第四章 随机变量的数字特征
第4章随机变量的数字特征

xi
xn
一、数学期望的定义 复习:
1
第4章 随机变量的数字特征
8
2
3 3
4
一、数学期望的定义
第4章 随机变量的数字特征
9
例2
一、数学期望的定义 解
第4章 随机变量的数字特征
10
一、数学期望的定义
第4章 随机变量的数字特征
11
一、数学期望的定义
第4章 随机变量的数字特征
12
一、数学期望的定义
55
一、协方差
第4章 随机变量的数字特征
56
在实际计算协方差时,更多的是使用下列公式,
一、协方差
第4章 随机变量的数字特征
57
定理1 协方差具有下列性质:
1 2
3
4
一、协方差 证明
01
OPTION
第4章 随机变量的数字特征
58
02
OPTION
03
OPTION
一、协方差
OPTION
第4章 随机变量的数字特征
第4章 随机变量的数字特征
97
定义4
总结/summary
第4章 随机变量的数字特征
98
理解 离散型、连续型随机变量的数学期望的 定义及其概率含义 熟悉 数学期望的性质 掌握 随机变量函数的期望公式 熟练 常用随机变量的数学期望 理解 熟悉 掌握 熟练 随机变量方差的定义及方差的概率含义 方差的性质 随机变量的方差计算公式 常用随机变量的方差
1
第4章 随机变量的数字特征
48
2
3 4
二、方差的性质
第4章 随机变量的数字特征
49
例2 解
那么,由方差的性质得
北京理工大学《概率论与数理统计》课件-第4章随机变量的数字特征

北京理工大学《概率论与数理统计》分布函数能够完整地描述随机变量的统计特性,但在某些实际问题中,不需要全面考查随机变量的变化,只需知道它的随机变量的某些数字特征也就够了.评定某企业的经营能力时,只要知道该企业例如:年平均赢利水平研究水稻品种优劣时,我们关心的是稻穗的平均粒数及平均重量考察一射手的水平,既要看他的平均环数是否高,还要看他弹着点的范围是否小,即数据的波动是否小.由上面的例子看到,平均盈利水平、平均粒数、平均环数、数据的波动大小等,都是与随机变量有关的某个数值,能清晰地描述随机变量在某些方面的重要特征,这些数字特征在理论和实践上都具有重要意义.另一方面,对于一些常用的重要分布,如二项分布、泊松分布、指数分布、正态分布等,其中的参数恰好就是某些数字特征,因此,只要知道了这些数字特征,就能完全确定其具体的分布.第四章随机变量的数字特征4.1随机变量的平均取值——数学期望4.2随机变量取值平均偏离平均值的情况——方差4.3 描述两个随机变量之间的某种关系的数——协方差与相关系数4.1 数学期望一离散型随机变量的数学期望二连续型随机变量的数学期望三常见分布的数学期望四随机变量函数的数学期望五数学期望的性质六、数学期望的应用一离散型随机变量的数学期望引例射击问题设某射击手在同样的条件下,瞄准靶子相继射击90次,(命中的环数是一个随机变量).射中次数记录如下命中环数Y0 1 2 3 4 5命中次数n k 2 13 15 10 20 30频率n k/n2/90 13/90 15/90 10/90 20/90 30/90试问:该射手每次射击平均命中靶多少环?解:平均命中环数这是以频率为权的加权平均命中环数Y0 1 2 3 4 5命中次数n k2 13 15 10 20 30频率n k /n 2/90 13/90 15/90 10/90 20/90 30/900211321531042053090×+×+×+×+×+×=21315102030012345909090909090=×+×+×+×+×+×50k k n k n =⋅∑ 3.37.==射中靶的总环数射击次数平均射中环数频率随机波动随机波动“平均射中环数”的稳定值?=由频率的稳定性知:当n 很大时:频率n k /n 稳定于概率p k 稳定于50k k n k n =⋅∑50k k k p =⋅∑50k k n k n =⋅∑“平均射中环数”等于射中环数的可能值与其概率之积的累加定义1 设X 是离散型随机变量,它的概率分布是:P {X =x k }=p k , k =1,2,…如果绝对收敛,则称它为X 的数学期望或均值.记为E (X ), 即如果发散,则称X 的数学期望不存在.1k k k x p ∞=∑1()k k k E X x p ∞==∑1||k k k x p∞=∑注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.