2020-2021年高二数学选修第三章数系的扩充与复数的引入 新课标 人教版

合集下载

第3章 数系的扩充与复数的引入

第3章 数系的扩充与复数的引入

第3章 数系的扩充与复数的引入§3.1数系的扩充和复数的概念 §3.1.1数系的扩充和复数的概念教学重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用教学难点:虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立 学生探究过程:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数 讲解新课:1.虚数单位i :(1)它的平方等于-1,即21i =-(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律成立. 2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ! 3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部用字母C 表示*5. 复数的代数形式: 通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式6. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.7.复数集与其它数集之间的关系:N Z Q R C .8. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i 与4+3i 不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小例1请说出复数i i i i 53,31,213,32---+-+的实部和虚部,有没有纯虚数?答:它们都是虚数,它们的实部分别是2,-3,0,-3;虚部分别是3,21,-31,-5;-31i 是纯虚数.例2例3例4(1).设集合C ={复数},A={实数},B ={纯虚数},若全集S=C ,则下列结论正确的是( D )A.A ∪B =CB. S C A =BC.A ∩S C B =∅D.B ∪S C B =C(2).复数(2x 2+5x +2)+(x 2+x -2)i 为虚数,则实数x 满足(D )A.x =-21 B.x =-2或-21C.x ≠-2D.x ≠1且x ≠-2 (3).已知集合M ={1,2,(m 2-3m -1)+(m 2-5m -6)i },集合P ={-1,3}.M ∩P ={3},则实数m 的值为( A )A.-1 B .-1或4 C.6 D.6或-1例5(1)满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数是______.(2)复数z 1=a +|b |i ,z 2=c +|d |i (a 、b 、c 、d ∈R ),则z 1=z 2的充要条件是______. 例6设复数z =log 2(m 2-3m -3)+i log 2(3-m )(m ∈R ),如果z 是纯虚数,求m 的值. 例7若方程x 2+(m +2i )x +(2+mi )=0至少有一个实数根,试求实数m 的值. 例8已知m ∈R ,复数z =1)2(-+m m m +(m 2+2m -3)i ,当m 为何值时,(1)z ∈R ; (2)z 是虚数;(3)z 是纯虚数;(4)z =21+4i .答案:例4(3)由题设知3∈M ,∴m 2-3m -1+(m 2-5m -6)i =3∴⎩⎨⎧=--=--06531322m m m m ,∴⎩⎨⎧-==-==1614m m m m 或或∴m =-1,故选A. 例5.(1)解析:由题意知⎩⎨⎧=+-=--,0169,03222y y x x ∴⎪⎩⎪⎨⎧=-==3113y x x 或∴点对有(3,31),(-1,31)共有2个.答案:2(2) 解析:z 1=z 2⇔⎩⎨⎧==⇔||||d b ca a =c 且b 2=d 2.答案:a =c 且b 2=d 2例6.解:由题意知⎩⎨⎧≠-=--,0)3(log ,0)33(log 222m m m ∴⎪⎩⎪⎨⎧>-≠-=--03131332m m m m ∴⎩⎨⎧<≠=--320432m m m m 且∴⎩⎨⎧≠<-==2314m m m m 且或,∴m =-1.例7 解:方程化为(x 2+mx +2)+(2x +m )i =0.∴⎩⎨⎧=+=++02022m x mx x ,∴x =-2m ,∴,02242=+-mm ∴m 2=8,∴m =±22. 例8. 解:(1)m 须满足⎩⎨⎧≠-=-+.11,0322m m m 解:m =-3.(2)m 须满足m 2+2m -3≠0且m -1≠0,解:m ≠1且m ≠-3.(3)m 须满足⎪⎩⎪⎨⎧≠-+=-+.032,01)2(2m m m m m 解之得:m =0或m =-2.(4)m 须满足⎪⎩⎪⎨⎧=-+=-+.432211)2(2m m m m m 解之得:m ∈∅§3.1.2复数的几何意义学生探究过程:1.若(,)A x y ,(0,0)O ,则(),OA x y =2. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 AB =-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)讲授新课:复平面、实轴、虚轴:复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z =-5-3i 对应的点(-5,-3)在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ 2. 复数z a bi =+←−−−→一一对应平面向量OZ 例9例10.已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2|的最大值和最小值. [解] |)sin (cos cos sin 1|||21i z z θθθθ-++=⋅.2sin 412cos sin 2)sin (cos )cos sin 1(22222θθθθθθθ+=+=-++=故||21z z ⋅的最大值为,23最小值为2. 例11.(1)(2008天津理科)在复平面内,把复数i 33-对应的向量按顺时钟方向旋转3π,所得向量对应的复数是( B ) (A )23 (B )i 32- (C )3i 3- (D )3+i 3(2)(2007全国理科、文科)已知复数z 的模为2,则│z -i│的最大值为:( D )(A)1 (B)2 (C) (D)3(3)(2003北京理科)若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( B ) A .2 B .3 C .4 D .5 (4)(2007年上海卷)若,a b 为非零实数,则下列四个命题都成立:①10a a+≠ ②()2222a b a ab b +=++ ③若a b =,则a b =± ④若2a ab =,则a b =则对于任意非零复数,a b ,上述命题仍然成立的序号是_____。

7.1.1数系的扩充和复数的概念课件(人教版)

7.1.1数系的扩充和复数的概念课件(人教版)
A.2,3
B.2,-3
C.-2,3
( B )
D.-2,-3
分析:两个复数相等,即这两个复数的实部和虚部分别对应相等,
得到等式求解.
解析:由2+bi与a-3i相等,得a=2,b=-3.故
实数a,b的值分别为2,-3.
五、举例应用 掌握定义

【例6】若关于x的方程3x²- x-1=(10-x-2x²)i有实根,求实
问题2:两个复数有大小关系吗?探究5:复数z=a+bi在什么条件下是实数、虚数?
四、定义辨析 强化理解
辨析1:若a,b为实数,则z=a+bi为虚数.( × )
提示:只有当b不等于零时z=a+bi为虚数.
辨析2:复数z1=3i,z2=2i,则z1>z2. ( × )
提示:复数不能比较大小,只有相等和不相等之分.
辨析3:复数z=bi(b∈R)是纯虚数.
( × )
提示:只有当b不等于零时z=bi才为纯虚数.
辨析4:实数集与复数集的交集是实数集.( √ )
提示:因为实数和虚数统称为复数,故实数集与复数
集的交集是实数集.
五、举例应用 掌握定义
【例1】复数3-i的实部和虚部分别是( C )
A.3和1
B.3和i
C.3和-1
所以ቊ
≠ 0.
解得y=3.
五、举例应用 掌握定义
【例4】 已知复数z=
²−−6
+(m²-2m-15)i.当m为何值时,
+3
(1)z是虚数;(2)z是纯虚数.
分析:解决复数分类问题的关键是找出等价条件,
列出方程(组).
五、举例应用 掌握定义
【例4】 已知复数z=

2020版高中数学第三章数系的扩充与复数的引入本章整合课件新人教A版选修2_2

2020版高中数学第三章数系的扩充与复数的引入本章整合课件新人教A版选修2_2

真题放送
9(2018·天津高考)i 是虚数单位,复数 6+7i = ___________________.
综合应用
应用4 已知2z+|z|=2+6i,求z.
提示:设z=x+yi(x,y∈R),由复数相等建立方程组求解.
解:设z=x+yi(x,y∈R),代入已知方程,
得 2(x+yi) + ������2 + ������2 = 2+6i,即(2x+ ������2 + ������2)+2yi=2+6i.
8(2017·全国Ⅰ高考)设有下面四个命题 p1:若复数 z 满足 1������∈R,则 z∈R; p2:若复数 z 满足 z2∈R,则 z∈R; p3:若复数 z1,z2 满足 z1z2∈R,则������1 = ������2; p4:若复数 z∈R,则������∈R.
其中的真命题为( )
(a+1,1-a)在第二象限,所以
������ + 1-������
1 >
< 0, 0,
解得a<-1.故选
B.
答案:B
真题放送
7(2017·山东高考)已知 a∈R,i 是虚数单位.若 z=a+ 3i,z·������ = 4, 则a=( ) A.1 或-1 B. 7或 − 7 C. − 3 D. 3 解析:由 z=a+ 3i, 得z·������ = |������|2=a2+3=4,所以 a2=1,a=±1,选 A. 答案:A
本章整合
-1-
知识建构
专题一 专题二 专题三
综合应用
专题一 复数的有关概念 1.复数的实部与虚部:若复数z=a+bi(a,b∈R),则其实部与虚部分 别为a,b. 2.纯虚数:对于复数z=a+bi(a,b∈R),当a=0,且b≠0时,z是纯虚数. 3.共轭复数:当两个复数的实部相等,虚部互为相反数时,称它们互 为共轭复数,z=a+bi(a,b∈R)的共轭复数为������ = ������ − ������i, 且有������������ = |������|2=|������|2. 4.复数的模:对于复数 z=a+bi(a,b∈R),其模|z|= ������2 + ������2.

