转换法(条件,非条件不等式)

合集下载

常见不等式的解法--高考数学【解析版】

常见不等式的解法--高考数学【解析版】

专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。

不等式的证明

不等式的证明

不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。

数学分析中几类证明不等式的方法

数学分析中几类证明不等式的方法

㊀㊀解题技巧与方法㊀㊀152㊀数学分析中几类证明不等式的方法数学分析中几类证明不等式的方法Һ郭㊀鑫㊀(天津师范大学,天津㊀300222)㊀㊀ʌ摘要ɔ在学习数学分析时我们常会见到一些不等式,当然,其中有一些著名的不等式无论是在解题还是在实际应用中都有重要的作用.笔者认为解决这些不等式的证明应该先找到对应的数学分析知识点,所以,本文中结合数学分析的知识点列举了四种常用的证明不等式的思路.本文中在每一种方法后附加了例题及解答,一些题目是选择了教材上的典型例题,还有一些是考研题目及其改编.不等式的证明往往有多种证明方法,还望读者多思考出更多不同的证明方法.ʌ关键词ɔ不等式;数学分析;积分;证明为了加深对数学分析中不等式证明的理解和掌握,本文在数学分析的基础上研究并整理了几种证明不等式的方法,也节选了典型例题辅助讲解.本文属于综述型论文,归纳总结了前人的理论成果并加上自己的理解与补充,希望本文可以帮助读者对于不等式问题有初步的解题思路,并借此探索更多的关于不等式的证明方法.一㊁几个著名不等式(一)Jensen不等式如果f(x)为[a,b]上的凸函数,那么对任何xiɪ[a,b],λi>0(i=1,2, ,n),ðni=1λi=1有f(ðni=1λixi)ɤðni=1λifxi().证明㊀当n=1时,结论显然成立;当n=2时,由凸函数的定义可以知道f(λ1x1+λ2x2)ɤλ1f(x1)+λ2f(x2)成立.假设n-1时命题成立,则对任意x1,x2, ,xnɪ[a,b],以及λi>0,ðni=1λi=1,令μi=λi1-λn>0(i=1,2, ,n-1),可以得到μ1+μ2+ +μn-1=1,由归纳假设得fðn-1i=1μixi()ɤðn-1i=1μif(xi),所以ðni=1λixi()=f((1-λn)㊃λ1x1+λ2x2+ +λn-1xn-11-λn+λnxn)ɤ(1-λn)㊃fλ1x1+λ2x2+ +λn-1xn-11-λnæèçöø÷+λnf(xn)ɤ(1-λn)㊃[μ1f(x1)+μ2f(x2)+ +μn-1f(xn-1)]+λnf(xn)=λ1f(x1)+λ2f(x2)+ +λnf(xn).由数学归纳法可知原命题成立.例1㊀求证:(abc)a+b+c3ɤaabbcc,其中a,b,c均为正数.提示㊀令f(x)=xlnx,运用Jensen不等式即证.(二)平均值不等式任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1 anɤa1+a2+ +ann.证明㊀设f(x)=lnx,则fᵡ(x)<0,从而f(x)为凹函数,所以由Jensen不等式可得fa1+a2+ +annæèçöø÷ȡf(a1)+f(a2)+ +f(an)n,即lnna1a2 an=1n(lna1+lna2+ +lnan)ɤlna1+a2+ +ann.因为f(x)为增函数,所以na1a2 anɤa1+a2+ +ann,同理n1a1㊃1a2㊃ ㊃1anȡ1a1+1a2+ +1ann,即得结论.注:此题还可运用条件极值证明.(三)Schwarz不等式若f(x)和g(x)在[a,b]上可积,则ʏbaf(x)g(x)dx()2ɤʏbaf2(x)dx㊃ʏbag2(x)dx.证明㊀因为f(x),g(x)在[a,b]上可积,所以f(x)+tg(x)在[a,b]上可积,从而ʏba(f(x)+tg(x))2dx=ʏbaf2(x)dx+ʏba2tf(x)g(x)dx+ʏbat2g2(x)dxȡ0,(∗)将(∗)式看作自变量t的一元二次函数,则Δ=4ʏbaf(x)g(x)dx()2-4ʏbaf2(x)dx㊃ʏbag2(x)dxɤ0,结论得证.推论㊀(柯西不等式)对任意ai,bi有ðni=1aibi()2ɤðni=1ai2㊃ðni=1bi2.例2㊀若f(x),g(x)都在[a,b]上可积,则有闵可夫斯基(Minkowski)不等式:ʏba(f(x)+g(x))2dx[]12ɤʏbaf2(x)dx[]12+ʏbag2(x)dx[]12.提示㊀不等式两边平方,化简,利用Schwarz不等式.(四)Hadamard不等式设f(x)为[a,b]上的连续凸函数.求证:fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.提示㊀利用凸函数的性质,证明详细过程见下页.二㊁利用函数单调性与极值解决不等式问题(一)利用单调性解决不等式问题函数的单调性是较为简单直接的证明不等式的方法,对于可导函数f(x)可以通过fᶄ(x)的正负判断f(x)的增减性,从而利用具体自变量的取值得到不等式.此类题目的关键在于构建合适的f(x).(例题中涉及几类常用的构造函数的方法)㊀㊀㊀解题技巧与方法153㊀㊀例3㊀(若尔当不等式)设0<xɤπ2,则2πɤsinxx<1.证明㊀设f(x)=sinxx,则fᶄ(x)=xcosx-sinxx2;再令g(x)=xcosx-sinx,则gᶄ(x)=-xsinx<0,从而g(x)递减.又因为g(0)=0,所以g(x)<0,则有fᶄ(x)<0,即f(x)递减.又因为limxң0f(x)=1,且fπ2()=π2,所以,由f(x)的单调性可得2πɤsinxx<1.(二)利用极值与最值解决不等式问题对于在定义域内不单调的函数,极值和最值是解决这类函数不等式的一个突破口,构造合适的函数利用极值的定义来证明.例4㊀(利用条件极值)任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1a2 anɤa1+a2+ +ann.证明㊀下面只证明na1a2 anɤa1+a2+ +ann(另一不等号的证明见上一页).设x1+x2+ +xn=a(∗),f(x1,x2, ,xn)=x1x2 xn,则只需证在条件(∗)下f(x)的最大值为annn.令L(x1,x2, ,xn,λ)=x1x2 xn+λ(x1+x2+ +xn-a),则Lxi=x1 xi-1xi+1 xn+λ=0,Lλ=x1+x2+ +xn-a=0,{解得λ=-na(x1x2 xn);xi=an.又因为f(x)有上界,所以所求点为最大值点,即最大值为annn,结论得证.三㊁利用微分中值定理和泰勒公式解决不等式问题(一)利用拉格朗日定理解决不等式问题拉格朗日定理可以将函数在区间端点的函数值与导函数在某一点的值联系起来,从而利用单调性或已知条件得到不等式.例5㊀求证:b-ab<lnba<b-aa,其中0<a<b.证明㊀原不等式等价于1b<lnb-lnab-a<1a,由拉格朗日定理,得lnb-lnab-a=1ξ,其中ξɪ(a,b).因为1b<1ξ<1a,所以1b<lnb-lnab-a<1a.(二)利用柯西定理解决不等式问题对于已知两个函数的端点函数值问题可利用柯西定理转换成导数比值形式,从而化简不等式.例6㊀设x>0,求证:2arctanx<3ln(1+x).证明㊀原不等式等价于arctanxln(1+x)<32;∀x>0,在[0,x]上由柯西中值定理,得∃ξɪ(0,x),使得arctanxln(1+x)=arctanx-arctan0ln(1+x)-ln(1+0)=1+ξ1+ξ2,设f(x)=1+x1+x2,则fᶄ(x)=1-2x-x2(1+x2)2,所以f(x)在x=2-1时取极大值(最大值),2+12<32,所以1+ξ1+ξ2<32,即arctanxln(1+x)<32,结论得证.(三)利用泰勒公式解决不等式问题对于一些不等式中涉及高阶导数及其范围的问题,可尝试利用泰勒公式的近似展开式,而利用泰勒公式的重点在于找到一个合适的点展开.四㊁函数凹凸性(一)函数凹凸性的简单推论推论1㊀f(x)为凸函数的充要条件为:对于定义域上,任意x1<x2<x3,则有f(x2)-f(x1)x2-x1ɤf(x3)-f(x1)x3-x1ɤf(x3)-f(x2)x3-x2.推论2㊀(此推论及其变形适用于许多涉及一阶导数的不等式证明)可导函数为凸(凹)函数当且仅当任意x1,x2有f(x2)ȡf(x1)+fᶄ(x1)(x2-x1)(f(x2)ɤf(x1)+fᶄ(x1)(x2-x1)).推论3㊀若f(x)为二阶可导函数,则f(x)是凸函数的充分必要条件为fᵡ(x)ȡ0.(此命题适用于涉及二阶导数的不等式证明)推论4㊀f(x)为[a,b]上的凸函数,则f(x)ȡ2fa+b2()-f(a)-f(b).(二)运用函数凹凸性证明不等式例7㊀证明Hadamard不等式.证明㊀设x=(1-t)a+tb=(b-a)t+a,则1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dt.同理可得1b-aʏbaf(x)dx=ʏ10f[ta+(1-t)b]dt.因为f(x)为凸函数,所以1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dtɤʏ10(1-t)f(a)+tf(b)dt=f(a)+f(b)2,且1b-aʏbaf(x)dx=12ʏ10f[(1-t)a+tb]dt+12ʏ10f[ta+(1-t)b]dt=ʏ1012f[(1-t)a+tb]+12f[ta+(1-t)b]dtȡʏ10f[12(1-t)a+t2b+t2a+12(1-t)b]dt=fa+b2(),所以fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.不等式的解法有许多,以上几种方法需要在数学分析的基础上研究不等式.在学习过程中抓住每种方法的要点并掌握相应的数学分析的基础知识才是关键.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(上册):第4版[M].北京:高等教育出版社,2010.[2]陈守信.考研数学分析总复习:精选名校真题:第5版[M].北京:机械工业出版社,2018.[3]徐利治,王兴华.数学分析的方法及例题选讲:第2版[M].北京:高等教育出版社,2015.[4]蒙诗德.数学分析中证明不等式的常用方法[N].赤峰学院学报(自然科学版),2009(09):20-22.[5]舒斯会.数学分析选讲[M].北京:北京大学出版社,2007.[6]林源渠,方企勤.数学分析解题指南[M].北京:北京大学出版社,2003.。

