初一数学《有理数》的期末复习知识点
七年级数学上册必考重点知识点有理数43个知识点
七年级数学上册必考重点知识点有理数43个知识点1.整数的概念:正整数、负整数和零。
2.数轴的概念和使用。
3.整数的比较和大小关系。
4.整数的相反数和绝对值。
5.整数的加法与减法。
6.整数的加减法性质。
7.整数的乘法与除法。
8.乘积的正负性。
9.除法的性质。
10.乘方的概念和运算。
11.乘方的特例:0、1和负整数指数。
12.平方根的概念和运算。
13.数的正负的乘方。
14.有理数的概念和表示。
15.有理数的四则运算。
16.有理数的加减乘除法性质。
17.加减乘除法的混合运算。
18.小数的概念和表示。
19.有限小数和循环小数的概念。
20.小数的相加与相减。
21.有理数的乘法和除法。
22.有理数乘除运算的性质。
23.百分数的概念和表示。
24.百分数与小数的相互转换。
25.百分数的增减。
26.百分数的倍数和倍数的百分数。
27.分数的概念和表示。
28.真分数、假分数和带分数的概念。
29.分数的大小比较和性质。
30.分数的相加和相减。
31.分数的相乘和相除。
32.倒数的概念和运算。
33.分数化简与约分。
34.分数的混合运算。
35.分数方程的解法。
36.分数不等式的解法。
37.分数的小数表示。
38.循环小数与无理数的概念。
39.循环小数与分数的相互转换。
40.循环小数的加减乘除法。
41.百分数的小数表示。
42.百分数的应用。
43.有理数的运算问题的解法。
以上是七年级数学上册必考的43个知识点,学生可以通过对这些知识点的理解和掌握,提高自己的数学水平,更好地应对考试和日常学习中的数学问题。
七年级数学上册“有理数”知识点梳理
七年级上册数学“有理数”知识点导图知识点一、正数和负数(1)大于0的数叫作正数,正数有时在数字前面加“﹢”号,读作“正”例:1,2,3,+4,+5,+6,+7都是正数(2)正数前面加上“﹣”的数叫作负数,“﹣”读作“负”例:﹣1,﹣2,﹣3,﹣4,﹣5,﹣6,﹣7都是负数(3)正数和负数可以表示“相反”的意思例:向前走5米记为﹢5米,则向后走5米记为﹣5米;向右走5米记为﹢5米,则向左走5米记为﹣5米;(4)0既不是正数,也不是负数,它是正数和负数的分界,0不止是表示“没有”例:0℃所表示的是一个确定的温度,不是表示没有温度习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0知识点二、有理数(1)可以写成分数形式的数称为有理数;例:11,﹣12,13,2,﹣3,4都是有理数(2)可以写成正分数形式的数为正有理数;例:11,13,2,4都是正有理数(3)可以写成负分数形式的数为负有理数;例:﹣12,﹣3,都是负有理数习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数1;2;﹣3;﹣5;π;7;﹣9;13;﹣15知识点三、数轴(1)规定了原点、正方向和单位长度的直线叫作数轴(2)在直线上任取一个点表示数0,这个点叫作原点(3)通常规定直线上从原点向右 (或上)为正方向,从原点向左 (或下)为负方向(4)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示12,3,...;从原点向左,用类似方法依次表示-1,-2,-3,...例:习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)知识点四、相反数(1)仅有符号不同的两个数,称这两个数互为相反数。
0的相反数是0例:1和﹣1;12和﹣12;0和0互为相反数习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0知识点五、绝对值(1)数轴上表示数α的点与原点的距离叫作数α的绝对值,记作|α|(2)一个正数的绝对值是它本身;例:|1|=1;|2|=2;|3|=3(3)一个负数的绝对值是它的相反数;例:|﹣1|=1;|﹣2|=2;|﹣3|=3(4)0的绝对值是0例:|0|=0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0知识点六、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数例:1>0;0>﹣1;1>﹣1(2)两个负数,绝对值大的反而小例:|﹣1|=1,|﹣2|=2,2>1,所以﹣1>﹣2;|﹣3|=3,|﹣4|=4,4>3,所以﹣3>﹣4习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14习题参考答案习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0正数:1;3;﹢9;﹢4;6负数:﹣5;﹣7;﹣2;﹣8习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数 1;2;﹣3;﹣5;π;7;﹣9;13;﹣15有理数:1;2;﹣3;﹣5;7;﹣9;13;﹣15正有理数:1;2; 7; 13;负有理数:﹣3;﹣5;﹣9;﹣15习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0 2和﹣2;4和﹣4;﹣6和6;﹣8和8;﹣110和110;0和0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0 |10|=10;|﹣11|=11;|112|=112;|﹣113|=113;|0|=0习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14 7>8;9>﹣10;﹣11>﹣12;0<13;0>﹣14。
初一数学知识点归纳(全)
初一数学知识点归纳(全)初一数学知识点归纳如下:一、有理数1. 有理数的定义:能写成两个整数的比的数叫做有理数。