注1:随机变量X 的数学期望完全是由它的概率分布确定的,而不应受X 的可能取值的排列次序的影响,因此要求绝对收敛1k k k xp ∞=<+∞∑11111(1)1ln 2234212n n−+−++−→− 1111111(2)1ln 22436852−−+−−+→注2.E (X )是一个实数,而非随机变量,它是一种以概率为权的加权平均,与一般的算术平均值不同,它从本质上体现了随机变量X 取可能值的真正的平均值,也称均值.当随机变量X 取各个可能值是等概率分布时,X 的期望值与算术平均值相等.假设X 1P80 85 90 1/4 1/4 1/21()800.25850.25+900.586.25E X =×+××=X 2P80 85 901/3 1/3 1/32()85.E X =注3.数学期望E(X)完全由随机变量X的概率分布确定,若X服从某一分布,也称E(X)是这一分布的数学期望.乙射手甲射手例1.甲、乙两个射击手,他们射击的分布律如下表所示,问:甲和乙谁的技术更好?击中环数8 9 10概率0.3 0.1 0.6击中环数8 9 10概率0.2 0.5 0.3单从分布列看不出好坏,解:设甲,乙两个射击手击中的环数分别为X 1,X 2E (X 1)=8×0.3+9×0.1+10×0.6=9.3(环)E (X 2)=8×0.2+9×0.5+10×0.3=9.1(环)例2.1654年职业赌徒德.梅尔向法国数学家帕斯卡提出一个使他苦恼很久的分赌本问题:甲、乙两赌徒赌技相同,各出赌注50法郎,每局中无平局.他们约定,谁先赢三局,则得到全部100法郎的赌本.当甲赢了2局,乙赢了1局时,因故要中止赌博.现问这100法郎如何分才算公平?解:假如比赛继续进行下去,直到结束为止. 则需要2局.这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.设:X、Y分别表示甲和乙得到的赌金数. 则分布律分别为:X0 100 P1/4 3/4Y0 100 P3/4 1/4这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.E(X)=0×1/4+100×3/4=75E(Y)=0×3/4+100×1/4=25即甲、乙应该按照3:1的比例分配全部的赌本.例3.确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为30%,可得利润8万元,失败的机会为70%,将损失2万元.若存入银行,同期间的利率为5%,问是否做此项投资?解:设X 为此项投资的利润,则存入银行的利息:故应该选择该项投资.(注:投资有风险,投资须谨慎)X 8 −2P0.3 0.7此项投资的平均利润为:E (X )=8×0.3+(−2)×0.7=1(万元)10×0.05=0.5(万元)设X 是连续型随机变量,密度函数为f (x ).问题:如何寻找一个体现随机变量平均值的量.将X 离散化.二、连续型随机变量的数学期望在数轴上取等分点:…x −2<x −1<x 0<x 1<x 2<…x k +1−x k =∆x ,k =0,±1,….,并设x k 都是f (x )的连续点.则小区间[x i ,x i+1)阴影面积近似为f (x i )∆x i1()i x x f x dx+=∫()i f x x≈∆P {x i <X ≤x i +1}定义一个离散型随机变量X *如下:其数学期望存在,且绝对收敛时,P {X *=x i }=P {x i ≤X <x i +1} ≈f (x i )∆x对于X *,当当分点越来越密,即∆x →0时,可以认为X *=x i 当且仅当x i ≤X <x i +1(*)i i ix P X x =∑(*){*}i i iE X x P X x ==∑()i i ix f x x ≈∆∑0=lim ()i i x ix f x x ∆→∆∑则其分布律为E (X *) →E (X ) *0=lim x EX EX ∆→即有:+()xf x dx∞−∞=∫定义2:设X 是连续型随机变量,其密度函数为f (x ),如果绝对收敛,则称的值为X 的数学期望,如果积分发散,则称随机变量X 的数学期望不存在.+()xf x dx ∞−∞∫+||()x f x dx∞−∞∫即+()()E X xf x dx∞−∞=∫+()xf x dx ∞−∞∫记为E (X ).注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.三、常见分布的数学期望1.0−1分布设随机变量X服从参数为p的0−1分布,求EX.解:X的分布律为X0 1P1−p p则:E(X)=0×P{X=0}+1×P{X=1}=P{X=1}=p概率是数学期望的特例(第五章)2.