不等式的应用与解法

不等式的应用与解法

不等式的应用与解法不等式是数学中一种常见的表达方式,用于表示两个数或者两个表达式之间的关系。

在实际问题中,不等式常被用来描述条件、限制和约束等情况。

解决不等式问题的过程中,我们可以通过各种方法进行推导和求解。

本文将详细介绍不等式的应用与解法。

一、不等式的应用不等式在日常生活和各个学科中都有广泛的应用。

下面列举几个常见的例子来说明不等式在实际问题中的应用。

1. 金融领域:在股票市场中,人们常用不等式来描述价格变化的范围,并判断是否存在投资机会。

例如,如果股票价格上涨不少于10%,则可以得到利润。

2. 经济学:在经济学中,不等式被用来表示供给和需求等关系。

例如,如果某种商品的需求量超过供给量,则价格将上涨。

3. 物理学:在物理学中,不等式用于描述力学系统中的平衡和稳定性条件。

例如,对于一个悬挂在桥梁上的物体,不等式被用于确定支撑的最大负荷。

4. 工程学:在工程学中,不等式常用于约束条件的限制。

例如,在建筑设计中,不等式被用来确定结构材料的使用范围。

以上只是不等式应用的一些例子,实际中的应用场景更加广泛。

二、不等式的解法解决不等式问题的方法有很多种,下面将详细介绍几种常用的解法。

1. 数轴法:数轴法是一种直观的解决不等式问题的方法。

将不等式中的变量在数轴上表示出来,通过观察数轴上的位置关系,可以找到不等式的解集。

例如,对于不等式x > 3,将3在数轴上标记出来,可以发现x的取值范围是大于3的所有实数。

2. 方程转换法:对于某些特殊的不等式,可以通过将其转化为等价的方程来求解。

例如,不等式x + 2 > 5可以转化为方程x + 2 = 5,然后求解方程得到x的取值范围。

3. 函数法:对于一些复杂的不等式问题,可以利用函数的性质来解决。

通过观察函数图像和函数值的变化,可以确定不等式的解集。

例如,对于不等式x^2 - 4 > 0,可以通过绘制函数y = x^2 - 4的图像,找到使y大于0的x的取值范围。

待定系数法、换元法、转换法是运用函数与方程思想方法解题过程中的三大法宝-解析版

待定系数法、换元法、转换法是运用函数与方程思想方法解题过程中的三大法宝-解析版

待定系数法、换元法、转换法是运用函数与方程思想方法解题过程中的三大法宝在运用函数与方程思想解题的过程中,在确定函数、方程、不等式的参变数的值时需要运用待定系数法,而构造法又常常与待定系数法紧密相联,换元法往往可以使较为复杂的问题变为基本题型,许多数学问题就是在不断转换的过程中加以解决的.如函数问题可以转换为方程问题求解,方程问题可以转换为函数问题通过图像结合不等式知识求解,善于转换是数学核心素养的体现.典型例题1设抛物线y =ax 2+bx +c 过点A 1,2 和B -2,-1 .(1)试用a 表示b 和c ;(2)对于任意非零实数a ,抛物线都不过点P m ,m 2+1 ,试求m 的值.【分析】对本题题意的理解是关键,什么是抛物线都不过某点呢?换一种说法是:将该点的坐标代入所给的抛物线方程,方程无实数解,所以本题体现了一种等价转换的思想以及待定系数法在研究函数与方程问题中的应用.【解析】1 依题意,a +b +c =2,4a -2b +c =-1, 解得b =1+a ,c =1-2a .(2)y =ax 2+1+a x +1-2a ,将m ,m 2+1 代人,得am 2+1+a m +1-2a =m 2+1,整理得m 2+m -2 a =m 2-m .由题意,关于a 的方程无非零实数解,由m 2+m -2=0,m 2-m ≠0, 得m =-2;由m 2+m -2≠0,m 2-m =0, 得m =0.故所求的值为m =-2或m =0.2(1)已知数列a n 中,a 1=10,且a n =15a n -1+2⋅5n ,求这个数列的通项公式;(2)已知数列a n 中,a 1=3,a 2=5,a n =a n -2+4n -3n ≥3 ,求通项公式a n .法构造新的特殊数列,从而使问题获解;第2 问,一般解法是设待定系数A ,即由a n +An 2=a n -2+An 2+4n -3配方,得a n +An 2=a n -2+A (n -2)2+4A +4 n -4A -3,令4A +4=0,解得A =-1,从而构造等差数列.当然,如果直接对递推关系变形很难看出解题者的数学核心素养.【解析】(1)先对递推式进行变形,a n 5n =15a n -15n +2.即a n 5n =3⋅a n -15n -1+2.设b n =a n 5n n ∈N * ,则b n =3b n -1+2.(1)引人待定系数α,β,使α,β满足b n -β=αb n -1-β .展开得b n =αb n -1-αβ+β.(2)对照(1)式和(2)式,可得方程组α=3,-αβ+β=2,解得α=3,β=-1. 即数列b n +1 是以b 1+1=a 15+1=3为首项,3为公比的等比数列,所以b n +1=3⋅3n -1=3n ,b n =3n -1.于是,b n =a n 5n =3n -1,a n =15n -5n n ∈N * .(2)由条件可得a n -n 2=a n -2-(n -2)2+1n ≥3 .令b n =a n -n 2,则数列b n 可化为两类等差数列,其中b 2n -1 是以b 1=a 1-1=2为首项,d =1为公差;b 2n 是以b 2=a 2-22=1为首项,d =1为公差.因此,b 2n -1=2+n -1 ,b 2n =1+n -1 .所以a 2n -1=(2n -1)2+n +1,a 2n =(2n )2+n .