2. 有理数的分类:正有理数、负有理数和零。
3. 有理数的性质:比较两个有理数的大小,绝对值大的数较大;绝对值相等的数,正数较大;都是负数时,绝对值小的数较大。
4. 有理数的运算:加法、减法、乘法和除法。
二、整式的加减1. 整式的定义:由数字、字母的乘积组成的代数式叫做整式。
2. 整式的加减法法则:同类项合并,即把同类项的系数相加或相减,字母和字母的指数保持不变。
三、一元一次方程1. 方程的定义:含有未知数的等式叫做方程。
2. 一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1的方程叫做一元一次方程。
3. 解一元一次方程的方法:移项、合并同类项、系数化为1。
四、几何图形初步1. 几何图形的定义:用点、线、面等基本元素构成的图形叫做几何图形。
2. 几何图形的分类:平面图形和立体图形。
3. 平面图形的基本性质:对称性、相似性、全等性等。
4. 立体图形的基本性质:表面积、体积、棱长等。
五、相交线与平行线1. 相交线的定义:在同一平面内,两条直线相交于一点,这个点叫做交点。
2. 平行线的定义:在同一平面内,两条直线永远不相交,这两条直线叫做平行线。
3. 平行线的性质:同位角相等,内错角相等,同旁内角互补。
六、实数1. 实数的定义:有理数和无理数的统称叫做实数。
2. 实数的分类:有理数、无理数。
3. 无理数的定义:不能写成两个整数的比的数叫做无理数。
4. 实数的运算:加法、减法、乘法和除法。
七、平面直角坐标系1. 平面直角坐标系的定义:在平面上,以两条互相垂直的直线为坐标轴,建立直角坐标系。
2. 点的坐标:在平面直角坐标系中,每个点都有一个唯一的有序实数对(x, y)与之对应,这个有序实数对叫做该点的坐标。
3. 函数的定义:在平面直角坐标系中,对于每一个自变量x,都有唯一确定的因变量y与之对应,这种对应关系叫做函数。
七年级有理数知识点大全
七年级有理数知识点大全
作为初中数学的一部分,有理数是一个重要的概念,通常在七年级开始学习。
以下是七年级有理数知识点的完整梳理。
一、有理数的概念
有理数是可以表示成 m/n 的形式的数,其中 m 和 n 都是整数,而 n 不为 0。
二、有理数的分类
有理数可以分为正有理数、负有理数和 0 三类。
其中,正有理数是大于 0 的有理数,负有理数是小于 0 的有理数。
三、有理数的绝对值
有理数的绝对值表示该数到 0 的距离,因此总是非负的。
对于正有理数 a,其绝对值为 a;对于负有理数 -a,其绝对值为 a。
四、有理数的加减法
有理数的加减法分为同号相加、异号相减两种情况。
同号相加时,将绝对值相加后加上相同的符号;异号相减时,将绝对值相减后加上两个数中绝对值较大的符号。
五、有理数的乘法
有理数的乘法即两个有理数的乘积。
同号相乘得正数,异号相乘得负数。
六、有理数的除法
有理数的除法即两个有理数的商。
与乘法类似,同号相除得正数,异号相除得负数。
七、有理数的大小比较
有理数大小的比较可以通过化为相同分母后比较分子的大小。
也可以通过绝对值进行比较。
八、有理数的约分和化简
有理数可以进行约分,即将分子和分母同时除以一个公因数得到最简分式。
九、有理数的混合运算
有理数的混合运算包括加减乘除和括号运算等。
以上就是七年级有理数的全部知识点。
通过深入学习这些知识点,同学们可以掌握有理数的基本概念以及运算方法,为后续的数学学习打下坚实的基础。
七年级上册数学《有理数》知识要点整理
《有理数》知识要点一、有理数的概念1、正数和负数: (1)、大于0的数叫做正数. (2)、在正数前面加上负号“—”的数叫做负数.(3)、数0既不是正数,也不是负数 .(4)、在同一个问题中,分别用正数与负数表示具有相反的量 .2、有理数:(1)凡能写成分数形式的数,都是有理数。
整数和分数统称有理数.注意:0既不是正数,也不是负数;—a 不一定是负数,如:—(-2)=4,这个时候的a=—2. π不是有理数;(2)有理数的分类:①按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按性质分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)自然数<====>0和正整数;a >0 <====>a 是正数; a <0 <====>a 是负数;a ≥0<====>a 是正数或0<====>a 是非负数; a ≤0<====>a 是负数或0<====>a 是非正数。
3、数轴【重点】:(1)、规定原点、正方向和单位长度的直线叫做数轴。
它满足以下要求:(1)、数轴的三要素:原点、正方向、单位长度。
(2)、画数轴的步骤:一画(画直线);二取(取原点和正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上.注意:(1)所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
原点表示数0.(2)、正数在原点的右边,与原点的距离是|a|个单位长度; 负数在原点的左边,与原点的距离是|a |个单位长度。
4、相反数:(1)、只有符号不同的两个数叫做互为相反数。
注意:① a —b 的相反数是b —a ;a+b 的相反数是—a —b ;② 相反数的商为-1; ③ 相反数的绝对值相等。
(3)、a 和-a 互为相反数。
0的相反数是0,正数的相反数是负数,负数的相反数是正数。
相反数是它本身的数只有0。
(4)、在任意一个数前面添上“-”号, 表示原数的相反数。
初中七年级数学辅导讲义:《有理数》知识点总结及经典题型精讲
七年级数学辅导讲义数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
七年级有理数的所有知识点
七年级有理数的所有知识点有理数是正整数、负整数和零的集合,可以表示为分数的形式,即分子是整数、分母不为零。
而在七年级的数学学习中,我们需要掌握有关有理数的所有知识点,包括有理数的四则运算、有理数的比较、有理数的绝对值等。