【名师推荐资料】2020-2021学年高中数学 第三章 数系的扩充与复数的引入章末检测 新人教A版选修1-2(精品)

【名师推荐资料】2020-2021学年高中数学 第三章 数系的扩充与复数的引入章末检测 新人教A版选修1-2(精品)

第三章 数系的扩充与复数的引入章末检测时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,计算i +i 2+i 3=( ) A .-1 B .1 C .-iD .i解析:i +i 2+i 3=i +(-1)-i =-1. 答案:A2.已知i 为虚数单位,复数z =1-2i2-i ,则复数z 的虚部是( )A .-35iB .-35C.45 iD.45解析:1-2i 2-i =-+-+=4-3i 5=45-35i ,则复数z 的虚部是-35. 答案:B3.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) A .A B .B C .CD .D解析:设z =a +b i(a <0,b >0)∴z =a -b i 对应点的坐标是(a ,-b ),是第三象限点B . 答案:B4.i 是虚数单位,复数z =7+i3+4i的共轭复数z =( ) A .1-i B .1+i C.1725+3125i D .-177+257i解析:z =7+i3+4i =+-25=25-25i25=1-i ∴z =1+i. 答案:B5.若复数z =(1+i)(x +i)(x ∈R)为纯虚数,则|z |等于( ) A .2 B. 5 C. 2D .1解析:∵z =x -1+(x +1)i 为纯虚数且x ∈R ,∴⎩⎪⎨⎪⎧x -1=0,x +1≠0,得x =1,z =2i ,|z |=2.答案:A6.已知复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( ) A.34 B.43 C .-43D .-34解析:z 1·z 2=(3+4i)(t -i)=(3t +4)+(4t -3)i , 依题意4t -3=0,∴t =34.答案:A7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( ) A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对解析:设z =a +b i(a ,b ∈R),∵z 2=a 2-b 2+2ab i 为纯虚数,∴⎩⎪⎨⎪⎧a 2-b 2=0,ab ≠0.∴a =±b ,即z 在直线y =±x (x ≠0)上. 答案:C8.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪1 -1z z i =4+2i 的复数z 为( ) A .3-i B .1+3i C .3+iD .1-3i解析:由定义知⎪⎪⎪⎪⎪⎪1 -1z z i =z i +z ,得z i +z =4+2i ,∴z =4+2i 1+i =+-2=6-2i2=3-i. 答案:A9.若复数x 0=1+2i 是关于x 的实系数方程x 2+bx +c =0的一个根,则( )A .b =2,c =3B .b =-2,c =3C .b =-2,c =-1D .b =2,c =-1解析:因为1+2i 是实系数方程的一个复数根,所以1-2i 也是方程的根,则1+2i +1-2i =2=-b ,(1+2i)(1-2i)=3=c ,解得b =-2,c =3. 答案:B10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C .若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的值是( )A .1B .2C .3D .4解析:3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=3,2λ-μ=-4,得⎩⎪⎨⎪⎧λ=-1,μ=2,∴λ+μ=1.答案:A二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上) 11.设i 为虚数单位,则1-i +2=________. 解析:1-i+2=1-i 2i=--2=-i 2-12.答案:-12-i212.已知复数z 1=cos 23°+sin 23°i 和复数z 2=sin 53°+sin 37°i,则z 1·z 2=________.解析:z 1·z 2=(cos 23°+sin 23°i)·(sin 53°+sin 37°i)=(cos 23°sin 53°-sin 23°sin 37°)+(sin 23°sin 53°+co s 23°sin 37°)i =(cos 23°sin 53°-sin 23°cos 53°)+i(sin 23°sin 53°+cos 23°cos 53°) =sin 30°+i cos 30°=12+32i.答案:12+32i13.已知复数z =a +b i(a ,b ∈R)且a 1-i +b 1-2i =53+i,则复数z =________.解析:∵a ,b ∈R 且a1-i +b 1-2i =53+i,即a 1+i2+b 1+2i5=3-i2, ∴5a +5a i +2b +4b i =15-5i ,即⎩⎪⎨⎪⎧5a +2b =15,5a +4b =-5,解得⎩⎪⎨⎪⎧a =7,b =-10,故z =a +b i =7-10i. 答案:7-10i14. 复数z =(m 2-3m +2)+(m 2-2m -8)i 的共轭复数在复平面内的对应点位于第一象限,则实数m 的取值范围是________.解析:复数z =(m 2-3m +2)+(m 2-2m -8)i 的共轭复数为z =(m 2-3m +2)-(m 2-2m -8)i , 又z 在复平面内对应的点在第一象限,得⎩⎪⎨⎪⎧m 2-3m +2>0,-m 2-2m -,解得-2<m <1或2<m <4. 答案:(-2,1)∪(2,4)15.若复数z =1+2i ,其中i 是虚数单位,则⎝ ⎛⎭⎪⎫z +1z ·z =________. 解析:∵z =1+2i ,知z =1-2i则⎝ ⎛⎭⎪⎫z +1z ·z =z ·z +1=(1+2i)(1-2i)+1=6. 答案:6三、解答题(本大题共有6小题,共75分.解答时应写出文字说明、证明过程或运算步骤) 16.(12分)实数k 为何值时,复数z = (k 2-3k -4)+(k 2-5k -6)i 是: (1)实数;(2)虚数;(3)纯虚数;(4)0.解析:(1)当k 2-5k -6=0,即k =6或k =-1时,z 是实数. (2)当k 2-5k -6≠0,即k ≠6且k ≠-1时,z 是虚数.(3)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6≠0,即k =4时,z 是纯虚数.(4)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6=0,即k =-1时,z 是0.17.(12分)已知复数z 的共轭复数为z ,且z ·z -3i z =101-3i,求z .解析:设z =a +b i(a ,b ∈R),则z =a -b i. 又z ·z -3i z =101-3i ,所以a 2+b 2-3i(a +b i)=+10,所以a 2+b 2+3b -3a i =1+3i ,所以⎩⎪⎨⎪⎧a 2+b 2+3b =1,-3a =3.所以⎩⎪⎨⎪⎧a =-1,b =0,或⎩⎪⎨⎪⎧a =-1,b =-3.所以z =-1,或z =-1-3i.18.(12分)已知z 是复数,z +2i ,z2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应的点位于第一象限,求实数a 的取值范围. 解析:设z =x +y i(x ,y ∈R),则z +2i =x +(y +2)i , 由z +2i 为实数,得y =-2. ∵z2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i , 由z2-i为实数,得x =4.∴z =4-2i. ∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,a -解得2<a <6.∴实数a 的取值范围是(2,6).19.(12分)已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R ,若|z 1-z 2|<|z 1|,求a 的取值范围.解析:∵z 1=-1+5i1+i =2+3i ,z 2=a -2-i ,z 2=a -2+i ,∴|z 1-z 2|=|(2+3i)-(a -2+i)|=|4-a +2i| =-a2+4,又∵|z 1|=13,|z 1-z 2|<|z 1|, ∴-a2+4<13,∴a 2-8a +7<0,解得1<a <7. ∴a 的取值范围是(1,7).20.(13分)已知关于x 的方程x a +b x=1,其中a ,b 为实数. (1)若x =1-3i 是该方程的根,求a ,b 的值.(2)当a >0且b a >14时,证明该方程没有实数根.解析:(1)将x =1-3i 代入x a +bx=1, 化简得⎝ ⎛⎭⎪⎫1a +b 4+⎝ ⎛⎭⎪⎫34b -3a i =1,∴⎩⎪⎨⎪⎧1a +b 4=1,34b -3a =0,解得a =b =2.(2)原方程化为x 2-ax +ab =0, 假设原方程有实数解,那么Δ=(-a )2-4ab ≥0,即a 2≥4ab .∵a >0,∴b a ≤14,这与题设b a >14相矛盾.故原方程无实数根. 21.(14分)复数z =+3a +b1-i且|z |=4,z 对应的点在第一象限,若复数0,z ,z 对应的点是正三角形的三个顶点,求实数a ,b 的值.解析:z =+2+1-i(a +b i)=-2a -2b i.由|z |=4得a 2+b 2=4,①∵复数0,z ,z 对应的点构成正三角形, ∴|z -z |=|z |.把z =-2a -2b i 代入化简得a 2=3b 2,② 代入①得,|b |=1. 又∵Z 点在第一象限, ∴a <0,b <0.由①②得⎩⎨⎧a =-3,b =-1,故所求值为a =-3,b =-1.。