故a n =122n 2+n +3(n 为奇数)122n 2+n(n 为偶数) 可简化为a n =122n 2+n +341+(-1)n +1 .3设a 为实数,函数f x =a 1-x 2+1+x +1-x 的最大值为g a .(1)设t =1+x +1-x ,求t 的取值范围,并把f x 表示为t 的函数m t ;(2)求g a ;(3)试求满足g a =g 1a的所有实数.【分析】本例是一道苐进式的综合题,主要考查函数、方程等基础知识,考查分类与整合以及函数与方程的思想方法和综合运用数学知识分析问题、解决问题的能力,难度上循序渐进,第(1)问考查变量代换的技巧,难点在新变量范围的确定,可以有不同的方法求解;第(2)问是含参函数在区间上最大值的求法.分类与整合并结合函数单调性是解答的关键;第3 问实质是解方程,由于g a 是分段的,对于方程g a =g 1a 解的讨论更要分类全面、环环相扣.正如罗素所言:“数学不仅拥有真理,而且还拥有至高的美一种冷峻而严肃的美,正像雕塑所具有的美一样⋯⋯”本题的解决过程不仅能显示解题者的数学功力,也展现了“一种冷峻而严肃的美”.【解析】(1) 【解法一】 (代数法)令t =1+x +1-x ,要使t 有意义,必须1+x ≥0,1-x ≥0,即-1≤x ≤1.∵t 2=2+21-x 2,x ∈-1,1 ,t ≥0(1)∴t 的取值范围是2,2 ,由(1)式得1-x 2=12t 2-1,故m t =a 12t 2-1 +t =12at 2+t -a ,t ∈2,2 .【解法二】(三角换元法)令x =sin2θ,θ∈-π4,π4.t =1+x +1-x =1+sin2θ+1-sin2θ=sin θ+cos θ +sin θ-cos θ=sin θ+cos θ-sin θ+cos θ=2cos θ,a 1-x 2=a 1-sin 22θ=a cos2θ由于θ∈-π4,π4 ,所以cos θ∈22,1,即t ∈2,2 ,f x =m t =a cos2θ+t ,又cos2θ=2cos 2θ-1=2×t 24-1=t 22-1故m t =a 12t 2-1 +t =12at 2+t -a ,t ∈2,2 .(2)由题意知g a 即为函数m t =12at 2+t -a ,t ∈2,2 的最大值.注意到直线t =-1a 是抛物线m t =12at 2+t -a 的对称轴,故分以下几种情况讨论.①当a >0时,函数y =m t ,t ∈2,2 的图像是开口向上的一段抛物线,∵t =-1a <0,知m t 在2,2上单调递增,∴g a =m2 =a+2.②当a=0时,∵m t =t,t∈2,2,∴g a =2.③当a<0时,函数y=m t ,t∈2,2的图像是开口向下的一段抛物线.若t=-1a∈0,2.即a≤-22,则g a =m2=2;若t=-1a∈2,2,即-22<a≤-12,则g a =m-1a=-a-12a;若t=-1a∈2,+∞,即-12<a<0,则g a =m2 =a+2.综上可得:g a =a+2a>-12-a-12a-22<a≤-122 a≤-22(3)①当a<-2时,1a >-12,此时g a =2,g1a=1a+2.由2+1a=2,解得a=-1-22,与a<-2矛盾.②当-2≤a<-2时,-22<1a≤-12.此时g a =2⋅g1a=-1a-a2.2=-1a-a2,解得a=-2与a<-2矛盾.③当-2≤a≤-22时,-2≤1a≤-22,此时g a =2=g1a,所以-2≤a≤-2 2④当-22<a≤-12时,-2≤1a<-2,此时g a =-a-12a,g1a= 2.由g a =g1a 即得-a-1 2a = 2.解得a=-22与a>-22矛盾.⑤当-12<a<0时,1a<-2,此时g a =a+2,g1a=2.由g a =g1a即得a+2=2,解得a=2-2与a>-12矛盾.(6)当a>0时,1a >0,此时g a =a+2,g1a=1a+2.由g a =g1a即得a+2=1a+2.解得a=±1,由a>0得a=1.综上可得,满足g a =g1a的所有实数a为-2≤a≤-22或a=1.4如图3-3所示,设直线l与椭圆x22+y2=1相切,切点为P,点M是坐标原点O在直线l上的正投影,求MP的最大值和最小值.【分析】本例的解答分3步:第一步,求出切线l 的方程和直线OM 的方程;第二步,求出点M 的坐标用点P x 0,y 0 的坐标表示,运用两点间距离公式求得|MP |2关于y 20的函数关系式;第三步,进入求MP 最值的流程,然而函数解析式太复杂了,可通过换元法变为基本函数求最值问题,当然新元的取值范围一定要紧紧㧓住!【解析】设P x 0,y 0 ,则-1≤y 0≤1,x 20=21-y 20 (点P 在椭圆上),切线l 的方程为x 0x +2y 0y =2(已知切点求䢶圆的切线方程),由OM ⊥l 得直线OM 的方程为2y 0x -x 0y =0.联立两直线方程,求得点M x ,y 的坐标为x =2x 0x 20+4y 20=2x 021-y 20 +4y 20=x 01+y 20x 20=2(1- y 20) ,y =4y 0x 20+4y 20=2y 01+y 20∴|MP |2=x -x 0 2+y -y 0 2=y 201+y 20 2x 20y 20+1-y 20 2 =y 201-y 20 1+y 200≤y 20≤1 设y 20=t 0≤t ≤1 ,则|MP |2=g t =t 1-t 1+t =-t +2-21+t =3-t +1+2t +1≤3-22(由基本不等式求得).当且仅当t +1=2t +1,即t =2-1时等号成立.∵0<2-1<1.∴函数g t 在区间0,1 上有最大值3-22,最小值0.即MP 的最大值和最小值分别为MP |max =3-22=2-1, MP |min =0.。

