫矩.(X^k为X的k次方)
原点矩:
对于正整数k,如果E|X^k|<无穷,称Vk=E(X^k) 为随机变量X的k阶原点矩.X的数学期望是X的一阶原点矩,即E(x)=v1.
k阶矩定义:设X为随机变量,c为常数,k为正整数,如果E[|X-c|^c]<无穷大,则称E[(X-c)^k]为X关于点c的k阶矩.
c=0时,称其为X的k阶原点矩;
c=E[X]时,称为k阶中心矩.
原点矩顾名思义,是随机变量到原点的距离(这里假设原点即为零点)。中心矩则类似于方差,先要得出样本的期望即均值,然后计算出随机变量到样本均值的一种距离,与方差不同的是,这里所说的距离不再是平方就能构建出来的,而是k次方。这也就不难理解为什么原点矩和中心矩不是距离的“距”,而是矩阵的“矩”了。仅凭本人目前的所学,我认为通过随机试验得出的各种结果虽然都假定为实值单值函数,但它们完全有可能是空间分布,即不在一个平面上。那么这是的距离就类似于一个向量的模了,于是在空间的范围内也能比较出大小来了。我们都知道方差源于勾股定理,这就不难理解原点矩和中心矩了。还能联想到力学中的力矩也是“矩”,而不是“距”。力矩在物理学里是指作用力使物体绕着转动轴或支点转动的趋向。力矩也是矢量,它等于力乘力臂。由此可见数学和物理关系非同一般!
二阶中心距,也叫作方差,它告诉我们一个随机变量在它均值附近波动的大小,方差越大,波动性越大。方差也相当于机械运动中以重心为转轴的转动惯量。(The moment of inertia.)
三阶中心距告诉我们一个随机密度函数向左或向右偏斜的程度。
在均值不为零的情况下,原点距只有纯数学意义。
A1,一阶矩就是 E(X),即样本均值。具体说来就是A1=(西格玛Xi)/n ----(1)
A2,二阶矩就是 E(X^2)即样本平方均值 ,具体说来就是 A2=(西格玛Xi^2)/n-----(2) Ak,K阶矩就是 E(X^k)即样本K次方的均值,具体说来就是 Ak=(西格玛Xi^k)/n,---
--(3)
用样本的K阶矩代替总体的K阶矩来估计总体中未知参数的方法。
用已知样本的X的一阶矩和二阶矩来估计分布律,分布函数,概率函数或者数字特征中的某个未知参数a的值,此即矩估计法。
大概步骤如下
1 根据分布律或者分布函数,概率函数,计算EX或者EX2,其中含有未知参数a
2 令样本的一阶矩A1等于EX(二阶矩A2等于EX^2)
3 由2得到
a的表达式子,此式子中含有A1(A2,...),而A1,A2表达式如上(1),(2),(3)所示. 该含有 A1,A2,..Ak的表达式称为估计量,如果把样本具体值带入,即可得a的估计值。