2020秋新版高中数学人教A版选修2-2课件:第三章数系的扩充与复数的引入 3.1.2 .pptx

2020秋新版高中数学人教A版选修2-2课件:第三章数系的扩充与复数的引入 3.1.2 .pptx

【做一做 1-1】 已知复数 z=i,则复平面内 z 对应的点 Z 的坐标 为( )
A.(0,1)
B.(1,0)
C.(0,0)
D.(1,1)
解析:复数 z=i 的实部为 0,虚部为 1,所以对应点的坐标为(0,1).
故选 A.
答案:A
-4-
目标导航
知知识识梳梳理理
重难聚焦
典例透析
【做一做 1-2】 若������������ = (0, −3), 则������������对应的复数为( )
平行直线x=±2之间的长条带状(不包括两条平行直线).满足不等式 |b|<2的点组成的图形是位于两条平行直线y=±2之间的长条带状
(不包括两条平行直线),两者的公共部分即为所求.故满足条件的点 所组成的图形是以原点为中心,边长等于4,各边分别平行于坐标轴
的正方形内部的点,但不包括边界,如图①所示.
-18-
-11-
题型一
题型二
题型三
目标导航
知识梳理
重难聚焦
典例透析
反思复数的几何意义包含两种情况: (1)复数与复平面内点的对应:复数的实部、虚部分别是该点的横
坐标、纵坐标,利用这一点,可把复数问题转化为平面内点的坐标 问题.
(2)复数与复平面内向量的对应:复数的实部、虚部是对应向量的 坐标,利用这一点,可把复数问题转化为向量问题.
知知识识梳梳理理
重难聚焦
典例透析
因此,复数集 C 与复平面内的向量所成的集合也是一一对应的 (实数 0 与零向量对应),即
复数 z=a+bi
平面向量������������
这是复数的另一种几何意义.
为方便起见,我们常把复数 z=a+bi 说成点 Z 或说成向量������������,

数系的扩充与复数的引入

数系的扩充与复数的引入

知识精要
复 数 : 我 们 把 集 合 C = { a + b i a , b ∈ R }中 的 数 , 即 形 如 a + b i( a , b ∈ R ) 的 数 叫 做 复 数 , 其 中 i叫 做 虚 数 单 位 , 全 体 复 数 的 集 合 C叫 做 复 数 集 合 。 (1)i2 = −1, 复数集C和实数集R 之间有 (2)i可以与实数一起进行四则运算, (2)i可以与实数一起进行四则运算, 什么关系? 并且加乘运算律不变。 答:R ⊆ C,即R是C的真子集。
欢迎指导! 欢迎指导! 谢谢! 谢谢!
例 3 如果(x + y ) + ( y − 1)i = (2 x + 3 y ) + (2 y + 1)i, 求实数x, y的值.
解:由复数相等的定义(条件),得 x + y = 2x + 3 y, x = 4, 解得 y −1 = 2 y +1, y = −2.
练习: 练习:P52,1,2. , , P55,1,2. , ,
三、本章知识结构框图
数系扩充 复数引入 复数的概念
复数代数形式的 四则运算
四、课时安排
3.1 数系的扩充和复数的概念 约2课时 3.2 复数代数形式的四则运算 约2课时
§3.1 数系的扩充与复数的概念 本节要点
数系的扩充 复数的概念 复数的代数表示及复数相等的定义 复数的几何意义
教学情境设计
方程
x 2 + 1 = 0 在实数集中有解么?
答 :无解
你能设想 一种方法, 使这个方 程有解么?
联系从自然数系到实数系的扩充过程,我们可以考虑将实数系扩大。
数系的每一次扩充过程都与实际需求密切相关。简要讲述数系扩 充的历史,人们为了计数,创造了自然数,1,2,3,…我们看到的自然 界中事物的个数都是自然数,如一支钢笔,三本书,后来人们为了方便将 0归入自然数。为了公平分配物质,引入了分数,如一个苹果平均分给三 个人,每个人得到多少苹果?为了表示各种具有相反意义的量以及满足记 数法的需要,人类引进了负数.如今天最低温度为零下3度,最高温度为8 度,就用到了负数。边长为1的正方形对角线之长不是分数,5开方开不尽, 不能用分数来表示,于是无理数出现了。数系扩充发展到了实数集了,这 是我们以前学到的非常熟悉的数集。

高中数学 第三章 数系的扩充与复数的引入 3.2 复数代数形式的四则运算 3.2.1 复数代数形式的

高中数学 第三章 数系的扩充与复数的引入 3.2 复数代数形式的四则运算 3.2.1 复数代数形式的

高中数学第三章数系的扩充与复数的引入3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义教案2 新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章数系的扩充与复数的引入3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义教案2 新人教A版选修1-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章数系的扩充与复数的引入3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义教案2 新人教A版选修1-2的全部内容。

3.2.1复数代数形式的加、减运算及其几何意义教学过程一、推进新课1.复数的加法探究新知我们规定,复数的加法法则如下:设bi a z +=1,di c z +=2是任意两个复数,那么()()()()i d b c a di c bi a +++=+++提出问题问题1:两个复数的和是个什么数,值唯一确定吗?问题2:当b=0,d=0时,与实数加法法则一致吗?问题3:它的实质是什么?类似于实数的哪种运算方法?活动设计:学生独立思考,口答。

活动成果:1.仍然是个复数,且是一个确定的复数。

2.一致。

3.实质是实部与实部相加,虚部与虚部相加,类比于实数运算中的合并同类项。

设计意图:加深对复数加法法则的理解,且与实数类比,了解规定的合理性。

提出问题:实数加法有交换律、结合律,复数满足吗?并试着证明。

活动设计:学生先独立思考,然后小组交流.活动成果:满足,对任意的,,,321C z z z ∈有交换律:1221z z z z +=+结合律:()()321321z z z z z z ++=++证明:设bi a z +=1,di c z +=2,()()i d b c a z z +++=+21x O y()b a Z ,1 ()d c Z ,2 Z ()()i b d a c z z +++=+12显然,1221z z z z +=+同理可得,()()321321z z z z z z ++=++设计意图:引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,提高学生的建构能力及主动发现问题,探究问题的能力。

(人教版)高中数学选修2-2课件:第3章 数系的扩充与复数的引入3.2.2

(人教版)高中数学选修2-2课件:第3章 数系的扩充与复数的引入3.2.2

答案: C
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.设 z=1+i(i 是虚数单位),则2z+z2=________. 解析: 2z+z2=1+2 i+(1+i)2 =212-i+1+2i+i2 =1-i+2i=1+i.
答案: 1+i
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)(1-i)2=1-2i+i2=-2i.
(2)(1+2i)·(3-4i)=3-4i+6i-8i2
=11+2i.
(3)1-2-2i3i=1-2+2ii=1-2+2ii11++
2i 2i

2+2i+i+ 1- 2i2
2i2=1+3i 2=i.
合作探究 课堂互动
高效测评 知能提升
共轭复数
设z1,z2为共轭复数,且(z1+z2)2-3z1z2i=4-6i, 求z1和z2.
[思路点拨]
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(4)-12+ 23i 23+12i(1+i)
=- 43- 43+34-14i(1+i)
=- 23+12i(1+i)
A.A C.C
B.B D.D
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破

3.1.1_数系的扩充和复数的概念课件人教新课标

3.1.1_数系的扩充和复数的概念课件人教新课标
从数集A出发,希望新引进的数i和实数之间 仍然能像实数系那样进行加法和乘法运算,并希 望加法和乘法都满足交换律、结合律,以及乘法 对加法满足分配律.
把实数 a与新引入的数i相加,结果记作a +i; 把实数b与i相乘,结果记作bi; 把实数a与实数b和i相乘的结果相加,结果 记作a + bi.
加法和乘 法的运算律仍然成立 ,这些运算的结果 都可以写成 a + bi(a,b∈R)的形式,把这些数都添 加到数集 A中去.
数集扩充到有理数集
边长为1的正方形的对角线长度为多少?

1Hale Waihona Puke 1无理数是“推”出来 的.公元前六世纪,古希 腊毕达哥拉斯学派利用毕 达哥拉斯定理,发现了 “无理数”. “无理数” 的承认(公元前4世纪) 是数学发展史上的一个里 程碑.
数集扩充到有实数集
毕达哥拉斯 (约公元前560——480年)
数集扩充到实数集
负数是“欠”出来的. 它是由于借贷关系中量的 不同意义而产生的.我国 三国时期数学家刘徽(公 元250年前后)第一给出 了负数的定义、记法和加 减运算法则. 数集扩充到整数集
刘徽(公元250年前后)
分数(有理数)是“分” 出来的.早在古希腊时期, 人类已经对有理数有了非 常清楚的认识,而且他们 认为有理数就是所有的数.
这样的数都可以看作是a + bi(a,b∈R) 的特殊形式,所以实数系经过扩充后
得到的新数集应该是C = a + bi|a,b∈R .
复数的概念
我们把集合 C = a + bi|a,b∈R 中的数,即形
如a + bia,b∈R的数叫做复数(complex number),
其中i叫做虚数单位(imaginary unit).全体复数 所成的集合 C叫做复数集(set of complex numbers).

