物理化学相平衡课件汇编
物理化学(上)课件 05章 相平衡
• 这种情况下组分数可用以下关系确定:
组分数(C) = 物种数(S ) 独立化学平衡数 (R) 同一相中独立的浓度关系数(R) 注意: ① 这种物质之间的浓度关系的限制条件:只有在同一
相中方能应用,不同相中不存在此种限制条件。
• 例如:CaCO3 的分解体系,虽然有 nCaO = nCO2
但因 CaO (s) 和 CO2 (g) 不是同一相,所以不能作 为特殊的浓度制约关系。
② 需要指出的是,有时由于考虑问题的角度不同,体 系物种数 (S) 的确定可能不同,但组分数不会改变。
• 例如水溶液体系:
i)纯水液相体系:
若不考虑水的电离,组分数 C = 1,等于物种数 S。
• 若考虑电离:H2O H+ + OH • 则 S = 3 ,但有一化学平衡: R =1;
• 液相中浓度关系式
• 注意:体系中的物种数(S )和组分数(C )这两个概念 的区别:
• 体系中有几种物质,则物种数 S 就是多少;而组分
1)如果体系中各物种之间没有发生化学反应,一般说 来此时组分数等于物种数:C = S
• 例如:乙醇 溶于水,组分数
C= S =2 2)如果体系中各物质之间发生了化学反应,建立了化
相与相之间在指定条件下有明显的界面,在界面上宏观 性质的改变是飞跃式的。
§5.1 引 言
相平衡是热力学在化学领域中的重要应用之一 研究多相系统的平衡在化学、化工的科研和生产 中有重要的意义,例如:溶解、蒸馏、重结晶、萃取、 提纯及金相分析等方面都要用到相平衡的知识。 一、多相平衡:
1)液体的蒸发(液相和气相平衡) 2)固体的升华或熔化(固相与气相或液相平衡) 3)气体或固体在液体中的溶解度(气-液、固-液相平衡) 4)溶液的蒸气压(溶液各组分-气相组分平衡) 5)溶质在不同相之间的分布(溶质在两溶液相中的平衡)
物理化学 第六章 相 平 衡 课件
第六章相平衡§6-1 相律1.基本概念(1)相和相数相:系统中物理性质和化学性质完全相同的均匀部分称为相,系统中相数目为相数。
相数用“P”表示。
相的确定:气体:无论有多少种物质都为一相液体:根据相互的溶解性可为一相、二相、三相固体:由固体的种类及晶型决定(固熔体除外)(2)自由度和自由度数自由度:能够维系系统原有相数,而可以独立改变的变量叫自由度,这种变量的数目叫做自由度数,用“F”表示。
说明:a)在一定范围内,任意改变F不会使相数改变。
b)自由度数和系统内的物种数和相数有关。
2.相律物种数:系统中所含独立物质的数目,用“S”表示。
依据:自由度数=总变量数-非独立变量数=总变量数-方程式数相律表达式:F = C – P + 2式中C = S –R- R’称组分数R 独立反应的方程式数R’独立限制条件3.几点说明(1) 每一相中均含有S种物质的假设,不论是否符合实际,都不影响相律的形式。
(2) 相律中的2表示整体温度、压强都相同。
(3) F = C – P + 2是通常的形式。
(4) 凝聚相系统的相律是F = C – P + 1§6.2单组分系统相图相图:表示相平衡系统的组成与温度、压力之间的图形。
单组分系统一相:P=1 则F=1-1+2=2(T,P)双变量系统二相:P=2 则F=1-2+2=1(T或P)单变量系统三相:P=3 则F=1-3+2=0 无变量系统1.水的相平衡实验数据由数据可得:(1)水与水蒸气平衡,蒸气压随温度的升高而增大;(2)冰与水蒸气平衡,蒸气压随温度的升高而增大;(3)冰与水平衡,压力增大,冰的熔点降低;(4)在0.01℃和610Pa下,冰、水和水蒸气共存,三相平衡。
2. 水的相图单相区:液态水,水蒸气,冰双相线:OA —液固共存线,冰的熔点曲线OB —气固共存线,冰的饱和蒸气压曲线OC —气液共存线,水的饱和蒸气压曲线三相点:冰、水和水蒸气共存相图的说明(1) 冰在熔化过程中体积缩小,故水的相图中熔点曲线的斜率为负,但大多数物质熔点曲线的斜率为正。
物理化学课件第4章_相平衡
上一内容 下一内容 ²回主目录
O返回
2021-3-12
Clausius-Clapeyron方程