二项分布X 的分布律为P {X =k }=C n k p k (1−p )n−k ,k =0,1,…,n .解:设随机变量X ~b (n ,p ),求EX .0{}nk EX kP X k ==∑0(1)n k k n k n k kC p p −=−∑1!(1)!()!n k n kk n k p p k n k −=−−∑1(1)(1)1(1)!(1)(1)!()!nk n k k n np p p k n k −−−−=−−−−∑11(1)1(1)n l k l ln ln l np Cp p −=−−−−=−∑1[(1)]n np p p −=+−np=抛掷一枚均匀硬币100次,能期望得到多少次正面3.泊松分布则解:X 的分布律为设随机变量X ~π(λ),求EX .{},0,1,2,!kP X k e k k λλ−=== 00(){}!k k k e E X kP X k k k λλ−∞∞=====∑∑11(1)!k k ek λλλ−∞−==−∑1!ii k i e i λλλ∞=−−=∑=e e λλλλ−=1!k k e k k λλ−∞==∑泊松分布的参数是λ4.几何分布解:X 的分布律为P {X =k }=q k −1p ,k =1,2,….p+q =1设随机变量X 服从参数为p 的几何分布,求EX .111(){}k k k E X kP Xk k pq∞∞−=====⋅∑∑11k k p k q∞−=⋅∑1=()kk p q ∞=′∑1=()k k p q ∞=′∑()1q p q′=−211(1)p q p=−重复掷一颗骰子平均掷多少次才能第一次出现6点设X ~U (a , b ),求E (X ).解:X 的概率密度为:X 的数学期望为:数学期望位于区间(a ,b )的中点.5.均匀分布1()0a xb f x b a<<=− 其它()()2bax a b E X xf x dx dx b a +∞−∞+===−∫∫设X 服从指数分布,求E (X ).分部积分法6.指数分布当概率密度表示为:对应的数学期望为θ.,0()0,x e x f x x λλ− >=≤ 0xxedx λλ+∞−=∫()()E X xf x dx +∞−∞=∫1λ=1,0()0,0xe xf x x θθ− > = ≤解:X 的概率密度为:设X ~N (μ,σ2),求E (X ).解:X 的概率密度为被积函数为奇函数,故此项积分为0.7.正态分布22()21()2x f x eµσπσ−−=()()E X xf x dx +∞−∞=∫22()212x xedxµσπσ−+∞−−∞=∫221()2x t t t edtµσσµπ−=+∞−−∞+∫ 2222122t t tedt edt σµππ+∞+∞−−−∞−∞+∫∫µ=N (0,1)的密度函数积分为1.注意:不是所有的随机变量都有数学期望例如:Cauchy 分布的密度函数为但发散故其数学期望不存在.21(),(1)f x x x π=−∞<<+∞+2||||()(1)x x f x dx dx x π+∞+∞−∞−∞=+∫∫四随机变量函数的数学期望设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.例4.某商店对某种家用电器的销售采用先使用后付款的方式,记该种电器的使用寿命为X (以年计),规定:X ≤1,一台付款1500元;1<X ≤2,一台付款2000元2<X ≤3,一台付款2500元;X >3,一台付款3000元设X 服从指数分布,且平均寿命为10年,求该商店一台电器的平均收费.解:设该商店一台电器的收费为Y .要求E (Y )X 的分布函数为:1101,()0,0x e x F x x − −>=≤设该商店一台电器的收费为YX ≤1,一台付款1500元1 <X ≤2,一台付款2000元2 <X ≤3,一台付款2500元X >3,一台付款3000元1101,0()0,0x ex F x x − −>=≤P {Y =1500}=P {X ≤1}=F (1)=1−e −0.1=0.0952P {Y =2000}=P {1<X ≤2}=F (2)−F (1)=0.0861P {Y =2500}=P {2<X ≤3}=F (3)−F (2)=0.0779P {Y =3000}=P {X >3}=1−F (3)=0.7408设X 服从指数分布,且平均寿命为10年.Y 的分布律为所以该商店一台电器的平均收费,即Y 的数学期望为Y 1500 2000 2500 3000P0.0952 0.0861 0.0779 0.7408()15000.095220000.086125000.0779 30000.74082732.15E Y =×+×+×+×=使用上述方法必须先求出g(X)的分布,有时这一步骤是比较复杂的.