高中数学 第三章 数系的扩充与复数的引入本章整合 新人教A版选修2-2(2021年最新整理)

高中数学 第三章 数系的扩充与复数的引入本章整合 新人教A版选修2-2(2021年最新整理)

编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章数系的扩充与复数的引入本章整合新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章数系的扩充与复数的引入本章整合新人教A版选修2-2的全部内容。

—2知识网络专题探究专题一 复数的实部与虚部定义的区分对于复数z =a +b i(a ,b ∈R ),其中a 和b 分别叫做复数z 的实部和虚部,一定要记清楚b i 并不是虚部.如2+i 的实部为2,虚部为1,而不是i 。

【例1】复数错误!+错误!的虚部是( )A .15i B .错误! C .-错误!i D .-错误!解析:错误!+错误!=错误!+错误!=错误!+错误!=-错误!+错误!i ,故虚部为错误!。

答案:B专题二 纯虚数概念的理解对于复数z =a +b i(a ,b ∈R ),当a =0,且b ≠0时,叫做纯虚数,特别要注意记清“a =0"这一必备的前提条件.【例2】若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( )A.1 B.2C.1或2 D.-1解析:由纯虚数的定义,可得错误!解得a=2.答案:B专题三复数的几何意义1.复数的几何意义及应用(1)复数的几何意义主要体现在以下三个方面:①复数z与复平面内的点Z及向量OZ的一一对应关系;②复数的加减运算与向量的加减运算的对应关系;③复数z-z0模的几何意义.(2)复数几何意义的应用:①求复数问题转化为解析几何的求解问题;②复数的加减运算与向量的加减运算的相互转化;③利用|z-z0|判断复数所对应的点的轨迹及轨迹方程,也可以求|z|的最值.2.复数几何意义中数形结合的思想方法复数的实质是有序实数对,也就是复平面内点的坐标.如果复数按照某种条件变化,那么复平面上的对应点就构成具有某种特征的点的集合或轨迹,这种数形的有机结合,成为复数问题转化为几何问题的重要途径之一.【例3】复数z=错误!在复平面上对应的点位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限解析:化简复数z,z=错误!=错误!=错误!=错误!,所以复数z对应复平面内的点的坐标为错误!,位于第一象限.故选A.答案:A【例4】在复平面内,点P,Q分别对应复数z1,z2,且z2=2z1+3-4i,|z1|=1,则点Q的轨迹是()A.线段 B.圆C.椭圆 D.双曲线解析:∵z2=2z1+3-4i,∴2z1=z2-(3-4i).∵|z1|=1,∴|2z1|=2,∴|z2-(3-4i)|=2,由模的几何意义可知点Q的轨迹是以(3,-4)为圆心,2为半径的圆.故选B.答案:B【例5】已知等腰梯形OABC的顶点O,A,B在复平面上对应的复数分别为0,1+2i,-2+6i,OA CB∥,求顶点C所对应的复数z.提示:根据题意,画出图形,由OA CB∥,四边形OABC为等腰梯形,知||=||OC AB,从而可建立方程组求得点C的坐标,即得点C所对应的复数z。

数系的扩充与复数的引入公开课课件

数系的扩充与复数的引入公开课课件
控制工程
在控制工程中,复数用于描述系统的传递函数和稳定性,对于系统分析和设计至关重要。
感谢您的观看
THANKS
微积分中的连续性讨论
在微积分中,连续性是一个重要的概念。在实数范围内,连续性可以通过极限来定义和讨论。但在处理一些涉及无穷大或无 穷小的数学问题时,实数范围的局限性可能会限制讨论的深入。
通过引入复数,可以扩展连续性的定义和讨论范围。例如,在复变函数中,函数在复平面上的连续性和可导性得到了广泛的 研究和应用。这使得复数在处理涉及连续性和无穷大/无穷小的数学问题时更加有效和精确。
无理数是不能表示为两个整数的比的 无限不循环小数。
虽然无理数系能够表示无理数,但它 无法表示某些超越无理数,如某些高 阶无穷小量和高阶无穷大量。
无理数系的作用
无理数系使得数学能够处理所有的无 理数,如常见的圆周率π和自然对数 的底数e。
02
复数的引入
复数的定义

总结词
复数是实数域的扩充,由实部和虚部组成,表示为a+bi的形式,其中a和b是实 数,i是虚数单位。
04
复数在物理中的应用
交流电的分析
交流电的频率和相位分析
复数可以用于表示交流电的电压和电流,通过分析复数的模和辐角,可以得出电压和电流的有效值和 相位信息。
阻抗匹配
在电子和电气工程中,阻抗匹配是非常重要的概念。利用复数表示阻抗,可以方便地分析电路中的电 压和电流关系,实现阻抗匹配。
波动方程的求解
算符和矩阵
在量子力学中,算符和矩阵是非 常重要的概念。利用复数表示算 符和矩阵,可以简化计算过程, 并方便地描述量子态的变化。
05
复数的历史与文化背景
复数在数学史中的地位
数学发展里程碑

3.1.1 数系的扩充和复数的概念教案2020-2021学年高二数学人教A版选修1-2第三章

3.1.1 数系的扩充和复数的概念教案2020-2021学年高二数学人教A版选修1-2第三章

数系的扩充和复数的概念教学设计教学过程创设情景、提出问题(导学)1.提出问题几岁开始学习数学?最早学习的数学知识是什么?认数字(自然数)2.回顾数系的扩充自然数→整数→有理数→实数2.方程21x=-在实数集中无解,那怎么解决呢?引入新数由于生产生活的需要和数学本身的矛盾,只有自然数显然不够,因此数系在不断扩充播放视频,(负数的产生,分数的产生,无理数的产生)通过数系的扩充,让学生感受数系的发展与生活是密切相关的。

通过引入虚数i,让学生感受到数学精神的博大和学习虚数的必要性。

自主探究,形成概念(读学,群学)引入虚数单位i,满足:(1)1i2=-;(2)实数可以与i进行四则运算。

1、基本概念(1)复数定义:形如a bi+的数叫做复数,通常用小写字母z,记为z a bi=+(复数的代数形式),其中i叫虚数单位,a叫做复数的实部,b叫做复数的虚部,其中Rba∈,。

数集{}RbabiazzC∈+==,,|叫做复数集。

探究:由上题可以看出,复数可以表示实数,也可以表示虚数。

当实数,a b取何值时,它为实数?虚数?当b=0时,z为实数;当b≠0时,z为虚数;学习了复数的定义后,体会复数可以表示为实数、虚数,为下一步复数的分类奠定基础。

学生总结:CR≠⊂由学生回答,体现思维总结过程。

当b ≠0,a =0时,称z 为纯虚数;完成下列表格(分类一栏填实数、虚数或纯虚数) 2-3i 6i2i实部虚部 分类2、复数的相等如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.记作:a bi c di a c +=+⇔=且b=d 。

R d c b a ∈,,, 特别的:0,00==⇔=+b a bi a注意:两个复数不全是实数时,不能比较大小,但两个复数都是实数时,可以比较大小.典例剖析,注重思维 (群学,练学)例1 实数m 分别取什么值时,复数z =m+1+(m -1)i是(1)实数?(2)虚数?(3)纯虚数?例2 已知(x+y )+(x-2y )i=(2x-5)+(3x+y )i ,求实数x,y 的值.引导学生根据实数、虚数、纯虚数的定义去分析讨论说明:这类问题仍要分清复数的实部和虚部,从而利用复数相等的定义解得参数的值。

人教版高中数学《数系的扩充和复数的概念》单元教材教学分析

人教版高中数学《数系的扩充和复数的概念》单元教材教学分析
(2)作为新学知识,理解复数的基本概念,掌握复数有关知识,为今后学习奠定基础,承上启下.
课时安排
《数系的扩充与复数的概念》是人教版普通高中课程标准数学实验教科书选修1-2第三章第一节的内容,大纲课时安排一课时。
主要包括数系概念的发展简介,数系的扩充,复数相关概念、代数形式、相等条件、分类.复数的引入是中学阶段数系的又一次扩充,引入复数以后,不仅可以使学生对于数的概念有一个更为完整的认识,也为进一步学习数学打下了基础。通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.在学习了这节课以后,学生首先能知道数系是怎么扩充的,并且这种扩充是必要的,虚数单位i在数系扩充过程中的作用,而复数就是一个实数加上一个实数乘以i的形式,学生能清楚的知道一个复数什么时候是实数,什么时候是虚数,什么时候是纯虚数,两个复数相等的充要条件是什么.
人教版高中数学《数系的扩充和复数的概念》单元教材教学分析
学段及学科
高中数学
教材版本
人教版
单元名称
《数系的扩充和复数的概念》
单元教材主题内容与价值作用
主要包括数系概念的发展简介,数系的扩充,复数相关概念、代数形式、相等条件、分类.复数的引入是中学阶段数系的又一次扩充,引入复数以后,不仅可以使学生对于数的概念有一个更为完整的认识,也为进一步学习数学打下了基础。
单元目标
1)使学生体会数的概念是逐步发展的,初步体会引入虚数单位i的合理性;了解引入复数的必要性;
(2)理解复数的基本概念;掌握两复数相等的充要条件;能够对复数进行简单的分类;
(3)在培养学生类比与转化的数学思想方法的过程中,激发学生勇于探索创新的精神,提高学生的创新思维和应用意识.