不等式证明方法大全

不等式证明方法大全

不等式证明方法大全
在数学研究中,证明不等式是一项重要的内容。

目前,关于证明不等式的方法可以分
为几类,下面将详细展开讨论:
一、绝对值的技巧:将不等式中的变量都化为绝对值,这样可以有效地转换原不等式。

二、代数变换法:通过恰当的代数变换,将不等式中变量交换,从而转化为更简单的
不等式。

三、数量不等式法:将相同的不等式进行变形,将其变换为数量不等式,然后继续解决,从而获得结论。

四、角度不等式法:如果不等式涉及到测量角度的变量,我们可以将其转换为角度不
等式,然后判断两个角度的大小关系,从而获得结论。

五、条件不等式法:将不等式的左右两侧都加上某个条件,将其变换为条件不等式,
然后根据条件判断两个式子大小关系。

六、单值不等式变形法:将不等式变为单值不等式,然后将单值不等式中的变量通过
某种方式改变,从而继续解决不等式本身,用这种方法可以得出不等式的正确性。

七、多元不等式的考虑:由于某些不等式涉及多个变量,因此需要考虑这些变量的关系,包括不等式的变换形式,和多个变量的联系在内的其他因素,这样才能正确地证明不
等式的正确性。

以上就是证明不等式的各种方法,正确运用上述方法,可以帮助我们轻松地证明定理,有助于提高科学研究的水平。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种关系式,描述了数值之间的大小关系。

它是由不等号(例如>, <, ≥, ≤, ≠)连接的两个数或表达式组成的。

解不等式就是找出满足该不等式的所有数值。

在解不等式的过程中,需要考虑不等式中的未知数、常数以及可能存在的绝对值、平方根等特殊情况。

以下是几种常见的不等式解法方法:一、加减法解不等式若不等式中的未知数带有符号,并且仅涉及到加减法运算,则可以通过移项的方式解不等式。

具体步骤如下:1. 将所有含有未知数的项放在一边,将常数放在另一边,确保未知数的系数为正数;2. 合并同类项;3. 如果未知数系数为负数,将不等号反转;4. 如果不等式两侧都含有未知数,则根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式2x + 5 < 7 - x。

1. 将所有含有未知数的项放在一边,将常数放在另一边,得到2x + x < 7 - 5;2. 合并同类项,得到3x < 2;3. 未知数系数为正数,不需要改变不等号;4. 进行筛选,得到x < 2/3;5. 最后化简,得到解集{x | x < 2/3}。

二、乘除法解不等式若不等式中的未知数带有符号,并且仅涉及到乘除法运算,则可以通过乘除法的逆运算解不等式。

具体步骤如下:1. 将不等式中的未知数项移动一侧,将常数项移动到另一侧;2. 如果是乘法,则将未知数系数为正数;3. 如果是除法,则需考虑被除数符号与除数符号的关系;4. 根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式3x - 4 > 2x + 1。

1. 将未知数项移动到一侧,将常数项移动到另一侧,得到3x - 2x > 1 + 4;2. 未知数系数为正数,不需要改变不等号;3. 进行筛选,得到x > 5;4. 最后化简,得到解集{x | x > 5}。

三、绝对值不等式的解法对于含有绝对值的不等式,需要分情况进行讨论。

证明不等式的几种常用方法

证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。

不等式万能k法使用条件 - 掌握不等式中k法的应用技巧

不等式万能k法使用条件 - 掌握不等式中k法的应用技巧

不等式万能k法使用条件 - 掌握不等式中k法的应用技巧不等式万能k法使用条件 - 掌握不等式中k法的应用技巧在数学中,不等式是一个常见的概念,描述了数值之间的大小关系。