一、正数和负数在学习有理数之前,我们需要了解正数和负数的概念。
正数是大于零的数,而负数是小于零的数。
在数轴上,正数位于原点右边,负数位于原点左边。
二、有理数的表示法有理数可以用分数表示,分母不为零。
例如,1/2、-2/3、5/4都是有理数。
有理数也可以用小数表示,例如0.5、-0.3、1.25等都是有理数。
有些小数可以化成分数的形式,例如0.5可以化成1/2。
三、有理数的加减法有理数的加法可以分为同号相加和异号相加两种情况。
同号相加时,只需将两数绝对值相加,符号不变。
异号相加时,先将两数绝对值相减,再取绝对值较大的数的符号。
有理数的减法可以化为加法的形式。
例如a-b可以写成a+(-b)的形式,然后再按照加法的规则进行计算。
四、有理数的乘除法有理数的乘法可以分为同号相乘和异号相乘两种情况。
同号相乘时,积为正数;异号相乘时,积为负数。
有理数的除法可以化为乘法的形式。
例如a/b可以写成a乘以1/b的形式,然后再按照乘法的规则进行计算。
五、有理数的比较有理数的比较可以用大小符号表示,大于号表示“大于”,小于号表示“小于”,等于号表示“等于”。
有理数大小的比较规则如下:(1)同号的数,绝对值大的数大。
(2)异号的数,正数大于负数。
六、有理数的绝对值有理数的绝对值表示数与零点的距离。
有理数a的绝对值记作|a|,它的值分两种情况讨论:(1)若a≥0,则|a|=a。
(2)若a<0,则|a|=-a。
七、有理数的分数和小数互换将分数转换为小数,只需将分子除以分母即可。
例如4/5可以转换为0.8。
将小数转换为分数时,要将小数化为分数的形式,例如0.8可以转换为4/5。
以上就是七年级有理数的所有知识点,希望对大家的学习有所帮助。
秋七年级数学上《有理数》期末复习知识点+检测试卷
2022-2023七年级上期末复习(有理数)知识点1:正数负数有理数知识回顾:(1)大于0的数叫做正数,在正数前加上符号“-”(负)的数叫做负数。
用正、负数可表示一对具有相反意义的量。
(2)0既不是正数,也不是负数。
(3)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称为有理数。
巩固练习:1.(2022-2023韶关市南雄市七上期末)如果“节约10%”记作+10%,那么“浪费6%”记作: .2.(2022-2023武汉市黄陂区七上期末)如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作( )A .3m ;B .-3m ;C .5m ;D .-5m 。
3.(2022-2023深圳市龙华新区七上期末)如果节约20元记作+20元,那么浪费10元记作 元.4.(2022-2023阜阳市太和县七上期末)一袋面粉的质量标识为“25±0.25千克”,则下列一袋面粉质量中,合格的是( )A .25.30千克;B .24.70千克;C .25.51千克;D .24.80千克。
5.(2022-2023北京市海淀区七上期末)在“1,-0.3,31 ,0,-3.3”这五个数中,非负有理数是 .(写出所有符合题意的数)知识点2:数轴知识回顾:(1)规定了原点、正方向和单位长度的直线叫做数轴。
一般地,规定向右的方向为正方向,因此数轴上,原点左边表示的数是负数,原点右边表示的数是正数,原点表示的数是0。
(2)设a 是一个正数,那么在数轴上,表示数a 的点与原点的距离为a ;表示数-a 的点与原点的距离为a 。
因此,数轴上与原点的距离是a 的点的两个,它们分别在原点左右,表示的数是-a 和a 。
我们说这两点关于原点对称。
巩固练习:1.(2022-2023广东省深圳市七上期末)数轴的A 点表示﹣3,让A 点沿着数轴移动2个单位到B 点,B 点表示的数是 ;线段BA 上的点表示的数是 .2.(2022-2023天津市和平区七上期末)数轴上的点A 到原点的距离是4,则点A 表示的数为( )A .4;B .﹣4;C .4或﹣4;D .2或﹣2。
初一数学有理数知识点总结
初一数学有理数知识点总结有理数是初中数学学习的重要基础,它包括整数和分数。
掌握有理数的基本概念、性质、运算法则对于后续数学学习至关重要。
以下是初一数学有理数的知识点总结:1. 有理数的定义:有理数是可以表示为两个整数的比的数,即形式为\( \frac{p}{q} \)的数,其中p和q都是整数,且q不等于0。
2. 有理数的分类:有理数可以分为正有理数、负有理数和零。
正有理数是分子和分母同号的分数,负有理数是分子和分母异号的分数,零可以看作是分子为0的分数。
3. 有理数的性质:- 封闭性:有理数的加、减、乘、除(除数不为零)运算结果仍然是有理数。
- 有序性:有理数可以比较大小,正有理数大于零,零大于负有理数,正有理数大于负有理数。
- 可加性:任意两个有理数相加仍然是有理数。
- 可乘性:任意两个有理数相乘仍然是有理数。
4. 有理数的运算法则:- 加法:同号有理数相加,取相同符号,绝对值相加;异号有理数相加,取绝对值较大的数的符号,绝对值相减。
- 减法:减去一个数等于加上这个数的相反数。
- 乘法:同号得正,异号得负,绝对值相乘。
- 除法:除以一个数等于乘以这个数的倒数。
5. 有理数的运算律:- 交换律:加法和乘法都满足交换律,即a+b=b+a和ab=ba。
- 结合律:加法和乘法都满足结合律,即(a+b)+c=a+(b+c)和(ab)c=a(bc)。
- 分配律:乘法对于加法满足分配律,即a(b+c)=ab+ac。
6. 有理数的比较大小:- 正数大于零,零大于负数。
- 两个负数比较大小,绝对值大的反而小。
7. 有理数的四则运算:- 先算乘除,后算加减。
- 同级运算,从左到右进行。
- 有括号的先算括号里面的。
8. 有理数的化简:- 化简分数,使分子和分母没有公因数。
- 化简带分数,将带分数转换为假分数。
9. 有理数的近似计算:- 四舍五入法:根据需要保留的小数位数,从该位数的下一位开始,四舍五入得到近似值。