(人教版)高中数学选修2-2课件:第3章 数系的扩充与复数的引入3.2.1

(人教版)高中数学选修2-2课件:第3章 数系的扩充与复数的引入3.2.1

自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
∈R),
方法一:设 z1=a+bi,z2=c+di(a,b,c,d
∵|z1|=|z2|=|z1-z2|=1,
∴a2+b2=c2+d2=1,

(a-c)2+(b-d)2=1,

由①②得 2ac+2bd=1.
6分
∴|z1+z2|= a+c2+b+d2 = a2+c2+b2+d2+2ac+2bd= 3.
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.掌握复数代数形式的加、减运算法则. 2.理解复数代数形式的加、减运算的几何意义.
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.已知复数z1=a+bi,z2=c+di(a,b,c,d∈R). [问题] 多项式的加、减实质是合并同类项,类比想一想 复数如何加、减? [提示] 两个复数相加(减)就是把实部与实部、虚部与虚 部分别相加(减),即(a+bi)±(c+di)=(a±c)+(b±d)i.
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.若z1=2+i,z2=3+ai(a∈R),z1+z2所对应的点在实 轴上,则a为( )
A.3
B.2
C.1
D.-1
解析: z1+z2=2+i+3+ai=(2+3)+(1+a)i=5+(1+ a)i,
∵z1+z2所对应的点在实轴上, ∴1+a=0.∴a=-1.
数学 选修2-2