解决不等式问题是数学学习的重要内容之一,而不等式万能k法就是一种常用的解决不等式问题的方法。

不等式万能k法是一种应用广泛的解不等式的技巧,它的核心思想是通过调整不等式中的系数,使得不等式变形后更容易求解。

在使用不等式万能k法时,我们需要掌握以下几个条件。

1. 不等式左右两侧具有相同的因式不等式万能k法的基本思路是将不等式化为一个因式相同的形式,然后利用因式的性质进行求解。

我们需要找到不等式左右两侧具有相同因式的情况,以便进行因式分解和处理。

2. 不等式两侧的符号相同不等式万能k法要求不等式的两侧具有相同的符号。

如果不等式两侧的符号不同,可以通过乘以-1的方式转换成相同的符号。

这样做的目的是为了方便处理不等式。

3. 不等式两侧的系数关系在应用k法时,我们需要观察不等式两侧的系数关系。

具体来说,如果不等式左侧的系数大于右侧的系数(2x > x),那么我们可以通过取k为一个小于1的正数,使得左侧的系数乘以k后小于右侧的系数,从而简化不等式。

相反地,如果不等式左侧的系数小于右侧的系数(x < 2x),我们可以通过取k为一个大于1的正数,使得左侧的系数乘以k后大于右侧的系数。

4. 注意不等式的取值范围在解决不等式问题时,我们需要注意不等式的取值范围。

特别是当涉及到分数或根号等特殊符号时,我们需要对不等式的解进行范围的限定,以确保解符合题目的要求。

以上是应用不等式万能k法的一些基本条件和注意事项。

通过掌握这些条件,我们可以更加灵活地运用不等式万能k法来解决各种不等式问题。

总结回顾:不等式万能k法是一种应用广泛的解不等式的方法。

在使用不等式万能k法时,我们需要注意以下几个条件。

不等式左右两侧需要具有相同的因式,这样可以方便进行因式分解和处理。

基本不等式的应用--------换元法

基本不等式的应用--------换元法

基本不等式的应用 --------换元法基本不等式考点是C级要求的考点,要求很高.而且基本不等式可以和其他知识点高度融合后进行考查.近来年,在全国各地的高考和模拟试卷中屡见不鲜,其中有一类题型,题干中给出非常复杂的一串式子,需要化归与转化成基本不等式的形式进行最值的求解.换句话说,此类题的难点在于式子的变形,要根据式子的形式进行合理的变形,比较常见的变形方法有:利用齐次式减元、利用双换元化简式子、应用待定系数法配凑出基本不等式的形式等等,当然,如何进行变形处理,还得要多做相关的训练,才能在解题过程获取解题经验,总结解题方法,找到适合自己的解法,这样的学习才是高效有用的.基本不等式:①若,(当且仅当时取等号)②,(当且仅当时取等号)基本不等式成立的条件:一正,二定,三相等③,(当且仅当时取等号)基本应用:① 若,则(和定,积有最大值)② 若,则(积定,和有最小值)例:若,,则的最小值为.思路一(不等式形式转换):,得即,解得或(舍去),所以的最小值为6思路二(代入消元):由得,所以,当且仅当时取等号,所以的最小值为6思路三(判别式法):令,则代入得,,解得或(舍去),所以的最小值为6思路四(因式分解+换元)分析:求和形式的最小值,前面最好有积为定值的形式将因式分解,得,令,,则,,所以的最小值为6思考:变式若,,则的最小值为.分析:上面的思路二,思路三,思路四方法都可以解决本题,下面展示思路四解法.将因式分解,得,令,,则,,所以的最小值为1.二元形式的换元+因式分解例1 若正数满足,则的最小值()1.B. C. 5 D. 6解:将因式分解得,令,,则,,故选C(思路二,三也可解)1.三元形式的换元例题2设均为正实数,且,则的最小值为()1.B. C. D.解:,令,,则,,选D1.分式形式的换元+配凑例题3已知为正数,的最大值为.解:令,则,所以,所以的最大值为1.根式中的换元例题4设正数满足,则的最大值为.解:令,,则,所以结语基本不等式的应用很广泛,而求最值是其应用最常见的一种,换元化归是学生容易忽略而又不会处理的一种最值情况,化复杂为简单,易于拼凑成定值形式。

高考数学重点知识点

高考数学重点知识点

高考数学重点知识点1一、充分条件和必要条件当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B 是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.集合法在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:若A?B,则p是q的充分条件。

若A?B,则p是q的必要条件。

若A=B,则p是q的充要条件。

若A?B,且B?A,则p是q的既不充分也不必要条件。

三、知识扩展1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。

一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

高考数学重点知识点2考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。

重点考查集合间关系的理解和认识。

近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。

在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。

简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

高中数学中的换元法及转化方法

高中数学中的换元法及转化方法

方 程 的 问题 . 就 三 角 换 元 ,均 值 换 元 ,和 差 换 元 等 的 特 征 ,应 用
形 式 在 数 学 中 的 应 用 简 单 介 绍 如 下 :
三 角 换 元 ,特 征 是 多应 用 于 去 根 号 ,或 者 变 换 为 三 角 形 式 易 求 时 ,主 要 利 用 已 知 代 数 式 中 与 三 角 知 识 中
换 元 以后 ,新 元 的 特 殊 性 质 ,特 殊 特 点 ,会 使 原 先 分 散 的 条 件 联 系 起 来 ,原 先 隐 含 的 条 件 显 露 出 来 ,使 数 学 问 题 变 得 豁 然 开 朗 .
应 用 换 元 法 的关 键 是 在 于 通 过 观 察 、联 想 ,选 择 适 当 的 辅 助 未 知 数 ,构 造 出变 换 关 系 式 .



广

一 号 +t, 一号 一t,t∈J一号 ,号 j,等等.