通过以上知识点的学习和掌握,可以为进一步的数学学习打下坚实的基础。
人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)
人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。
2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。
3、数轴的定义:规定了________、________和________的________叫数轴。
4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。
5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。
6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。
7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。
8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。
9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。
10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。
③一个数与0相加,________。
11、有理数减法法则:减去一个数,等于____________。
12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。
13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。
有理数必考43个知识点
有理数必考43个知识点一、有理数的基本概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如,3是正整数,属于有理数;0.5是有限小数,也是有理数; - 2是负整数,同样是有理数。
2. 有理数的分类。
- 按定义分类:有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。
- 按性质分类:有理数可分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)。
3. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
原点表示0,原点右边为正数,左边为负数。
例如,在数轴上表示 - 3,就是在原点左边距离原点3个单位长度的点。
- 数轴上的点与有理数的关系:每一个有理数都可以用数轴上的一个点来表示,但数轴上的点不都表示有理数(还有无理数)。
4. 相反数。
- 只有符号不同的两个数叫做互为相反数。
例如,3和 - 3互为相反数,0的相反数是0。
- 互为相反数的两个数在数轴上的对应点关于原点对称。
- 若a与b互为相反数,则a + b=0。
5. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。
例如,3 = 3,- 3 = 3。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即当a>0时,a = a;当a = 0时,a = 0;当a<0时,a=-a。
6. 倒数。
- 乘积为1的两个数互为倒数。
例如,2的倒数是1/2, - 3的倒数是 - 1/3,0没有倒数。
- 若a与b互为倒数,则ab = 1。
二、有理数的运算。
7. 有理数的加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如,2+3 = 5,( - 2)+( - 3)= - 5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如,2+( - 3)= - 1,3+( - 2)=1。
初一数学有理数知识点归纳
初一数学有理数知识点归纳1. 有理数的定义有理数是可以表示为两个整数的比的数,包括正整数、负整数、零以及分数。
2. 有理数的表示有理数可以用分数表示,分子和分母都是整数,并且分母不为零。
3. 有理数的比较3.1 比较运算符有理数的比较可以使用以下运算符进行:小于(<)、大于(>)、小于等于(<=)、大于等于(>=)和等于(==)。
### 3.2 比较规则当两个有理数进行比较时,按照数轴上的大小关系来比较。
对于两个数a和b,如果a在b的左边,则a小于b;如果a在b的右边,则a 大于b。
当a等于b时,a等于b。
4. 有理数的四则运算4.1 加法有理数的加法遵循以下规则: - 正数加正数,结果为正数; - 负数加负数,结果为负数; - 正数加负数,结果的符号由绝对值大的数决定; - 零加任何数,都等于这个数本身。
4.2 减法有理数的减法可以通过加法来实现。
将减数取相反数,然后使用加法进行运算。
4.3 乘法有理数的乘法遵循以下规则: - 正数乘正数,结果为正数; - 负数乘负数,结果为正数; - 正数乘负数,结果为负数; - 零乘任何数,都等于零。
4.4 除法有理数的除法可以通过乘法来实现。
将被除数乘以除数的倒数,即可得到商。
5. 有理数的约分有理数可以进行约分,即将分数的分子和分母同时除以一个相同的数,得到一个等价的分数。
6. 有理数的逆元有理数a的逆元是指一个有理数b,满足a与b的乘积等于1。
对于非零有理数a,其逆元可以表示为1/a。
7. 有理数的绝对值有理数的绝对值表示这个数的大小,忽略符号。
对于一个非负数,其绝对值等于其本身;对于一个负数,其绝对值等于其去掉符号后的值。
8. 有理数的倒数有理数的倒数表示这个数的倒数值。
对于一个非零有理数a,其倒数表示为1/a。
9. 有理数的平方根对于一个正有理数a,其平方根表示为一个有理数b,满足b的平方等于a。