对于气-液两相平衡,并假设气体为1mol理想气
体,将液体体积忽略不计,则
dp H vap m H vap m dT TVm (g) T (RT / p)
d ln p vap Hm
dT
RT 2
这就是Clausius-Clapeyron 方程,vapH m是摩尔气化热。
4.1 引言
相平衡是热力学在化学领域中的重要应用之一。 研究多相体系的平衡在化学、化工的科研和生产中有 重要的意义,例如:溶解、蒸馏、重结晶、萃取、提 纯及金相分析等方面都要用到相平衡的知识。
相图(phase diagram)表达多相体系的状态如何随 温度、压力、组成等强度性质变化而变化的图形, 称为相图。
OA 是气-液两相平衡线,即水的蒸气压曲线。它 不能任意延长,终止于临界点。临界点T 647 K , p 2.2107 Pa ,这时气-液界面消失。高于临界温
度,不能用加压的方法使气体液化。
OB 是气-固两相平衡线,即 冰的升华曲线,理论上可延长
至0 K附近。
OC 是液-固两相平衡线,当C点延长至压力大于 2108 Pa 时,相图变得复杂,有不同结构的冰生成。
•
=2260×18.02×(T2-
373)/(8.314×373×T2)
•
=40725(T2-373)/3101T2
• 解得:
•
T2=376.4K=103.7℃
上一内容 下一内容 ²回主目录
O返回
2021-3-12
例题
• 例2: 试计算在-0 .5℃下,欲使冰溶化所需施加的压力为多少? 已知: 冰的熔化热为333.5 J.g-1; 水=0.9998g.cm-3; 冰 =0.9168g.cm-3.
物理化学课件第六章节相平衡
热力学性质测定
利用热力学仪器测量物质的热容、 熵、焓等热力学性质,推算相平衡 常数。
相分离实验
观察不同条件下物质是否发生相分 离,确定相平衡状态。
计算方法
热力学模型法
利用热力学模型计算相平衡常数, 如van der Waals方程、 Redlich-Kister方程等。
表达式
ΔU = Q + W
应用
计算封闭系统中能量的变化,以及热量和功之间的转换关系。
热力学第二定律
热力学第二定律定义
自然发生的反应总是向着熵增加的方向进行,即系统总是向着更 加混乱无序的状态发展。
表达式
ΔS ≥ 0
应用
判断反应自发进行的方向,以及热量传递和转换的方向。
热力学第三定律
热力学第三定律定义
液液相平衡的应用
液液相平衡是指两种不同物质液体之 间达到平衡状态的过程。
液液相平衡在工业上有广泛应用,如 石油工业中的油水分离、化学工业中 的萃取过程等。
液液相平衡的原理
当两种液体混合达到平衡时,各组分 的浓度不再发生变化,系统达到动态 平衡状态。
05 相平衡的实验测定与计算 方法
实验测定方法
蒸气压测定
分子模拟法
利用计算机模拟分子运动,计算 分子间的相互作用力和相平衡常
数。
统计力学法
利用统计力学原理计算相平衡常 数,如Maxwell
分子动力学模拟
模拟分子在相平衡状态下的运动轨迹,分析分子 间的相互作用和排列方式。
Monte Carlo模拟
通过随机抽样方法模拟分子在相平衡状态下的分 布和排列,计算相平衡常数。
界面张力
相界面上的物质传递是相平衡的重要特征之一,界面张力的大小对于物 质在相界面上的吸附、溶解和传递等过程具有重要影响。研究界面张力 有助于深入理解相平衡的机制和规律。
物理化学课件6相平衡
*
基本要求:
三条两相平衡线 P=2,F=1,压力与温度只能改变一个,指定了压力,则温度由系统自定。
*
2. 水的相图
OC 是气-液两相平衡线,即水的蒸气压曲线。它不能任意延长,终止于临界点。临界点 ,这时气-液界面消失。高于临界温度,不能用加压的方法使气体液化。
OB 是气-固两相平衡线,即冰的升华曲线,理论上可延长至0 K附近。
l (水) A C e d c b a s(冰) O C ´ g (水蒸气) B
例3:在一个密闭抽空的容器中有过量的固体 NH4Cl,同时存在下列平衡:NH4Cl(s) = NH3(g) + HCl(g) 2HCl(g) = H2(g) + Cl2(g), 求:此系统的 S、R、R´ 、C、P、F ?