就 以上 的几 种换 元 法 稍 举 简 单 的 例 子 就 会 理 解 ①
三 角 代 换 ,例 如 32 + Y 一 1,则 — cosO, — sinO,0∈
f2~ 1
Eo.2n).又 例 如 sinx+ cosO ̄ t,则 sinxcosx一 等 . ‘
『 _一
一 — 三塑
一 一 2 ,
例 5 解不等式 : ̄—3logox—-2<2log X一1(口>O,a
A- C
j cosa 一一 亏 ∞—— — 一 芎
例 题 由 已知 “A+ C一 2B”和 “三 角 形 内 角 和 等 于
解 :令 3,一 ^, :
j,≥ 0
r-y≥ O

不等式问题的多种解(证)法

不等式问题的多种解(证)法

■安徽省灵璧县黄湾中学 王晖不等式的求解与证明是高中数学的难点之一,下面通过介绍几道不等式问题的多种 解(证)法,以开拓同学们的思维空间,提高发 散思维能力和创新能力,同时希望对提高同学们的解题技能与技巧也能有所帮助。

侧f 解关于h 的不等式如? 一(a +l )x + 1<O a解法丄:讨论法。

当a=0时,由原不等式得一工 + lVO, 解得rr>l o当a^O 时,原不等式为二次不等式,对 应方程的△ = (a + l )2 —4a = (a — 1)'工0。

由△ =(),得a = l,由原不等式得rc 2 — 2工+ K0,则原不等式的解集为0。

由△>(),得aHl,此时对应方程有两个 不相等的实根,解得=1 口2=1。

a当—< 0 ,即a < 0时,结合y = arc 2 —a (ad-l )^-l-l 的图像,可知原不等式的解集为(一。

0 ,斗)U (1 , +oo ) o当0V 丄VI 9即a>l 时,结合y = ax i —a (a + 1)鼻+ 1的图像,可知原不等式的解集为 D 。

当—~>1,即 OVaVl 时,结合 y = aoc 2 — a (a + Drc + l 的图像,可知原不等式的解集为综上可知,当aVO 时,原不等式的解集为(一oog ) U (l,+*);当a = 0时,原不等式的解集为(1,+°°);当OVaVl 时,原不等式的解集为(1,寺);当aT 时,原不等式的解集为0;当a>l 时,原不等式的解集为解法2:转换法。

原不等式等价变形为(art-l )a-lXO 。

当aVO 时,由原不等式得rr<—或工>1。

当a = 0时,由原不等式得一(工一1)V0,解得工>1。

当a>0时,若丄VI ,即a >1,则由原不a 等式得一丄VzVl;若丄=1,即a = l,则原a a不等式无解;若丄>1,即OVaVl,则由原不a 等式得lVrcV —。

例谈证明不等式的四种常用措施

例谈证明不等式的四种常用措施

=
cos2 a, a

(0,
π 2
)

æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2

( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β

π 2
,
由α, β

(0,π2 )可得0
<
α

π 2
-
β

π 2


cos
α

cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+

在证明不等式中几种常用的等价变形形式

在证明不等式中几种常用的等价变形形式

在证明不等式中几种常用的等价变形形式在证明不等式中几种常用的等价变形形式是指,通过运用一定的等式转换规则将原有不等式转化为新的不等式,使得该不等式依然成立。

主要有四种变形形式,分别是加减法转换、乘除法转换、交换转换和平方转换。

1. 加减法转换加减法转换是指将不等式左右两边同时加减相同数量的项,使其对应的系数发生变化而不影响原有的不等式的大小关系。

其具体的变形规则如下:(1)若a≠0,则有ax + b > c <=> ax + b + (-a) > c + (-a);(2)若a≠0,则有ax + b < c <=> ax + b + (-a) < c + (-a);(3)若a≠0,则有ax + b ≥ c <=> ax + b + (-a) ≥ c + (-a);(4)若a≠0,则有ax + b ≤ c <=> ax + b + (-a) ≤ c + (-a);2. 乘除法转换乘除法转换是指将不等式左右两边同时乘除相同数量的项,使其对应的系数发生变化而不影响原有的不等式的大小关系。

其具体的变形规则如下:(1)若a>0,则有ax + b > c <=> (ax +b)/a > c/a;(2)若a>0,则有ax + b < c <=> (ax + b)/a < c/a;(3)若a>0,则有ax + b ≥ c <=> (ax + b)/a ≥ c/a;(4)若a>0,则有ax + b ≤ c <=> (ax + b)/a ≤ c/a;3. 交换转换交换转换是指将不等式左右两端的内容交换,使不等式的符号发生变化而不影响原有的不等式的大小关系。

其具体的变形规则如下:(1)若a≠0,则有ax + b > c <=> c - b <a(x - c/a);(2)若a≠0,则有ax + b < c <=> c - b >a(x - c/a);(3)若a≠0,则有ax + b ≥ c <=> c - b ≤ a(x - c/a);(4)若a≠0,则有ax + b ≤ c <=> c - b ≥ a(x - c/a);4. 平方转换平方转换是指将不等式的两边同时取平方,从而使不等式的符号发生变化而不影响原有的不等式的大小关系。

不等式中的取值范围求法

不等式中的取值范围求法

不等式中的取值范围求法不等式是高中数学的重要内容,与各部分联系紧密,是历年高考的命题重点, 在考查不等式的命题中以求取值范围问题居多, 解决此类问题的方法体现了等价 转换、函数与方程、分类讨论、数形结合等数学思想。

1、不等式的性质法利用不等式的基本性质,注意性质运用的前提条件。

2例1:已知f (x) ax c ,且 4 f ⑴ 范围。

解:由f (1)9 Cf (2) 4a c1a ; f(2)f(1)解得31c f (2) 4f (1)38 5f(3) 9a c 3 f(2) ?f(1) 1 f(2)5,8 8 r 40f (2)3 3 34 f(1) 1,5 5 上 20f (1)3 3 38 5 8上 5上40 20f(2) f (1)3 3 3 3 3 3即 1 f (3) 20评:解此类题常见的错误是:依题意得1, 1 f(2)5,试求f(3)的取值用(1) (2)进行加减消元,得0 a 3, 1 c 7 (3)由 f(3) 9a c 得 7 f(3) 27其错误原因在于由(1) (2)得(3)时,不是等价变形,使范围越加越大2、转换主元法确定题目中的主元,化归成初等函数求解。

此方法通常化为一次函数。

解得 所以x的取值范围为(宁‘亍)3、化归二次函数法根据题目要求,构造二次函数,结合二次函数实根分布等相关知识,求出参 数取值范围例3:在R 上定义运算 :x y = (1 -y)若不等式(x — a) (x + a)<1对任 意实数x 成立,贝U()13314 a c 1 1 4a c 5(1) (2)例2:若不等式 2x — 1>m(x 2-1)对满足—2 m 2的所有m 都成立,求x 的取值 范围解:原不等式化为 (x 2— 1)m — (2x — 1)<0 记 f(m)= (x 2— 1)m — (2x — 1)(— 2 m 2) 根据题意有:f(-2) -2(x 2 -1)-(2x -1) 0 2f(2)2(x -1)-(2x-1)即:2x 22x-3 0 22x 2x-1(A) —1<a<1 (B)0<a<2 (C) a (D) a2 2 2 2解:由题意可知(x-a)[1-(x+a)] <1 对任意x成立即x2 x a2 a 1 0对x R恒成立记f(x) x2 x a2 a 1则应满足0 即: 4a2 4a 3 0解得1a3,故选择Co2 2例4:若不等式x/ 200对一切x恒成立,求实数m的取值范围。