人教课标版高中数学选修2-2《数系的扩充与复数的概念》名师教案

人教课标版高中数学选修2-2《数系的扩充与复数的概念》名师教案

第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念一、教学目标1.核心素养:通过学习数系的扩充和复数的概念,初步形成基本的数学抽象和逻辑推理能力.2.学习目标:(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.(2)理解复数的基本概念,复代数形式及复数相等的充要条件.(3)复数的向量表示.3.学习重点:复数的概念,复数的代数形式,复数的向量表示.4.学习难点:复数相等的条件,复数的向量表示.二、教学设计(一)课前设计1.预习任务x+=在实数集中无解.联系从自然数系任务1、阅读教材P102,思考:方程210到实数系的扩充过程,你能设想一种方法,使这个方程有解吗?任务2、阅读教材P103,思考:复数集C和实数集R有什么关系?任务3、阅读教材P104-P105,思考:实数与数轴上的点一一对应,因此,实数可以用数轴上的点来表示.类比实数的几何意义,复数的几何意义是什么呢?2.预习自测1.下列复数中,满足方程x2+2=0的是( )A.±1B.±iC.±2iD.±2i答案:C解析:略2.已知复数z=a2-(2-b)i的实部和虚部分别是2和3,则实数a,b的值分别是( )A.2,1B.2,5C.±2,5D.±2,1答案:C解析:略3、如果z=m(m+1)+(m2-1)i为纯虚数,则实数m的值为( )A.1B.0C.-1D.-1或1答案:B解析:略(二)课堂设计1.知识回顾(1)对数集因生产和科学发展的需要而逐步扩充的过程进行概括自然数→分数→负数→整数→有理数→无理数→实数2.问题探究问题探究一:数系的扩充x+=,没有实数根.我们能否将实数集进行扩充,对于实系数一元二次方程210使得在新的数集中,该问题能得到圆满解决呢?●活动一:回顾旧知,回顾数集的扩充过程对数集因生产和科学发展的需要而逐步扩充的过程进行概括自然数→分数→负数→整数→有理数→无理数→实数(教师引导)●活动二:类比旧知,探究数系的扩充.对于实系数一元二次方程210x +=,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?我们说,实系数一元二次方程210x +=没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问题呢?最根本的问题是要解决-1的开平方问题.即一个什么样的数,它的平方会等于-1.我们引入一个新数i ,它的平方等于-1 ●活动三:类比探究,研究新数i 的运算性质把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?根据前面讨论结果,我们引入一个新数i ,i 叫做虚数单位,并规定: ①虚数单位i 的平方等于-1,即21i =-②i 的周期性:41n ii +=,421n i +=-43n +4n ③实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数i ,可以说是水到渠成的事.这样,就可以解决前面提出的问题(1-可以开平方,而且1-的平方根是i ±).问题探究二:复数的概念 ●活动一:理解概念,复数的代数形式 怎样表示一个复数?根据虚数单位i 的第③条性质,i 可以与实数b 相乘,再与实数a 相加.由于满足乘法交换律及加法交换律,从而可以把结果写成a bi +这样,数的范围又扩充了,出现了形如(,)a bi a b R +∈的数,我们把它们叫做复数.复数通常用字母z 表示,即z =a +bi ,(其中a ,b ∈R ),这一表示形式叫做复数的代数形式,其中a 、b 分别叫做复数z 的实部与虚部.复数的实部、虚部满足什么条件表示实数? 对于复数a +bi (a,b ∈R ),当且仅当b =0时,它是实数; 当且仅当a =0且b =0时,它是实数0; 当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数; ●活动二:剖析概念复数m +ni 的实部、虚部一定是m 、n 吗?不一定,只有当m ∈R ,n ∈R ,则m 、n 才是该复数的实部、虚部. 对于复数a +bi 和c +di (a,b,c,d ∈R ),你认为满足什么条件时,这两个复数相等?(a =c 且b =d ,即实部与虚部分别相等时,这两个复数相等.) 任意两个实数可以比较大小,复数呢?如果两个复数不全是实数,那么它们不能比较大小. ●活动三:完善知识体系复数集、实数集、虚数集、纯虚数集之间的关系是怎样的?复数z =(,)a bi a b R +∈包括:0,0)0)0,0)a a ⎧⎪≠≠⎧⎨≠⎨⎪≠=⎩⎩实数 (b=0)复数z 一般虚数(b 虚数 (b 纯虚数(b●活动四:复数基本概念、复数的代数形式、复数充要条件的应用 例1、实数m 为什么值时()11z m m i=++-是(1)实数(2)虚数(3)纯虚数答案:见解析解析:(1)当10m -=,即1m =时,复数z 是实数; (2)当10m -≠即1m ≠时,复数z 是虚数;(3)当10,10m m +=-≠即m 1=-时,复数z 是纯虚数.点拨:本题是对实数、虚数、纯虚数概念的考察.因为m R ∈,所以()()1,1m R m R +∈-∈.由z a bi =+是实数、虚数、纯虚数的条件可以确定m 的值.例2、已知x 2-x -6x +1=(x 2-2x -3)i (x ∈R ),求x 的值.答案:见解析解析:由复数相等的定义得⎩⎨⎧x 2-x -6x +1=0.x 2-2x -3=0.解得:x =3,所以x =3为所求.点拨:本题考察复数相等的充要条件.对于复数a +bi 和c +di (a,b,c,d ∈R )当且仅当a =c 且b =d ,即实部与虚部分别相等时,这两个复数相等例3、设z 1=m 2+1+(m 2+m -2)i ,z 2=4m +2+(m 2-5m +4)i ,若z 1<z 2,求实数m 的取值范围. 答案:见解析解析:由于z 1<z 2,m ∈R ,∴z 1∈R 且z 2∈R ,当z 1∈R 时,m 2+m -2=0, m =1或m =-2.当z 2∈R 时,m 2-5m +4=0, m =1或m =4,∴当m =1时,z 1=2,z 2=6,满足z 1<z 2. ∴z 1<z 2时,实数m 的取值为m =1.点拨:本题考察对复数概念的理解.如果两个复数不全是实数,那么它们不能比较大小.●活动一 类比实数的几何意义,探究复数的几何意义若把a,b 看成有序实数对(a,b ),则(a,b )与复数a +bi 是怎样的对应关系?有序实数对(a,b )与平面直角坐标系中的点是怎样的对应关系?(一一对应关系) 实数可以用数轴上的点来表示实数 一一对应实数轴上的点(几何模型)任何一个复数z =a +bi,都可以由一个有序实数对(a,b )唯一确定.因为有序实数对(a,b )与平面直角坐标系中的点一一对应,所以复数集与平面直角坐标系中的点集之间可以建立一一对应.复数z =a +bi (a ,b ∈R )一一对应,复平面内的点Z (a ,b );如图:复数z =a +bi 可以用点Z (a,b )(复数的几何形式)来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴. 显然,实轴上的点都表示实数,虚轴上的点(除了原点)都表示纯虚数例4、实数m 取什么值时,复平面内表示复数()()22815514m m m m i -++--的点(1)位于第四象限;(2)位于y =x 上. 答案:见解析解析:(1)由()22815,514m m m m -+--位于第四象限,得2281505140m m m m ⎧-+>⎨--<⎩,解得,2357m m -<<<<或(2)由()22815,514m m m m -+--位于直线y =x 上,得22815=514m m m m -+--即293m =点拨:本题考察复数的几何意义即复数z =a +bi,与点Z (a,b )一一对应.复数z a bi =+表示的点坐标为(),a b ,分别由条件,点()22815,514m m m m -+--位于第四象限、y =x 上可得●活动二:类比探究复数的另外一个几何意义除了用平面里的点表示复数,还可以用什么表示复数?还可以用向量! 设复平面内的点Z (相对于原点来说)也可以由向量OZ 唯一确定.反之,也成立.因此,复数z =a +bi 与OZ 也是一一对应的(实数0与零向量对应),这是复数的另一种几何意义.复数z ,点Z (a,b ),OZ 三者关系如下:复数z a bi =+复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ . 复数的向量形式.以原点O 为始点的向量,规定:相等的向量表示同一个复数. ●活动三:探究复数的模的几何意义向量OZ 的模叫做复数z a bi =+的模,记作||z 或||a bi +. 由模的定义知:22||||(0,)z a bi r a b r r R =+==+≥∈例5、已知复数z =3+ai ,且|z |<4,求实数a 的取值范围.答案:见解析解析:方法一:∵z =3+ai (a ∈R ),∴|z |=32+a 2, 由已知得32+a 2<42,∴a 2<7,∴a ∈(-7,7).方法二:利用复数的几何意义,由|z |<4知,z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+ai 知z 对应的点在直线x =3上, 所以线段AB (除去端点)为动点Z 的集合. 由图可知:-7<a <7点拨:本题考察复数的几何意义即复数的模及考察数形结合思想.例6、设z ∈C ,在复平面内对应点Z ,试说明满足下列条件的点Z 的集合是什么图形.(1)|z |=2;(2)1≤|z |≤2. 答案:见解析解析:(1)方法一:|z |=2说明复数z 在复平面内对应的点Z 到原点的距离为2, 这样的点Z 的集合是以原点O 为圆心,2为半径的圆.方法二:设z =a +bi ,由|z |=2,得a 2+b 2=4.故点Z 对应的集合是以原点O 为圆心,2为半径的圆.(2)不等式|z |≤2的解集是圆|z |=2及该圆内部所有点的集合.不等式|z |≥1的解集是圆|z |=1及该圆外部所有点的集合.这两个集合的交集,就是满足条件1≤|z |≤2的点的集合.如图中的阴影部分,所求点的集合是以O 为圆心,以1和2为半径的两圆所夹的圆环,并且包括圆环的边界.点拨:解决复数的模的几何意义的问题,应把握两个关键点:一是|z |表示点Z 到原点的距离,可依据|z |满足的条件判断点Z 的集合表示的图形; 二是利用复数的模的概念,把模的问题转化为几何问题来解决 3.课堂总结 【知识梳理】(1)复数的分类:复数(z =a +bi ,a ,b ∈R )⎩⎪⎨⎪⎧实数b =0虚数b ≠0⎩⎨⎧纯虚数a =0非纯虚数a ≠0(2)复数相等的充要条件设a ,b ,c ,d 都是实数,那么a +bi =c +di ⇔ a =c 且b =d . (3)复数与点、向量间的对应①复数z =a +bi (a ,b ∈R )一一对应,复平面内的点Z (a ,b ); ②复数z =a +bi (a ,b ∈R )一一对应,平面向量OZ →=(a ,b ).(4)复数的模复数z =a +bi (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模,记作|z |,且|z |=a 2+b 2. 【重难点突破】(1)对于复数概念,首先要在变化中认识复数代数形式的结构,正确判断复数的实部、虚部,然后依据复数是实数、虚数、纯虚数的条件,用列方程(或不等式)的方法求出相应参数的取值(或取值范围)(2)对于复数相等的问题.必须保证实部和虚部都分别相等.(3)对于复数的向量表示,一定先准确找出复数所表示的向量是关键. 4.随堂检测1.若复数(a 2-a -2)+(|a -1|-1)i (a ∈R )不是纯虚数,则( ) A.a =-1 B.a ≠-1且a ≠2 C.a ≠-1 D.a ≠2 答案:C.解析:若一个复数不是纯虚数,则该复数是一个虚数或是一个实数.当a 2-a -2≠0时,已知的复数一定不是纯虚数,解得a ≠-1且a ≠2;当a 2-a -2=0且|a -1|-1=0时,已知的复数也不是一个纯虚数,解得a =2.综上所述,当a ≠-1时,已知的复数不是一个纯虚数.点拨:纯虚数的概念、复数的代数形式2.如果z =m (m +1)+(m 2-1)i 为纯虚数,则实数m 的值为( ) A.1 B.0 C.-1 D.-1或1 答案:B解析:由题意知⎩⎨⎧m (m +1)=0m 2-1≠0∴m =0.点拨:复数的概念、复数的代数形式3.在复平面内,复数z =i +2i 2对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 答案:B解析:∵z =i +2i 2=-2+i ,∴实部小于0,虚部大于0,故复数z 对应的点位于第二象限点拨:复数几何意义4.