解:S = 3,R = 1,R´ = 0 (浓度限制条件 R’ 要求成比例的物质在同一相,此题中 CaO 与 CO2 为两相); C = S – R – R´ = 3 – 1 = 2,P = 3, F = C – P + 2 = 2 – 3 + 2 = 1
例2:一密闭抽空容器中有 CaCO3(s) 分解反应: CaCO3(s) = CaO(s) + CO2(g) 求:此系统 S、R、R´ 、C、F ?
0.103 0.165 0.260 0.414 0.610
193.5×103 156.0×103 110.4×103 59.8×103 0.610
*
2.水的相图
S(冰)
l (水)
T/℃
p/KPa
01
A
C
O
B
g (水蒸气)
*
水的相图是根据实验绘制的。图上有:
物理化学全五章课件相平衡
2、相律
自由度数=总变量数-方程式数
F=C–P+2 用处:复杂系统的分析 变量:浓度、温度、压力 方程式:化学式相等(浓度关系)
组分数:
C=物种数(S)-化学反应数(R)-其它(浓度)限制条件(R’) 例:N2, H2, NH3 无反应,C=3;有反应,C=2,定配比,C=1
总变量数: S P(浓度) 2(p、T) 方程式数: 浓度归一:P 化学势相等:(P 1) S 化学反应及其它:R,R' F S R R'P 2 C P 2
na
n(=na+nb)
nb
xBa
xBab
xBb
x
3、温度-组成图
§6.4 二组分真实液态混合物的气-液平衡相图 1. 压力-组成图
2、温度-组成图
3、小结
作业:6.3 6.5
*§6.5 精馏原理
/heatpipe04/06/2006-10-2/--3_s2cw016.htm
3、几点说明 (1)各相中物种数不同,不影响相率的公式。 (2)各相温度、压力不一定相等 (3)可能还有其他变量(电、磁、重力场等) (4)凝聚态,忽略压力的影响
F’=C-P+1(条件自由度) 例:在一抽成真空的容器中放入过量的NH4I(s)后,系统达到平 衡时存在如下平衡:
NH4I(s)==NH3(g)+HI(g) 2HI(g)==H2(g)+I2(g) 2NH4I(s)==2NH3(g)+H2(g)+I2(g) 试求该系统的自由度数(S=5,R=2,R’=2,P=2,F=1)
液相线:
p pA pB p*AxA pB* xB pB* p*A xB p*A
气相线:
yB
物理化学课件6相平衡
在能源开发中的应用
石油开采
在石油工业中,6相平衡理论用于指导石油的开采和加工过程。通过模拟油、水 、气等不同相之间的平衡状态,优化采油工艺和技术,提高石油采收率和资源利 用率。
可再生能源利用
在可再生能源领域,如太阳能、风能等,6相平衡理论也有所应用。通过研究不 同相之间的转换和平衡关系,优化能源的收集、转换和储存技术,提高可再生能 源的利用效率和稳定性。
6相平衡的实际应用
在工业生产中的应用
分离和提纯
6相平衡理论在工业生产中广泛应用于分离和提纯过程,如蒸馏、萃取、结晶 等。通过控制温度、压力和浓度等条件,实现不同相之间的平衡,从而有效地 分离和提纯物质。
化学反应优化
利用6相平衡理论,可以优化工业生产中的化学反应条件,提高产物的收率和纯 度。例如,通过控制反应温度、压力和物料配比等参数,实现反应的最佳效果 。
力计、各相物质等。
设定实验条件
根据实验目的,设定相应的实 验条件,如温度、压力等。
实验操作步骤
按照实验操作步骤进行实验, 记录实验数据和现象。
数据处理与பைடு நூலகம்析
对实验数据进行处理和分析, 探究各相之间的相互影响和变
化。
实验结果与讨论
实验结果展示