利用导数证明不等式

利用导数证明不等式

利用导数证明不等式 沁阳一中 尚思红导数是高中新课程的新增内容,它既是研究函数性态的有力工具,又是与高等数学接轨的有力点。

而不等式证明是高中数学的重要内容,也是不等式的难点,虽然证明不等式有众多的方法,但有些问题也很难下手。

导数这一工具性知识的引入,为我们证明不等式开辟了一条新的路径,将导数与不等式证明有机结合起来,不仅可以设计出新颖题型,相信也必将成为高考命题的新方向。

下面,通过一些具体实例,来就利用导数证明不等式的基本方法做一探讨。

1.直接做差构造函数.:关键点①做差后证明函数的单调性②找到新函数的零点(通常为最值点) 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

解:1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证),现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 例2:当0>x 时,证明不等式2211x x e x++>成立。

数学转换法

数学转换法

数学转换法
数学转换法是一种基于数学知识的方法,用于解决某些解不出的数学问题。

它可以帮助人们快速准确地解决复杂的问题,从而降低学习的难度。

首先,我们需要理解什么是数学转换法。

它是一种将一种数学问题转换为另一种数学问题,从而得到一个解决方案,从而克服原来数学问题被解决的困难。

从这个意义上讲,数学转换法是一种解决死胡同的方法,可以帮助人们快速准确地解决复杂的问题。

数学转换法的应用非常广泛,它可以用于第一象限、第二象限、第三象限和第四象限的三角函数,也可以用于求解一元不等式、多项式的根,甚至可以解决积分型方程。

数学转换法的应用范围很广,可以用来解决多种数学问题,这也是它受到人们喜爱的重要原因之一。

数学转换法能够帮助学生快速准确地解决复杂的数学问题,从而降低学习的难度,而且它使学生能够更加清晰地掌握数学知识,这是学习数学的好方法。

此外,数学转换法也是探索数学的重要手段,它可以帮助我们梳理出非常有规律的概念,及其相关的求解方法,从而更好地理解数学的基本原理。

另外,如果我们想要更好地运用数学转换法,就必须对数学有深入的认识,我们需要学习并熟悉各类数学知识,尤其是像几何、微积分等知识。

总之,数学转换法是一种非常有用的数学解题方法,它可以帮助
人们解决一些复杂的数学问题,同时也有助于提高人们的数学能力。

只要我们全面系统地学习,熟悉和运用数学,就可以发挥数学转换法的最大威力,从而提高学习效率,实现学习的更高水平。

不等式符号的转换方法

不等式符号的转换方法

不等式符号的转换方法在初中和高中的数学学习中,不等式符号经常出现在我们的课程中。

不等式符号是指带有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)的数学式子。

这些符号的使用在数学比较大小、区间划分等问题中都非常有用。

今天,我将为大家介绍不等式符号的转换方法,希望能帮助大家更好地应对数学学习中的挑战。

一、大于号(>)和小于号(<)的转换在学习不等式时,我们首先要了解大于号和小于号之间的关系。

显然,当一个数大于另一个数时,它同时也小于那个数的相反数。

例如,3 > 2,同时 -3 < -2。

因此,我们可以通过将不等式两边同时取相反数,来将大于号和小于号互换。

例如,对于不等式 x > 5,我们可以将两边同时取相反数得到 -x < -5。

同样,对于不等式 y < -2,我们也可以将两边同时取相反数得到 -y > 2。

通过这种方法,大于号和小于号可以互相转换。

除了将大于号和小于号互相转换,我们还可以通过其他方法来转化不等式。

例如,我们可以通过将不等式两边加上或减去同一个数,来变化不等式的形式。

需要注意的是,为了保持不等式的正确性,我们必须遵循下面的规则:1.如果将同一个正数加到两边,则不等号的方向不变;2.如果将同一个负数加到两边,则不等号的方向也不变;3.如果将同一个正数加到左边,或同一个负数加到右边,则不等号的方向发生变化;4.如果将同一个负数加到左边,或同一个正数加到右边,则不等号的方向同样也会发生变化。

例如,对于不等式 x > 5,我们可以将两边同时减去 3,得到 x > 2。

同样,对于不等式 y + 1 < 0,我们可以将两边同时加上 1,得到 y < -1。

这样,我们就可以通过加减同一个数来变换不等式的形式。

需要注意的是,为了保证不等式的正确性,必须同时加减同一个数。

二、大于等于号(≥)和小于等于号(≤)的转换除了大于号和小于号,还有大于等于号(≥)和小于等于号(≤)在不等式中常常使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式问题的处理策略与技巧(1)转化法对于比较复杂的不等式问题,不仅要用到重要的定理和性质,而且需要多种方法和技巧的灵活运用。

一、将非条件不等式转化为条件不等式 1.(2003年美国奥林匹克竞赛试题第5题) 设0,0,0a b c >>>证明:222222222(2)(2)(2)82()2()2()a b c a b c a b c a b c b a c c a b ++++++++≤++++++ 【证法一】分析:不妨设1a b c ++=,则原不等式变形为:222222222(1)(1)(1)82(1)2(1)2(1)a b c a a b b c c +++++≤+-+-+- 由此联想到构造函数2222(1)182124()[1]122(1)333()33x x x f x x x x +++==+≤+--+ 故12()12()()()83a b c f a f b f c +++++≤=【点评】这里“不妨设1a b c ++=“利用了该不等式的齐次性。