在复平面内,O 为原点,向量OA→对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为( )A.-2-iB.-2+iC.1+2iD.-1+2i 答案:B解析:∵A (-1,2)关于直线y =-x 的对称点B (-2,1),∴向量OB →对应的复数为-2+i点拨:复数几何意义 (三)课后作业 基础型自主突破1.说出复数i i 31,5,32--+的实部和虚部.答案:见解析解析: 复数2+3i 的实部是2,虚部是3;-5的实部是-5,虚部是0;i 31-的实部是0,虚部是31-点拨:复数的概念、复数的代数形式2.指出下列各数中,哪些是实数,哪些是虚数,哪些是纯虚数?72+,618.0,i 72,0,i ,2i ,85+i ,i 293-实数: 虚数: 纯虚数: 答案:实数有:72+,618.0,0,2i虚数有:i 72,i ,85+i ,i 293-纯虚数有:i 72,i 解析:略点拨:复数的概念、复数的代数形式3.设O 是原点,向量,OA OB →→对应的复数分别为23,32i i --+,那么向量BA →对应的复数是( ).55A i -+.55B i --.55C i +.55D i -答案:B解析:BA OA OB →→→=-(23)(32)i i =---+55i =-点拨:复数的概念、复数的几何意义4.下列n 的取值中,使n i =1(i 是虚数单位)的是( )A.n =2B .n =3C .n =4D .n =5答案:C.解析:因为41i =,点拨:复数的概念、复数的代数形式5.设z 是复数,()a z 表示满足1n z =的最小正整数n ,则对虚数单位i ,()a i =()A.8B.6C.4D.2答案:C解析:()a i =1=n i ,则最小正整数n 为4,点拨:复数的概念、复数的代数形式6.若复数()()i m m m m 36522-++-为纯虚数,试求实数m 的值.答案:见解析解析:若复数()()i m m m m 36522-++-为纯虚数,则⎪⎩⎪⎨⎧≠-=+-0306522m m m m ∴2=m 点拨:复数的概念、复数的代数形式能力型师生共研7.若θ∈(3π4,5π4),则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B.解析:∵θ∈(3π4,5π4),∴cos θ+sin θ<0,sin θ-cos θ>0.点拨:复数的几何意义8.复数2(2)(11)()a a a i a R --+--∈不是纯虚数,则有( ).0A a ≠.2B a ≠.02C a a ≠≠且.1D a =-答案:C 解析:需要110a --≠,即02a a ≠≠且.点拨:复数的概念、复数的代数形式9.集合{Z ︱Z =Z n i i n n ∈+-,},用列举法表示该集合,这个集合是( )A.{0,2,-2}B.{0,2}C.{0,2,-2,2i}D.{0,2,-2,2i,-2i}答案:A解析:略点拨:根据n i成周期性变化可知.10.设A、B为锐角三角形的两个内角,则复数z=(cos B-tan A)+tan Bi对应的点位于复平面的( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:略点拨:复数的几何意义探究型多维突破11、复数z1=3+4i,z2=0,z3=c+(2c-6)i在复平面内对应的点分别为A、B、C,若∠BAC是钝角,求实数c的取值范围.答案:见解析解析:在复平面内三点坐标分别为A(3,4),B(0,0),C(c,2c-6),由∠BAC是钝角得AB AC<0,且B、A、C不共线,由(-3,-4)·(c-3,2c-10)<0解得c>49,11其中当c=9时,(6,8)2AC AB==-,三点共线,故c≠9.∴c的取值范围是c>4911且c≠9.点拨:复数的几何意义,代数形式12、在复平面内,满足下列复数形式方程的动点Z的轨迹是什么?(1)|z-1-i|=|z+2+i|(2)|z+i|+|z-i|=4(3)|z+2|-|z-2|=1(4)若将(2)中的等于改为小于呢?答案:(1)直线;(2)椭圆;(3)双曲线延伸:(4)椭圆及其内部解析:略点拨;复数四则运算及复数几何意义自助餐1.已知i是虚数单位,则复数z=i2015的虚部是()A.0B.﹣1C.1D.﹣i答案:D解析:略点拨:复数的乘法运算2.设i是虚数单位,则复数1﹣2i+3i2﹣4i3等于()A.﹣2﹣6iB.﹣2+2iC.4+2iD.4﹣6i答案:B解析:略点拨:复数的乘法运算3.实数x,y满足(1+i)x+(1﹣i)y=2,则xy的值是()A.2B.1C.﹣1D.﹣2答案:B解析:略点拨:复数的运算、复数相等的概念4.设复数z=1+bi(b∈R)且|z|=2,则复数的虚部为()A.B.C.±1D.答案:D解析:略点拨:复数的概念、复数的代数形式、复数的模5.2+7,27i,0,8+5i,(1-3)i,0.618这几个数中,纯虚数的个数为( )A.0B.1C.2D.3答案:C.解析:27i,(1-3)i是纯虚数,2+7,0,0.618是实数,8+5i是虚数.点拨:复数的概念、复数的代数形式6.已知复数z=1a-1+(a2-1)i是实数,则实数a的值为( )A.1或-1B.1C.-1D.0或-1 答案:C.解析:因为复数z=1a-1+(a2-1)i是实数,且a为实数,则⎩⎨⎧a2-1=0,a-1≠0,解得a =-1点拨:复数的概念、复数的代数形式7.复数z =i cos θ,θ∈[0,2π)的几何表示是( )A.虚轴B.虚轴除去原点C.线段PQ ,点P ,Q 的坐标分别为(0,1),(0,-1)D.C 中线段PQ ,但应除去原点答案:C解析:略点拨:复数的几何意义8.已知(2m -5n )+3i =3n -(m +5)i ,m ,n ∈R ,则m +n =________.答案:-10解析:根据复数相等的充要条件可知:⎩⎨⎧ 2m -5n =3n ,3=-(m +5),解得⎩⎨⎧m =-8,n =-2.所以m +n =-10.点拨:复数的概念、复数的代数形式9.若复数(m 2-3m -4)+(m 2-5m -6)i 是虚数,则实数m 满足________.答案:m ≠-1且m ≠6解析:m ≠-1且m ≠6. 因为m 2-3m -4+(m 2-5m -6)i 是虚数,所以m 2-5m -6≠0,所以m ≠-1且m ≠6.点拨:复数的概念、复数的代数形式10、如果12log (m +n )-(m 2-3m )i >-1,如何求自然数m ,n 的值?答案:m =0,n =1 解析:因为12log (m +n )-(m 2-3m )i >-1,所以12log (m +n )-(m 2-3m )i 是实数, 从而有21230log (m n)1m m ⎧-=⎪⎨+>-⎪⎩ 由①得m =0或m =3,当m =0时,代入②得n <2,又m +n >0,所以n =1;当m =3时,代入②得n <-1,与n 是自然数矛盾,综上可得m =0,n =1.点拨:复数的概念、复数的代数形式11.设复数z =lg(m 2-2m -3)+(m 2+3m +2)i ,(1)当实数m 为何值时,z 是纯虚数?(2)当实数m 为何值时,z 是实数?答案:见解析解析:(1)因为复数z =lg(m 2-2m -3)+(m 2+3m +2)i 是纯虚数,所以⎩⎨⎧ m 2-2m -3>0,lg(m 2-2m -3)=0,m 2+3m +2≠0.解得m =1±5,所以当m =1±5时,z 是纯虚数.(2)因为复数z =lg(m 2-2m -3)+(m 2+3m +2)i 是实数,所以⎩⎨⎧m 2-2m -3>0,m 2+3m +2=0,解得m =-2,所以当m =-2时,z 是实数.点拨:复数的概念、复数的代数形式12.已知复数|z |=1,求复数3+4i +z 的模的最大值及最小值.答案:见解析解析:令ω=3+4i +z ,则z =ω-(3+4i ).∵|z |=1,∴|ω-(3+4i )|=1,∴复数ω在复平面内对应的点的轨迹是以(3,4)为圆心,1为半径的圆, 如图,容易看出,圆上的点A 所对应的复数ωA 的模最大,为+1=6;圆上的点B 所对应的复数ωB 的模最小,为-1=4,∴复数3+4i +z 的模的最大值和最小值分别为6和4.点拨:复数的几何意义数学视野自然数的产生,起源于人类在生产和生活中计数的需要.开始只有很少几个自然数,后来随着生产力的发展和记数方法的改进,逐步认识越来越多的自然数..从某种意义上说,幼儿认识自然数的过程,就是人类祖先认识自然数的过程的再现.随着生产的发展,在土地测量、天文观测、土木建筑、水利工程等活动中,都需要进行测量.在测量过程中,常常会发生度量不尽的情况,如果要更精确地度量下去,就必然产生自然数不够用的矛盾.这样,分数就应运而生.据数学史书记载,三千多年前埃及纸草书中已经记有关于分数的问题.引进分数,这是数的概念的第一次扩展.最初人们在记数时,没有“零” 的概念.后来,在生产实践中,需要记录和计算的东西越来越多,逐渐产生了位值制记数法.有了这种记数法,零的产生就不可避免的了.我国古代筹算中,利用“空位”表示零.公元6世纪,印度数学家开始用符号“0”表示零. 但是,把“0”作为一个数是很迟的事.引进数0,这是数的概念的第二次扩充.以后,为了表示具有相反意义的量,负数概念就出现了.我国是认识正、负数最早的国家,《九章算术》中就有了正、负数的记载.在欧洲,直到17世纪才对负数有一个完整的认识.引进负数,这是数的概念的第三次扩充.数的概念的又一次扩充渊源于古希腊.公元前5世纪,古希腊毕达哥拉斯(Pythagqras,约公元前580~前500)学派发现了单位正方形的边长与对角线是不可公度的,为了得到不可公度线段比的精确数值,导致了无理数的产生.当时只是用几何的形象来说明无理数的存在,至于严格的实数理论,直到19世纪70年代才建立起来.引进无理数,形成实数系,这是数的概念的第四次扩充.数的概念的再一次扩充,是为了解决数学自身的矛盾.16世纪前半叶,意大利数学家塔尔塔利亚发现了三次方程的求根公式,胆地引用了负数开平方的运算,得到了正确答案.由此,虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用,成功地经受了理论和实践的检验,最后于18世纪末至19世纪初确立了虚数在数学中的地位.引进虚数,形成复数系,这是数的概念的第五次扩充.上面,我们简要地回顾了数的发展过程.必须指出,数的概念的产生,实际上是交错进行的.例如,在人们还没有完全认识负数之前,早就知道了无理数的存在;在实数理论还未完全建立之前,经运用虚数解三次方程了.直到19世纪初,从自然数到复数的理论基础,并未被认真考虑过.后来,由于数学严密性的需要以及公理化倾向的影响,促使人们开始认真研究整个数系的逻辑结构.从19世纪中叶起,经过皮亚诺(G.Peano,1855~1939)、康托尔(G.Cantor,1845~1918)、戴德金(R.Dedekind,1831~1916)、外尔斯特拉斯(K.Weierstrass,1815~1897)等数学家的努力,完成了建立整个数系的逻辑工作.近代数学关于数的理论,是在总结数的历史发展的基础上,用代数结构的观点和比较严格的公理系统加以整理而建立起来的.作为数的理论系统的基础,首先要建立自然数系,然后逐步加以扩展.一般采用的扩展过程是N--------→Z--------→Q--------→R--------→C(自然数集) (整数集) (有理数集) (实数集) (复数集)科学的数集扩充,通常采用两种方法:一是添加元素法,即把新元素添加到已建立的数集中去;二是构造法,即从理论上构造一个集合,然后指出这个集合的某个真子集与先前的数集是同构的.中、小学数学教学中,为了适应学生的年龄特征和接受能力,关于数系的扩充,主要是渗透近代数学观点,采用添加元素并强调运算的方法来进行的.其扩充过程是:自然数集(添零)→扩大的自然数集(添正分数)→算术数集(添负有理数) →有理数集(添无理数)→实数集(添虚数)→复数集数系的每一次扩充,都解决了一定的矛盾,从而扩大了数的应用范围.但是,数系的每一次扩充也会失去某些性质.例如,从自然数系N扩充到整数系Z后,Z 对减法具有封闭性,但失去N的良序性质,即N中任何非空子集都有最小元素.又如,由实数系R扩充到复数系C后,C是代数闭域,即任何代数方程必有根,但失去了R的顺序性,C中元素已无大小可言.数系扩充到复数系后,能否继续扩充?这个问题的答案是有条件的.如果要求完全满足复数系的全部运算性质,那么任何扩充都是难以成功的.如果放弃某些要求,那么进一步的扩充是可能的.比如,放弃乘法交换律,复数系C可以扩充为四元数系H,如果再适当改变对乘法结合律的要求,四元数系H又可扩充为八元数系Ca等等.当然,在现代数学中,通常总是把“数”理解为复数或实数,只有在个别情况,经特别指出,才用到四元数.至于八元数的使用就更罕见了.。