将实验结果以图表或数据的形式展示 出来,便于分析和讨论。
结果分析与讨论
物理化学课件6相平衡
CONTENTS 目录
• 相平衡的基本概念 • 6相平衡的原理 • 6相平衡的实验研究 • 6相平衡的实际应用 • 6相平衡的未来发展
CHAPTER 01
相平衡的基本概念
定义与特性
定义
相平衡是指在一定的温度和压力 下,系统中各相之间达到相对稳 定的状态,各相之间不发生显著 的相变或化学反应。
物化课件第五章-相平衡)
(4)C=3, Φ =2, f = 3– 2 + 1 = 2 (T以及I2在任一相
中的浓度)
§5.4 单组分系统的相平衡
1、Clapeyron方程 2、Clausius-Clapeyron方程
液-气平衡 固-气平衡 固-液平衡 3、单组分系统相律——水的相图
第五章 多相平衡
返回目录 退出
单组分系统的相律
若将CaCO3(s)单独放在一密闭容器中,达平衡后C=?
容器内有CaCO3(s)+CaO(s)+CO2(g)。 S=3,R=1,R’=0,C=3– 1– 0=2。 因CaO(s)和CO2(g)在两相中,没有浓度关系。
注意:系统确定后,其组分数是确定的,物种数有一定随 意性,可以随人们考虑问题的出发点不同而不同。
=RT/p (设气体为理想气体)
整理为:
vapH m RT 2
dp pdT
d ln p dT
Clausius---
Clapeyron方程
积分:
d ln p
vapH m RT 2
dT
适用于液气或固气 两相平衡
第五章 多相平衡
返回目录 退出
若温度变化不大时,vapHm为常数 d ln p
பைடு நூலகம்
第五章 多相平衡
第五章 多相平衡
返回目录 退出
例 NaCl-H2O系统
NaCl,H2O: S=2, R=0, R’=0, C=2 NaCl不饱和水溶液 S=3: Na+, Cl-, H2O, R=0, R’=1: [Na+]=[Cl-], 所以 C= 3– 1=2 NaCl饱和水溶液,有NaCl(s)存在
S=4:NaCl(s), Na+, Cl-, H2O, R=1: NaCl(s) = Na++ Cl-,
物理化学课件05章 相平衡
dG dGB dGB B dnB B dnB
因为 dnB dnB
dG B dnB B dnB (B B )dnB
平衡时 dG 0
B B
同理,可以推广到多相平衡系统
(4) 化学平衡条件
在达到化学平衡时,反应物的化学势等于生 成物的化学势,化学势的代数和可表示为
相图(phase diagram) 研究多相系统的状态如何随温度、压力和组成 等强度性质变化而变化,并用图形来表示,这种图 形称为相图。
§5.1 引 言
相律(phase rule)
研究多相平衡系统中,相数、独立组分数与描 述该平衡系统的变数之间的关系。它只能作定性的 描述,而不能给出具体的数目。
相(phase) 系统内部物理和化学性质完全均匀的部分称 为相。
f * C 1
若除温度、压力外,还要考虑其他因素(如磁 场、电场、重力场等)的影响,则相律可表示为
f C n
§5.4 单组分系统的相平衡
单组分系统的两相平衡——Clapeyron方程
外压与蒸气压的关系—— 不活泼气体对液体蒸气压的影响
水的相图 *硫的相图
超临界状态
在 界面上宏观性质的改变是飞跃式的。
§5.1 引 言
系统中相的总数称为相数,用 表示。
气体,不论有多少种气体混合,只有一个气相。
液体,按其互溶程度可以组成一相、两相或三 相共存。
固体,一般有一种固体便有一个相。两种固体粉 末无论混合得多么均匀,仍是两个相(固体溶液 除外,它是单相)。