10. 有理数在数轴上的表示有理数可以用数轴上的点来表示。
七年级数学上《有理数的运算》期末总复习资料
第一章有理数的运算期末总复习资料知识点一:有理数的加、减、乘、除、乘方运算1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与0相加,仍得这个数。
2.有理数加法的运算律⑴加法交换律:a+b=b+a;⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。
3.有理数减法法则减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b)。
4.在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”5.有理数的乘法法则①:、两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)②任何数同0相乘,都得0;③几个数相乘,如果其中有因数为0,则积等于0 ④几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.有理数的乘法运算律⑴乘法交换律:ab=ba⑵乘法结合律(ab)c=a(bc).⑶乘法分配律a(b+c)=ab+ac6.有理数的除法法则(1)除以一个不等0的数,等于乘以这个数的倒数;注意:零不能做除数,无意义即a(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得07.乘方:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
初一数学第二章知识点总结
初一数学第二章知识点总结一、有理数的基本概念1. 有理数的定义:有理数是可以表示为两个整数的比的数,形式为a/b,其中a和b 是整数,且b≠0。
2. 有理数的分类:- 正有理数:大于0的有理数。
- 负有理数:小于0的有理数。
- 零:既不是正数也不是负数的有理数。
3. 有理数的性质:- 封闭性:加法、减法、乘法和除法(除数不为零)在有理数集内封闭。
- 加法和乘法的交换律、结合律。
- 减法和除法的逆元存在性。
二、有理数的运算1. 加法运算:- 同号相加:取相同的符号,绝对值相加。
- 异号相加:取绝对值较大的数的符号,绝对值相减。
- 任何数与零相加等于原数。
2. 减法运算:- 减去一个数等于加上这个数的相反数。
3. 乘法运算:- 同号得正,异号得负,绝对值相乘。
- 任何数与零相乘等于零。
4. 除法运算:- 除以一个不等于零的数等于乘以这个数的倒数。
- 零除以任何非零数等于零。
5. 混合运算:- 先乘除后加减。
- 同级运算从左到右进行。
三、绝对值与有理数比较1. 绝对值:- 绝对值表示一个数距离零的距离,用符号“| |”表示。
- 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。
2. 有理数的比较:- 正数大于零,负数小于零。
- 两个负数比较大小,绝对值大的反而小。
四、有理数的简化1. 简化的概念:- 简化是有理数分数形式的最简表示,即分子和分母没有公因数。
2. 简化的方法:- 找出分子和分母的最大公因数,然后分子分母都除以这个数。
五、分数的加减乘除1. 分数的加法:- 需要找到公共分母,然后按照同分母分数的加法规则进行计算。
2. 分数的减法:- 同样需要找到公共分母,然后按照同分母分数的减法规则进行计算。
3. 分数的乘法:- 分子乘分子,分母乘分母。
4. 分数的除法:- 分子乘分母的倒数。
六、小数与有理数的互化1. 小数转化为有理数:- 根据小数点后的位数,将小数乘以10的相应次方,转化为分数形式。
七年级数学上册《有理数》易错题型汇总,期末复习汇总!
七年级数学上册《有理数》易错题型汇总,期末复习汇总!类型一:正数和负数在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A(关注公众号:初一数学语文英语)点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.类型二:有理数下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数(关注公众号:初一数学语文英语)C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.类型三:数轴在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1B.3C.±2D.1或﹣3考点:数轴。
分析:此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是2的点有两个,分别位于与表示数﹣1的点的左右两边.解答:解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选D.(关注公众号:初一数学语文英语)点评:注意此类题应有两种情况,再根据“左减右加”的规律计算.类型四:有理数的大小比较如图,正确的判断是()A.a<-2B.a>-1C.a>bD.b>2考点:数轴;有理数大小比较.分析:根据数轴上点的位置关系确定对应点的大小.注意:数轴上的点表示的数右边的数总比左边的数大.解答:解:由数轴上点的位置关系可知a<-2<-1<0<1<b<2,则A、a<-2,正确;B、a>-1,错误;C、a>b,错误;D、b>2,错误.故选A.点评:本题考查了有理数的大小比较.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.本题中要注意:数轴上的点表示的数右边的数总比左边的数大.类型五:有理数的加法已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1B.0C.1D.2考点:有理数的加法。