【高中数学】数系的扩充与复数的引入

【高中数学】数系的扩充与复数的引入

【高中数学】数系的扩充与复数的引入知识讲解1. 复数的有关概念 (1)复数的概念形如a+bi (a,b ∈R)的数叫做复数,其中a,b 分别是它的实部和虚部。

若b=0,则a+bi 为实数;若b≠0,则a+bi 为虚数;若a=0且b≠0,则a+bi 为纯虚数。

{}{}虚数纯虚数⊂,{}{}{}实数虚数复数 ==C(2)复数相等:a+bi=c+di ⇔=⎧⎨=⎩a c b d(a,b,c,d ∈R).(3)共轭复数:a+bi 与c+di 共轭⇔=⎧⎨=-⎩a c b d(a,b,c,d ∈R)两个重要命题:定理:复数是实数的充要条件是;1z z z =定理:复数是纯虚数的充要条件是()200z z z z +=≠ (4)复平面建立直角坐标系来表示复数的平面,叫做复平面。

x 轴叫做实轴,y 轴叫做虚轴。

实轴上的点表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。

复数集与平面上的点集之间能建立一一对应关系,故可用平面上的点来表示复数,一般的,可用Z (a,b) (a,b ∈R)表示复数a+bi (a,b ∈R)或用向量O Z表示复数a+bi.(5)复数的模向量O Z的模叫做复数z=a+bi 的模,记为|z|或|a+bi|,即|z|=|a+bi|=22a b +。

2、复数的几何意义(1)复数z=a+bi ←−−−→一一对应复平面内的点Z (a,b) (a,b ∈R) (2)复数z=a+bi ←−−−→一一对应平面向量O Z(a,b ∈R) 3、复数的运算(1)四则运算法则(可类比多项式的运算)加法:R d c b a i d b c a di c bi a ∈+++=+++,,,)()()()( 减法:i d b c a di c bi a )()()()(-+-=+-+ 乘法:i ad bc bd ac di c bi a )()())((++-=++除法:)())(())(()()(转化为乘法运算…=-+-+=++=+÷+di c di c di c bia dic bi a di c bi a ,简记为“分母实数化”。

3.1.1数系的扩充和复数的概念课件人教新课标

3.1.1数系的扩充和复数的概念课件人教新课标

数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
[问题1] 方程2x2-3x+1=0.试求方程的整数解?方程的 实数解?
[提示 1] 方程的整数解为 1,方程的实数解为 1 和12. [问题2] 方程x2+1=0在实数范围内有解吗? [提示2] 没有解.
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.实数 x 分别取什么值时,复数 z=x2-x+x-3 6+(x2-2x- 15)i 是(1)实数?(2)虚数?(3)纯虚数?
解析: (1)要使 z 是实数,必须且只需
x+3≠0 x2-2x-15=0
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)由复数相等的充要条件知
x+32=y,

2y+1=4x,

2x+ay=9,

-4x-y+b=-8, ④
由①②得x=52, y=4,
代入③④得ab==12 .
数学 选修2-2
第三章 数合作探究 课堂互动
高效测评 知能提升
答案: A
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
复数的概念
已知复数 z=a2-a27-a+1 6+(a2-5a-6)i(a∈R),试求 实数 a 分别取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚 数.
数学 选修2-2
第三章 数系的扩充与复数的引入
解析: (1)由复数相等的充要条件知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高二数学选修2-2第三章数系的扩充与复数的引入 新课
标 人教版
一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。


1.是复数为纯虚数的( )
A .充分条件 B.必要条件 C.充要条件 D.非充分非必要条件
2.设,则在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.( )
A .
B .
C .
D .
4.复数z 满足,那么=( )
A .2+i
B .2-i
C .1+2i
D .1-2i
5.如果复数的实部与虚部互为相反数,那么实数b 等于( ) A. 2 B.23 C.2 D.-23
6.集合{Z ︱Z =},用列举法表示该集合,这个集合是( )
A {0,2,-2} B.{0,2}
C.{0,2,-2,2}
D.{0,2,-2,2,-2}
7.设O 是原点,向量对应的复数分别为,那么向量对应的复数是( )
8、复数,则在复平面内的点位于第( )象限。

A .一 B.二 C.三 D .四
9.复数2(2)(11)()a a a i a R --+--∈不是纯虚数,则有( )
10.设i 为虚数单位,则的值为( )
A .4 B.-4 C.4i D.-4i
二.填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上。


11.设(为虚数单位),则z= ;|z|= .
12.复数的实部为 ,虚部为 。

13.已知复数z 与 (z +2)2-8i 均是纯虚数,则 z =
14.设,,复数和在复平面内对应点分别为A 、B ,O 为原点,则的面积为 。

三.解答题(本大题共6小题,每小题74分,共80分,解答应写出文字说明、证明过程或演算步骤。


15.(本小题满分12分)
已知复数z=(2+)).当实数m 取什么值时,复数z 是:
(1)零;(2)虚数;(3)纯虚数;(4)复平面内第二、四象限角平分线上的点对应的复数。

2025100)21(])11()21[(16i
i i
i i +-+-+⋅+、计算 (本小题满分13分)
17.(本小题满分13分)
设∈++-=m i z m m ,)12(14R ,若z 对应的点在直线上。

求m 的值。

18.(本小题满分14分)
已知关于的方程组⎩⎨⎧-=+--+--=+-i i b y x ay x i y y i x 89)4()2(,
)3()12(有实数,求的值。

19. (本小题满分14分)
=-=-+=121211
1已知13,68.若,求的值。

z i z i z z z z
20(本小题满分13分)
若复数,求实数使。

(其中为的共轭复数)
第三章 数系的扩充与复数的引入
1.解析:B
2.解析:D 点拨:。

3.解析:B 点拨:原式==
4.解析:B 点拨:化简得
5.解析:D 点拨:,由因为实部与虚部互为相反数,即,解得。

6.解析:A 点拨:根据成周期性变化可知。

7.解析:B 点拨:
8.解析:D 点拨:
9.解析:C 点拨:需要,即。

10.解析:B 点拨:=-4
11.解析:, 点拨:
12.解析:1, 点拨:
13.解析: 点拨:设代入解得,故
14.解析:1 点拨:
.
)23()232()
1(2)1(3)2(,15222i m m m m i i m m i z z R m +-+--=--+-+=∈可以表示为
复数、解:由于
.
,20),23(232)4(.,2
1,
023,0232)3(.
,12,
023)2(.
222222对应的复数四象限角平分线上的点是为复平面内第二、时或即当为纯虚数时即当为虚数时且即当为零时,即z m m m m m m z m m m m m z m m m m z m ==+--=---=⎪⎩⎪⎨⎧≠+-=--≠≠≠+-=
16.解:2025100)2
1(])11()21[(i i i i
i +-+-+⋅+
117、解:因为复数41(21),对应的点为(41,2),在直线30上,得413(21)0,即43240,
也就是(24)(21)0,
解得2m m m m m m m m
m m z i m R x y m +=-++∈--=--+=-⋅-=-+== (21)(3),18、解:(2)(4)
9821,由第一个等式得1(3),x i y y i x ay x y b i i x y y -+=--+--+=--==--⎧⎨⎩⎧⎨⎩
⎪⎩⎪⎨⎧==.
4,25y x 解得
将上述结果代入第二个等式中得
⎩⎨⎧==⎩⎨⎧=+-=+-=+--+.
2,1,
8410,945.
89)410(45b a b a i i b a 解得由两复数相等得 .5
225411250.50
1125011251)103504()101503(111.50
45038611,86.1031013111,3119122211i i z i i i z z z i i z i z i i z i z +-=+-=+-=-=-+-=-=+=-=-=+=-=-=得则得又由得、解:由 20.解析:由,可知,代入得: ,即
则,解得或。

相关文档
最新文档