设 相膨胀了 dV 相收缩了 dV
当系统达平衡时 dA dA dA 0
dA p dV p dV 0
dV dV
p p
物理化学课件-相平衡
水的相图
E p B 冰 水
A C D T 气
水的相图
dp/dT=∆fusHm/∆fusVm ∆ ∆ E p
-20oC, 2.×108Pa × 临界点 374oC, × B 2.23×107Pa
冰
水
A C D T1 0.0098oC T 气
水的相图
AB 是气 液两相平衡线,即水的蒸气压曲线。它不能任意 是气-液两相平衡线 即水的蒸气压曲线。 液两相平衡线, 延长,终止于临界点 临界点p=2.2×107Pa,T=647K,这时 临界点。 延长,终止于临界点。临界点 × , , 液界面消失。 气-液界面消失。高于临界温度,不能用加压的方法使气体 液界面消失 高于临界温度, 液化。 液化。
f=K-Φ +2
相律是由吉布斯(Gibbs)1876年得到 1876年得到 相律是由吉布斯 1876 是自然界的普遍规律之一. 的,是自然界的普遍规律之一
相律推导
个组分, 个相.每个相中每种物质都存在 并没有化学反应. 每个相中每种物质都存在,并没有化学反应 设平衡系统中有K个组分 Φ 个相 每个相中每种物质都存在 并没有化学反应
µB(β) =µB θ(β)+ห้องสมุดไป่ตู้Tlna B(β) β β β
f=Φ(K-1)+2-K(Φ-1) 1 = KΦ-Φ+2-KΦ+K=K-Φ+2 Φ Φ
相律
如果指定了温度或压力: 如果指定了温度或压力 f*=K- Φ +1 1 f*称为条件自由度 如果考虑到 个因素的影响 则相 称为条件自由度,如果考虑到 个因素的影响,则相 如果考虑到n个因素的影响 律应写为: 律应写为 f*=K- Φ +n 在上述推导中假设每个组分在每个相中都有分配,如 在上述推导中假设每个组分在每个相中都有分配 如 中不含B 总变量中应减去一个变量,相 果某一相( 中不含 物质,总变量中应减去一个变量 果某一相 α)中不含B物质 总变量中应减去一个变量 相 应的化学势相等的等式中也减少一个,因此 因此,不影响相律的 应的化学势相等的等式中也减少一个 因此 不影响相律的 表达式. 表达式
物理化学教学课件第五章相平衡
第三节 二组分系统的气-液平衡相图
(三)二组分完全互溶双液系相图的应用—— 精馏亦称分馏,是将二组分系统中完全互溶的组分A和B进行分离的一种工 艺,在工业上的应用非常广泛。其基本原理如图5-9所示。
第三节 二组分系统的气-液平衡相图
二、二组分液态部分互溶系统气-液平衡相图
当两种液体的化学性质差别 较大时,其相互溶解的情况与系 统的温度、压力和组成密切相关 ,在一定的温度、压力和组成范 围内两种液体可以完全互溶,也 可以部分互溶或者完全不互溶。
第三节 二组分系统的气-液平衡相图
A和B的气相组成分别用yA和yB表示,则有yA+yB=1。由式(5-12)可得
第三节 二组分系统的气-液平衡相图
2.杠杆规则 对组B进行物料衡算,则有
式(5-17)、式(5-18)均称为杠杆规则关系式。利用杠杆规则的 杠杆规则不仅对气液相平衡适用,在其他系统中的任意两相共存 区都成立,如液-液、液-固、固-固的两相平衡。
第三节 二组分系统的气-液平衡相图
三、二组分液态完全不互溶的气-液平衡相图
若两种液体的化学性质差别 很大,彼此间相互溶解的程度非 常小时,可以近似认为两液体完 全不互溶,如水汞、水二硫化碳
组成相图如图5-15所示。图中T*A 、TB*分别表示两个纯液态组分水 、汞的沸点。
第四节 二组分系统的固-液平衡相图
第四节 二组分系统的固-液平衡相
2.