七年级数学有理数知识点总结
七年级数学有理数知识点总结有理数是指可以表示为两个整数的比值的数,包括整数、分数和小数。
在七年级数学中,有理数是一个重要的概念,学习有理数的知识可以帮助我们更好地理解数学世界。
本文将总结七年级数学中有理数的主要知识点,包括有理数的定义、加减乘除运算、绝对值、比较大小、数轴等内容。
一、有理数的定义有理数是可以表示为两个整数的比值的数,可以用分数、整数和小数来表示。
分数是有理数的一种重要形式,它可以表示为一个整数除以一个非零的整数。
整数是不带小数部分的有理数,可以是正整数、负整数或零。
小数是有理数的另一种表示方式,可以是有限小数或无限循环小数。
二、加减乘除运算有理数的加减乘除运算是七年级数学中的重要内容。
加法运算是指将两个有理数相加,减法运算是指将一个有理数减去另一个有理数,乘法运算是指将两个有理数相乘,除法运算是指将一个有理数除以另一个非零的有理数。
在进行加减乘除运算时,需要注意符号的运用,正数与正数相加为正,负数与负数相加为负,正数与负数相加要进行减法运算。
三、绝对值绝对值是一个有理数的非负值,可以表示为一个数到原点的距离。
在七年级数学中,绝对值是一个重要的概念。
绝对值的符号表示为两个竖线,例如|3|表示3的绝对值,结果为3。
绝对值的性质包括非负性、正数性、乘法性和三角不等式等。
四、比较大小在七年级数学中,比较有理数的大小是一个重要的技能。
比较大小可以通过有理数的大小、绝对值的大小和分数的大小等多种方式进行。
对于两个有理数的大小比较,可以通过比较两个数的大小、符号和绝对值的大小来确定。
对于分数的大小比较,可以通过求公共分母、化简分数和比较分子的大小等方法进行。
五、数轴数轴是一个直线上的点与有理数一一对应的图形表示方法。
在七年级数学中,数轴是一个重要的工具,可以帮助我们更好地理解有理数的概念和性质。
数轴上的点表示有理数,数轴上的正方向表示正数,数轴上的负方向表示负数,数轴上的原点表示零。
通过以上对七年级数学中有理数的总结,我们可以看出有理数是一个重要的数学概念,在数学学习中具有广泛的应用。
人教版初一数学上册知识点归纳总结
七年级数学上册期末总复习第一章有理数1.有理数:1凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;2有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数3注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 4自然数 0和正整数; a >0 a 是正数; a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数; a ≤ 0 a 是负数或0 a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度数轴的三要素的一条直线.3.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; 2注意: a-b+c 的相反数是-a-b+c= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;3相反数的和为0 a+b=0 a 、b 互为相反数.4相反数的商为-1.5相反数的绝对值相等w w w .x k b o m4.绝对值:1正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; 2 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧≤-≥=)0()0(a a a a a ; 3 0a 1a a>⇔= ; 0a 1a a<⇔-=;4 |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:1正数永远比0大,负数永远比0小;2正数大于一切负数;3两个负数比较,绝对值大的反而小;4数轴上的两个数,右边的数总比左边的数大;5-1,-2,+1,+4,,以上数据表示与标准质量的差,绝对值越小,越接近标准.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1 a 、b 互为倒数; 若ab=-1 a 、b 互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3一个数与0相加,仍得这个数.8.有理数加法的运算律:1加法的交换律:a+b=b+a ;2加法的结合律:a+b+c=a+b+c.9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+-b.10 有理数乘法法则:1两数相乘,同号得正,异号得负,并把绝对值相乘;2任何数与零相乘都得零;3几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正.11 有理数乘法的运算律:1乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac .简便运算12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能a.做除数,无意义即13.有理数乘方的法则:1正数的任何次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;3a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 a=0,b=0;4正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数.5据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+116.