那么是否可以不先求g(X)的分布,而只根据X的分布求E[g(X)]呢?例5.设离散型随机变量X 的概率分布如下表所示,求:Z=X 2的期望.X−11P214141E (Z )= g (0)×0.5+g (-1)×0.25+g (1)×0.25解:=0.5注:这里的.)(2x x g =(1)当X 为离散型随机变量时,分布律为P {X = x k }=p k ,k =1,2,⋯(2)当X 为连续型随机变量时,概率密度函数为f (x ).定理:设Y 是随机变量X 的函数,Y =g (X )(g 是连续函数)若级数绝对收敛,则有若积分绝对收敛,则有1()[()]()kkk E Y E g X g x p∞===∑()[()]()()E Y E g X g x f x dx+∞==∫1()k k k g x p ∞=∑()()g x f x dx+∞−∞∫该公式的重要性在于:当求E [g (X )]时,不必知道g (X )的分布,而只需知道X 的分布就可以了,这给求随机变量函数的期望带来很大方便.k k k g x p X E Y E g X g x f x dx X 1(),()[()]()(),∞=+∞−∞== ∑∫离散型连续型例6.设随机变量X~b(n, p),Y=e aX,求E(Y).解:因为X的分布律为所以有{}(1), 0,1,...,k k n knP X k C p p k n−==−= ()E Y=(1)nak k k n knke C p p−=−∑()(1)nk a k n knkC e p p−=−∑[(1)]a npe p=+−={}nakke P X k==∑例7.设X ~U [0,π],Y=sinX ,求E (Y ).解:因为X 的概率密度为所以有1,0()0,x f x ππ≤≤ =其他()sin ()E Y xf x dx +∞−∞=∫01sin x dx ππ⋅∫2π=定理:设Z 是随机变量X 和Y 的函数,Z =g (X,Y )(g 是连续函数),Z 是一维随机变量(1)若(X,Y )是二维离散型随机变量,概率分布为(2)若(X,Y )是二维连续型随机变量,概率密度为f (x, y ),则有这里假定上两式右边的积分或级数都绝对收敛11()[(,)](,)ijijj i E Z E g X Y g x y p∞∞====∑∑()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫{,},,1,2,i j ij P X x Y y p i j ====则有几个常用的公式()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫(,)EX xf x y dxdy+∞+∞−∞−∞=∫∫(,)EY yf x y dxdy+∞+∞−∞−∞=∫∫22()(,)E Y y f x y dxdy+∞+∞−∞−∞=∫∫22()(,)E X x f x y dxdy+∞+∞−∞−∞=∫∫()(,)E XY xyf x y dxdy+∞+∞−∞−∞=∫∫例8.设二维随机变量(X ,Y )的密度函数为求E (X ),E (Y ),E (X +Y ),E (XY ).解:21(13),02,01,(,)40,x y x y f x y +<<<< =其它()(,)E X xf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4x xdx y dy =⋅+∫∫43=()(,)E Y yf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4xdx y y dy +∫∫58=数学期望的性质注意:X ,Y 相互独立()()(,)E X Y x y f x y dxdy+∞+∞−∞−∞+=+∫∫(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞−∞−∞−∞−∞+∫∫∫∫()()E X E Y +45473824=+=()(,)E XY xyf x y dxdy +∞+∞−∞−∞=∫∫2120011(13)22x xdx y y dy=⋅⋅+∫∫455386=⋅=()()E X E Y ⋅设X =(X 1,…, X n )为离散型随机向量,概率分布为≥ 1nnj j j j n P X =x ,,x =p ,j ,,j .11{()}1Z = g (X 1,…, X n ),若级数绝对收敛,则.