第四节 二组分系统的固-液平衡相
2.
二组分固态部分互溶系 统相图还有具有一转熔温度( 转变温度)这种类型,如CdHg、Pt-W、AgCl-LiCl 系统,这类系统相图如图525所示。此相图形状与气相 组成位于两液相组成同一侧 的部分互溶二组分混合物的 气–液平衡相图相似。
第六章相平衡 物理化学课件
三相点与冰点的区别
★冰点温度比三相点温度低0.01K,是由两种因素造成的: (1)因外压增加,使凝固点下降 0.00748K (2)因水中溶有空气,使凝固点下降 0.00241K
例:如图为CO2的相图,试问: (1)将CO2在25℃液化,最小需加多大压力? (2)打开CO2灭火机阀门时,为什么会出现少量白色固体(俗称干冰)? 解:(1)根据相图,当温度为25℃ 液一气平衡时,压力应为67大气压, 在25℃时最小需要67大气压才能使 CO2液化。
S:物种数 R:独立的化学平衡数 R′独立限制条件数
说明:★独立限制条件数:只有在同一相中才能起作用,否则R′= 0。
CaCO3(s)=CaO(s)+CO2(g) R′= 0 ★独立的化学平衡数:指物质间构成的化学平衡是相互独立的。 C+H2O=CO+H2 C+CO2=2CO CO+H2O=CO2+H2 R=2 S=5 C=5-2=3 2、自由度数:F 确定平衡体系的状态所必须的独立变量的数目-- F
临界点 固 液 气
(2)CO2的三相点压力为5.11大气 压,当外压小于5.11大气压时液相就 不能稳定存在。当打开阀门时,由于 压力迅速降到及大气压,液相不能稳 定存在,大量气化需吸收热量,使周 围温度迅速降低,在相图上该系统有 可能进入固相区,而出现固体CO2, 即干冰。
§6.3
二组分理想液态混合物的气--液平衡相图
二组分系统
固液系统
简单的低共熔混合物系统 √ 形成化合物系统 √ 固相完全互溶系统 √ √ 固相部分互溶系统
固气系统
2 .杠杆规则(Lever rule)
例:下图为A-B二组分气液平衡的压力一组成图。假定溶液的浓度为 XB =0.4,试根据相图计算:
物理化学上课件:05 相平衡
2. 相图(phase diagram)
表达多相系统的状态如何随温度、压力、组成等 强度性质变化而变化,并用图形来表示这种状态的变 化,这类图形称为相图。
相图的形状取决于变量的数目
双变量系统 三变量系统
平面图 立体图
根据需要还有三角形相图和直角相图等。
相律
1 相数 P : 系统中不同相的数目称为相数 2 物种数 S :系统中所有能单独存在的化学物质数目 3 组分数 C :能够表示相平衡系统中各相组成所需要的
(1) 仅由 NH4Cl(s) 部分分解,建立如下反应平衡: NH4Cl (s) =NH3(g)+HCl(g)
解: (1) C = S - R - R´= 3 - 1 - 1=1
f =C-P +2= 1-2+2=1 (2) 由任意量的 NH4Cl (s) 、NH3(g)、HCl(g) 建立如下反应平衡
dp vap H vap H dT T (Vg Vl ) TV (g)
解 (1) 因 S=3 、R=0 、R'=0,所以C = S-(R+R') =3,
(2) 在给定条件下反应 N2(g)+3H2(g)==2NH3(g) 达到平衡。系统中 有几个独立的平衡化学反应式,就有几个物种数不独立,R 即为 几。S =3、R =1、R' =0, C = S- (R+R') = 2
2 (1) 仅由CaCO3(s)部分分解,建立如下反应平衡: CaCO3 (s) = CaO(s)+CO2(g)
(2) 由任意量的 CaCO3 (s) 、 CaO (s)、 CO2 (g)建立如下反应平衡: CaCO3 (s) = CaO(s)+CO2(g)
相平衡(物理化学课件)
= 2 (KNO3和NaCl的水溶液,水)
f= C– +3 =4