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤.18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择.第二章 整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2.单项式的系数与次数:单项式中的数字因数,称单项式的系数要包括前面的符号;单项式中所有字母指数的和,叫单项式的次数只与字母有关.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.⎩⎨⎧多项式单项式整式 整式是代数式,但是代数式不一定是整式.6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项与系数无关,与字母的排列顺序无关.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去添括号法则:去添括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:标记;二“+”务必用+号开始合并三合:合并10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大或从大到小排列起来,叫做按这个字母的升幂排列或降幂排列.第三章 一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上或减去同一个数或式子,结果仍相等; 等式性质2:等式两边都乘以或除以同一个不为零的数,结果仍相等.3.方程:含未知数的等式,叫方程方程是含有未知数的等式,但等式不一定是方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”.5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1移项变号.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0x是未知数,a、b是已知数,且a≠0.8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘不漏乘最简公分母去括号----------注意符号变化移项----------变号留下靠前合并同类项--------合并后符号w w w .x k b o m系数化为1---------除前面10.列一元一次方程解应用题:1读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数⎧⎨⎩式,得到方程.2画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系可把未知数看做已知量,填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:1行程问题: 路程=速度·时间 时间路程速度= 速度路程时间=; 2工程问题:工作量=工作效率·工作时间 工时工作量工效= 工效工作量工时=; 工程问题常用等量关系: 先做的+后做的=完成量w w w .x k b o m3顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程4商品利润问题: 售价=定价10几折 , %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润5配套问题:6分配问题第四章 图形初步认识一多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆、多边形等.⎧⎨⎩主视图---------从正面看2、几何体的三视图 左视图---------从左边看 俯视图---------从上面看 1会判断简单物体棱柱、圆柱、圆锥、球的三视图.2能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图1同一个立体图形按不同的方式展开,得到的平现图形不一样的.2了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体1几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.2点动成线,线动成面,面动成体.二直线、射线、线段经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段1度量法2用尺规作图法4、线段的长短比较方法1度量法2叠合法3圆规截取法5、线段的中点二等分点、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=21AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段的长度叫做两点的距离距离是线段的长度,而不是线段本身.8、点与直线的位置关系1点在直线上或者直线经过点 2点在直线外或者直线不经过点. 三角1、角:有公共端点的两条射线所组成的图形叫做角.1=60=3600, 1=60; 1=601, 1=601=360011度量法2叠合法6、角的四则运算角的和、差、倍、分及其近似值7、画一个角等于已知角1借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.2借助量角器能画出给定度数的角.3用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线若OB 是AOC 的平分线,则AOB=BOC=21AOC, AOC=2AOB =2BOC.9、互余、互补1若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.2若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.3∠1的余角可以用90°-∠1表示;∠1的补角可以用180°-∠1表示.4余角的性质:同角等角的余角相等; 补角的性质:同角等角的补角相等.10、方向角 1正方向2南或北写在前面,东或西写在后面 北偏东、北偏西、南偏东、南偏西东 西 北 南 东北 西北 西南东南 北偏北偏南偏南偏。