因为假设a b c s ++=,其中s 是任意正实数,则1a b c s s s ++=。

令,,a b cx y z s s s===,即,,a sx b ay c sz ===,则1x y z ++= 于是原问题可转化为: 已知1x y z ++=,+,,x y z R ∈求证:222222222(2)(2)(2)82()2()2()x y z x y z x y z x y z y x z z x y ++++++++≤++++++ 一般地,具有齐次性的不等式,通常可以增加条件111,1nnii i i xx ====∑∏等使得原不等式变得简单;【证法二】【利用切线不等式】证明: 令c b a S ++= ,S a x =1,S b x =2,Scx =3;则1321=++x x x 将+++++22222)()(c b a c b a +++++22222)()(c a b c a b 22222)()(a b c a b c ++++中分式上下同除以2S , 化简得++-++12312121121x x x x ++-++12312222222x x x x 812312323323≤+-++x x x x ,易得1231222+-++x x x x 在点),(3831的切线为344+=x y .下证1231222+-++x x x x 344+≤x ,),(10∈x ,化简即证 012153623≥+--x x x . 令=)(x f 12153623+--x x x ,))(()(/132362301082-+=--=x x x x x f ,易得)(x f 在),(310单调递减,在),(131单调递增;031==≥)()()(min f x f x f 得证++-++12312121121x x x x ++-++12312222222x x x x 412312323323≤+-++x x x x )(321x x x ++8312= 得证 当且仅当31321===x x x ,即c b a ==时取等 总结: 对于形如“已知0>i x ,*∈N i 且a xni i=∑=1,求证M x f ni i )()(≥≤∑=1”的不等式问题均可以采用构造)())(()()(/naf n a x n a f x f +-≥≤后累加.2.(日本奥林匹克数学竞赛试题)【切线不等式】已知 0>c b a ,,,求证:+++-+222a c b a c b )()(+++-+222bc a b c a )()(53222≥++-+c a b c a b )()( 【证明】令c b a a x ++=1,c b a b x ++=2cb a cx ++=3,, 易得1321=++x x x 且0321>x x x ,, (先猜想12313x x x === 原不等式分式中上下同除以2)(c b a ++得++--212121121x x x )()(++--222122121x x x )()(232323121x x x +--)()( =12216121+--x x 1221222+--x x 1221323+--x x , 即证1221121+-x x 1221222+-+x x 1221323+-+x x 527≤, 易得12212+-x x 在点),(5931的切线为25272554+=x y . 下证 12212+-x x 25272554+≤x (10<<x )x 、y . 化简即证明:025410823≥+-x x 令=)(x f 25410823+-x x(10<<x ).x x x f 1083242-=)(/0≥131<≤⇒x 031==∴)()(min f x f 得证.∴1221121+-x x 1221222+-+x x 1221323+-+x x 52725812554321=+++≤)(x x x .得证,当且仅当31321===x x x ,即c b a ==时取等 3. (2005年塞尔维亚数学奥林匹克竞赛题)已知),(,,+∞∈0z y x ,求证:)(z y x yx z xz y zy x ++≥+++++23【证明】 令z y x S ++= ,S x x =1, S y x =2,Szx =3;则1321=++x x x . )(z y x yx z xz y zy x ++≥+++++23⇔≥⇔≥易得xx -1在点),(3631的切线为246865-=x y 下证2468651-≥-x xx ,),(10∈x ,令=)(x g 2468651+--x xx ; 8651122----=xx x x g )()(/,),(10∈x ; 令=)(x t xx x ---1122)(,得014413>---=)()()(/x x x x t ⇒)(x t 在),(10上单调递增,由)()()(/31t x t x g -=,得当),(131∈x 时0>)(/x g ,)(x g 单调递增;当),(310∈x 时0<)(/x g ,)(x g 单调递减;031=≥⇒)()(g x g 得证∴≥-+-+-332211111x x x x x x 2463865321-++)(x x x 23=. 当且仅当31321===x x x ,即z y x ==时取等 定理(推广): 若0>i x ,*∈N i 且11=∑=ni ix则11111332211-≥-⋅⋅⋅⋅+-+-+-n nx x x x x x x x nn (证明略,方法同上)(二)、化条件不等式为非条件不等式对非条件不等式,通常可以通过代入法转化为条件不等式,条件不等式也可以通过一些特殊的代换转化为非条件不等式,为进一步解题带来方便 1. 设+,,1a b c R abc ∈=,证明:111(1)(1)(1)1a b c b c a-+-+-+≤ 【分析】令,,x y za b c y z x===(+,,x y z R ∈) 于是只需证明:)()()x y z y z x z x y xyz -+-+-+≤( (这里可有舒尔不等式证明) 再令,,u x y z v y z x w z x y =-+=-+=-+ 则0,0,0222u v v w w u x y z +++=>=>=> 故(1)式等价于证明()()()8u v v w w u uwv +++≥,,u w v 中至多有一个为负数。

若仅有一个负数,则上式显然成立;若全为正数,则有均值不等式易证; 2.设+,,++1a b c R a b c ∈=, 证明:111222111111a b c a b c++≥++---+++ 【分析】讲条件代入,转化为111222+222b c c a a b a b c a b c a b c++≥++++++++++ 由114x y x y+≥+易证得上式; 3、设0,,>c b a 且 1=abc ,试证:23)(1)(1)(1333≥+++++b a c c a b c b a . 【证法一】应用柯西不等式推论由1=abc ,得acab c b c b a +=+223)(1, 从而原不等式等价于 23222222≥+++++ab ca b a ba bc a c ac ab c b ,)()()()(左cb ca ba bc ac ab ab ca bc +++++++≥2232)(3)(2132=⋅≥++=abc ab ca bc . 【证法二】 (平均值不等式的推论)由xy y x 4422≥+,有42y x y x -≥ )0(>y ,得 )(13c b a +))(12ac ab a +=21()1111()114a a c bc b=≥-++.同理)11(411)(13ca b a c b +-≥+, )11(411)(13ba cb ac +-≥+,三式相加得 23123)111(213=≥++≥abccba左三、将条件不等式转化为新的条件不等式 1、已知0,,>c b a ,且1111=+++++cc b b a a求证: 12111222≥++cb a .【证法一】由已知得 1111111111=+++++c b a ,令cz b y a x 111,111,111+=+=+=,则 1=++z y x , 由111-=x a ,111-=yb ,111-=zc , 得zz yy xx abc-⋅-⋅-=1111zy x y z x x z y +⋅+⋅+=32222=⋅⋅≥zxy y xz x yz ,从而 32-≤abc , 得 1231113222222≥≥++cb a cba.【证法二】切线不等式2、设,,p q r 为正数,且满足1pqr = 证明:对所有的n N +∈,都有1111111n n n n n n p q q r r p ++≤++++++【分析】作代换,,n n n a p b q c r ===,则1abc =且原不等式等价于1111111a b b c c a ++≤++++++这里从局部入手分析,由排序不等式得2121212133333333a b a a b b a b b a +=+≥+故1113331121211113333333331()()==1()()abc abc ca b abc a b abc a b b a c a b≤++++++++将上面式子轮换,相加后即得原不等式;。

相关文档
最新文档