下一内容 20 上一内容 回主目录 返 回
Thursday, July 10, 2014
(3) 相律的讨论
例4:建立如下平衡 CaCO3(s) = CaO(s) + CO2(g) CaCO3(s) + H2(g) = CO(g) + H2O(g) + CaO(s) CO2(g) + H2(g) = CO(g) + H2O(g) 体系的C和 f 分别为多少? S = 6 [CaCO3(s), CaO(s), CO2(g), H2(g), CO(g)和H2O(g)] R’ = 0 (3) = (2) – (1),故 R = 2 C = S – R – R’= 4 = 3 [CaCO3(s), CaO(s)和气体] f=C–+2 =3 问题:由CaCO3(s)及其分解的CaO(s),CO2(g)组成的体系的f=? f = C – + 2=2 –3+2=1 C = S – R – R’ = 3 - 1 – 0 = 2
(2) 相律的一般形式
(2) 相律的一般形式——发生化学变化情形
① 独立的化学反应数R
化学平衡时,平衡常数限制浓度
N2+3H2→ 2NH3
K
θ P
(p
(p
NH 3 θ
N2
/p
)( p
/p
θ 2
)
H2
/p
θ 3
)
这样,体系的独立变量(自由度)应减去1。R个反应 有R个平衡浓度限制,f 应减去R。 但,R应是独立的化学反应数!
自由度(degrees of freedom) 相平衡体系中可以在一 定范围内变化,而不使原相平衡体系的相数和形态发 生变化的独立的强度变量数称为自和浓度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 引言 5.2 多相体系平衡的一般条件 5.3 相律 5.4 单组分体系的相图 5.5 二组分体系的相图及其应用 5.6 三组分体系的相图及其应用 5.7 * 二级相变
5.1 引言
相平衡是热力学在化学领域中的重要应用之一。 研究多相体系的平衡在化学、化工的科研和生产中 有重要的意义,例如:溶解、蒸馏、重结晶、萃取、 提纯及金相分析等方面都要用到相平衡的知识。
OA线 d ln p H vap m
相图(phase diagram) 表达多相体系的状态如何 随温度、压力、组成等强度性质变化而变化的图形, 称为相图。
5.1 引言
相(phase) 体系内部物理和化学性质完全均匀 的部分称为相。相与相之间在指定条件下有明显 的界面,在界面上宏观性质的改变是飞跃式的。 体系中相的总数称为相数,用 表示。
在平衡体系所处的条件下,能够确保各相组成所 需的最少独立物种数称为独立组分数。它的数值等于 体系中所有物种数 S 减去体系中独立的化学平衡数R, 再减去各物种间的浓度限制条件R'。
5.3 相律
相律(phase rule)
f F C 2
相律是相平衡体系中揭示相数 ,独立组分数C和
自由度 f 之间关系的规律,可用上式表示。式中2
O点 是三相点(triple point),气-液-固三相
共存,F 3, f 0 。三
相点的温度和压力皆由 体系自定。
H2O的三相点温度为273.16 K,压力为610.62 Pa。
水的相图
两相平衡线上的相变过程 在两相平衡线上的任何
一点都可能有三种情况。如 OA线上的P点:
(1)处于f点的纯水,保持 温度不变,逐步减小压力, 在无限接近于P点之前,气 相尚未形成,体系自由度为2。 用升压或降温的办法保持液相 不变。
通常指T,p两个变量。相律最早由Gibbs提出,所以 又称为Gibbs相律。如果除T,p外,还受其它力场影
响,则2改用n表示,即:
f F C n
5.4 单组分体系的相图
相点 表示某个相状态(如相态、组成、温度 等)的点称为相点。