初一数学有理数的运算复习整理
2A=
=20×105
=2100
则A=
解:原式=
=10×105
=1050
可将原式加倍。
解:设原式=A,则2A=
=4005×2
则A=4005
解:设原式=A,则2A=
=1+2+3+…+59
=1770
则A= =885
第五部分(分数运算)
解:原式=
=
=-8+6
=-2
将同分母分数相加。
解:原式=
解:原式=
=
=
=
逆用分数加减法。
解:原式=
=
=17.48×100
=1748
逆用分配律。
解:原式=
=
=
=
第八部分(括号处理)
解:原式=
=
=
对该题的运算,可先去小括号,不必先计算小括号内的部分。
解:原式=(20-9)+(200-8)+(2000-7)+(20000-6)+(200000-5)+…+(2000 000 000-1)
=(20+200+2000+20000+…+2000 000 000)-(9+8+7+6+…+2+1)
=2222 222 220-45
=2222 222 175
第四部分(加倍计算)
有理数运算复习整理
试题及步骤
备注
第一部分(基本运算)
解:原式=
=
=
=
先算乘方,再算乘除,最后算加减。
同级运算,从左到右进行。
解:原式=
华师大版数学七年级上册初一有理数的复习
有理数总复习【知识点一】正数与负数1.正数:像+1.8,+420、+30、+10%等带有“+”号的数叫做正数。
为了强调正数,前面加上“+”号,也可以省略不写。
2.负数:像-3、-4754、-50、-0.6、-15%等带有“-”号的数叫做负数。
而负数前面的“-”号不能省略。
3.零:既不是正数也不是负数,它是正数与负数的分界点。
归纳:正数与负数概念:大于0的叫正数,小于0的叫负数,0既不是正数也不是负数非负数:正实数与零的统称。
(表示为:x≥0)几个特殊的数:最小的自然数是0;绝对值最小的数是0;同时0也最小的非负整数是0;最小的正整数是1;最大的负整数是-1。
注意:对于正数与负数,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数。
例如-a不一定是负数,因为字母a代表任何一个有理数,当a是0时,-a是0,当a是负数时,-a是正数;能用正数与负数表示相反意义的量,习惯上把增加、盈利等规定为正,它们相反意义的量规定为负,正、负是相对而言有理数。
【典例精析】例1 把下列各数填在相应额大括号内:-0.1,-789,25,0,-20,-3.14,-590,6/7 ,π,-5/3, +3.65, π/2正数集{}负数集{}自然数集{}非负数集{}例2 下列说法正确的是:()A.正数都带有“+”号,不带“+”号的数都是负数。
B.带“-”号的数不一定是负数.C.一个数不是正数就是负数.D.0℃表示没有温度.【知识点二】有理数及其分类:有理数:整数与分数统称为有理数。
整数包括三类:正整数、零、负整数。
分数包括两类:正分数和负分数。
按整数、分数的关系分类:按正数、负数、零的关系分类:注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,不是有理数,除和与有关的数外,其他的数都是有理数;引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大到整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《有理数》的期末复习知识点
初一数学《有理数》的期末复习知识点
初一数学《有理数》的期末复习知识点1
(1)凡能写成形式的数,都是有理数,整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0←→a是正数;a<0←→a是负数;
a≥0←→a是正数或0a是非负数;a≤0←→a是负数或0←→a是非正数。
初一数学《有理数》的期末复习知识点2
①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。
在a 的n次方中,a叫做底数,n叫做指数。
负数的'奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。
正数的任何次幂都是正数,0的任何次幂都是0。
新- 课- 标-第 -一- 网
②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2
注意:|a|+b2=0 得:a=0 且 b=0
强记:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;
-13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8
③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,
从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
注意:12-4×5=12-20(不能把-变+)
④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a n比原整数位减1。
(注意科学计数法与原数的互划。
⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一
位采用四舍五入。
比如:3.5449精确到0.01就是3.54而不是3.55. (再如:2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。