<∞∑ nnnj j j j j j g x ,,x p 111()=∑ nnnn j j j jj j E Z =E g X ,,X g x ,,x p 1111()(())()设X =(X 1,…, X n )为连续型随机向量,联合密度函数为 n f x x 1(,,)Z = g (X 1,…, X n ),若积分绝对收敛,则+∞+∞−∞−∞∫∫n n ng x x f x x x x 111(,,)(,,)d d n E Z E g X X 1()=((,,))+∞+∞−∞−∞=∫∫n n ng x x f x x x x 111(,,)(,,)d d五数学期望的性质1.设C 是常数,则E (C )=C 4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X )3.E (X +Y )=E (X )+E (Y )注意:由E (XY )=E (X )E (Y )不一定能推出X ,Y 独立推广(诸X i 相互独立时)推广11[]()nni i i i i i E C X C E X ===∑∑11[]()n ni i i i E X E X ===∏∏性质4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定相互独立.反例XY p ij -1 0 1-10181818181818181810p • j838382p i•838382X Y P-1 0 1828284EX EY ==0;E XY ()=0;=E XY EX EY ()但P X Y 1{=-1,=-1}=8≠=P X P Y 23{=-1}{=-1}8××=30+2103-3+5=92X XY Y X XY Y E(3+2-+5)=3E()+2E()-E()+E(5)性质2和3×××EX EY =310+2-3+5性质4例9.设X ~N (10,4),Y ~U [1,5],且X 与Y 相互独立,求E (3X +2XY -Y +5).解:由已知,有E (X )=10, E (Y )=3.例10: 设X 1 , X 2…,X n 相互独立且都服从B (1, p ),求Z = X 1 + X 2+…+X n 的数学期望E (Z ).解:注: 由二项分布的可加性易知Z = X 1 + X 2+…+X n ~B (n, p ).EZ = E (X 1 + X 2+…+X n )= E (X 1 ) +E ( X 2)+…+E (X n )= p +p +…+p =n p求二项分布的数学期望的又一种方法.例11.(超几何分布的数学期望)设一批同类型的产品共有N 件,其中次品有M 件.今从中任取n (假定n ≤N −M )件,记这n 件中所含的次品数为X ,求E (X ).则有所以解: 引入X =X 1+X 2+…+X n且易知抽签模型,概率与试验次数无关例10和例11:将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.1,,1,2,,0,i i X i n i ==第件是次品第件不是次品iMP X N{1}==1()ni i EX E X ==∑ni i P X 1{1}==∑1ni M N ==∑nM N =为普查某种疾病,N 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验N 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例13.六、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.。
随机变量的数字特征

1 2 3 求E(Z)
-1 0 0.1 1
0.4 0.2 0.4
解:方法一:
(1) E(X)=1*0.4+2*0.2+3*0.4=2 E(Y)=-1*0.3+0*0.4+1*0.3=0
方法二:
(1)E(X)=0.2*1+0.1*2+0*0.3+0.1*1+0*2+0.3*3+0.1*1+0.1*2+0.1*3=2
E( X ) xk pk . k 1
E( X ) 0 0.2 0.2 0.2 0.2 0.2 1 (元)
例题:有 5 个相互独立工作的电子装置,它们的寿命Xk (k 1, 2,3,4,5) 服从同一指数分布,其概率密度为
f
(
x
)
1
e
x
/
,
x 0, 0.