物系点 相图中表示体系总状态的点称为物系点。 在T-x图上,物系点可以沿着与温度坐标平行的垂线 上、下移动;在水盐体系图上,随着含水量的变化, 物系点可沿着与组成坐标平行的直线左右移动。
OB 是气-固两相平衡线,即 冰的升华曲线,理论上可延长 至0 K附近。
OC 是液-固两相平衡线,当C点延长至压力大于 2108 Pa 时,相图变得复杂,有不同结构的冰生成。
水的相图
OD 是AO的延长线,是过冷水和水蒸气的介稳平衡 线。因为在相同温度下,过冷水的蒸气压大于冰的蒸 气压,所以OD线在OB线之上。过冷水处于不稳定状 态,一旦有凝聚中心出现,就立即全部变成冰。
气体,不论有多少种气体混合,只有一个气相。 液体,按其互溶程度可以组成一相、两相或三 相共存。 固体,一般有一种固体便有一个相。两种固体粉 末无论混合得多么均匀,仍是两个相(固体溶液 除外,它是单相)。
5.1 引言
自由度(degrees of freedom) 确定平衡体系的状 态所必须的独立强度变量的数目称为自由度,用字 母 f 表示。这些强度变量通常是压力、温度和浓度 等。
三相点与冰点的区别
三相点与冰点的区别
冰点温度比三相点温度低 0.01 K 是由两种因素造成的:
(1)因外压增加,使凝固点下降 0.00748 K ;
(2)因水中溶有空气,使凝固点下降 0.00241 K 。
两相平衡线的斜率
三条两相平衡线的斜率均可由Clausius-Clapeyron 方程或Clapeyron方程求得。
水的相图
水的相图
(2)到达P点时,气相出现, 在气-液两相平衡时,f 1 。 压力与温度只有一个可变。
(3)继续降压,离开P点时, 最后液滴消失,成单一气相,
f 2 。 通常只考虑(2)的情况。
三相点与冰点的区别
三相点是物质自身的特性,不能加以改变, 如H2O的三相点 T 273.16 K , p 610.62 Pa . 冰点是在大气压力下,水、冰、气三相共存。当大 气压力为105 Pa时,冰点温度为273.15 K,改变外压, 冰点也随之改变。
T T TF
(2)压力平衡条件:达到平衡时各相的压力相等
p p pF
5.2 多相体系平衡的一般条件
(3) 相平衡条件: 任一物质B在各相中的化学 势相等,相变达到平衡
B B FB
(4) 化学平衡条件:化学变化达到平衡
BB 0
B
5.3 相律
独立组分数(number of independent component) 定义: C S R R'
如果已指定某个强度变量,除该变量以外的其它强
度变量数称为条件自由度,用 f *表示。
例如:指定了压力,
f * f 1
指定了压力和温度, f ** f 2
5.2 多相体系平衡的一般条件
在一个封闭的多相体系中,相与相之间可以有热 的交换、功的传递和物质的交流。对具有F 个相体系 的热力学平衡,实际上包含了如下四个平衡条件: (1)热平衡条件:设体系有, , ,F 个相,达到平衡 时,各相具有相同温度
在单相区,物系点与相点重合;在两相区中, 只有物系点,它对应的两个相的组成由对应的相点 表示。
5.4 单组分体系的相图
单组分体系的相数与自由度
C 1
f F 3
当 F 1
单相
f 2
F 2 两相平衡
f 1
双变量体系 单变量体系
F 3 三相共存
f 0 无变量体系
单组分体系的自由度最多为2,双变量体系 的相图可用平面图表示。
水的相图
水的相图是根据实验绘制的。图上有:
三个单相区 在气、液、固三个 单相区内,F 1, f 2 ,温度和 压力独立地有限度地变化不会引起 相的改变。
三条两相平衡线 F 2, f 1 ,压力与温度只能改变
一个,指定了压力,则温度由体系自定。
水的相图
水的相图
OA 是气-液两相平衡线,即水的蒸气压曲线。它 不能任意延长,终止于临界点。临界点T 647 K , p 2.2107 Pa ,这时气-液界面消失。高于临界温 度,不能用加压的方法使气体液化。