0,
x 0,
1) 若将5个装置串联成整机,求整机寿命 N 的数学期望;
若 g(xk )pk 绝对收敛,则有
k 1
E(Y ) E[g( X )] g(xk )pk .
k 1
2). X 是连续型随机变量,概率密度为 f (x),
若 g(x) f (x)dx 绝对收敛,则有
E(Y ) E[g( X )] g(x) f (x)dx
(证明超过范围,略)
说明: 在已知Y是X的连续函数前提下,当我们求
E(Y)时不必知道Y的分布, 只需知道X的分布就可
以了.
Y x42
0
4
例: 设随机变量 X 的分布律为 X -2
0
2
求:E( X ), E( X 2 ), E(3X 2 5). P 0.4 0.3 0.3 解:(1)E(X) 2 0.4 0 0.3 2 0.3 0.2,
概率论与数理统计第四章

)
(
)
(
)
,
(
Y
D
X
Dபைடு நூலகம்
Y
X
Cov
xy
=
r
=4[E(WV)]2-4E(W2)×E(V2)≤0
01
得到[E(WV)]2≤E(W2)×E(V2). →(8)式得到证明.
02
设W=X-E(X),V=Y-E(Y),那么
03
其判别式
由(9)式知, |ρ xy|=1 等价于 [E(WV)]2=E(W2)E(V2). 即 g(t)= E[tW-V)2] =t2E(W2)-2tE(WV)+E(V2) =0 (10) 由于 E[X-E(X)]=E(x)-E(X) =0, E[Y-E(Y)]=E(Y)-E(Y) =0.故 E(tW-V)=tE(W)-E(V)=tE[X-E(X)]-E[Y-E(Y)]=0 所以 D(tW-V)=E{[tW-V-E(tW-V)]2}=E[(tW-V)2]=0 (11) 由于数学期望为0,方差也为0,即(11)式成立的充分必要条件是 P{tW-V=0}=1
随机变量X的数学期望是随机变量的平均数.它是将随机变量 x及它所取的数和相应频率的乘积和.
=
(1)
)
2
3
(
)
(
-
=
ò
µ
µ
-
dx
x
x
E
j
x
可见均匀分布的数学期望为区间的中值.
例2 计算在区间[a,b]上服从均匀分布的随机变量 的数学期望
泊松分布的数学期望和方差都等于参数λ.
其他
02
f(x)=
01
(4-6)
03
(4)指数分布
概率统计简明教程 第四章 随机变量的数字特征

129第四章 随机变量的数字特征在前面两章中我们讨论了随机变量的概率分布,这是关于随机变量统计规律的一种完整描述,然而在实际问题中,确定一个随机变量的分布往往不是一件容易的事,况且许多问题并不需要考虑随机变量的全面情况,只需知道它的某些特征数值.例如,在测量某种零件的长度时,测得的长度是一个随机变量,它有自己的分布,但是人们关心的往往是这些零件的平均长度以及测量结果的精确程度;再如,检查一批棉花的质量,既要考虑棉花纤维的平均长度,又要考虑纤维长度与平均长度的偏离程度,平均长度越大,偏离程度越小,质量越好.这些与随机变量有关的数值,我们称之为随机变量的数字特征,在概率论与数理统计中起着重要的作用.本章主要介绍随机变量的数学期望、方差、矩以及两个随机变量的协方差和相关系数.§1 数学期望1.1 数学期望的概念在实际问题中,我们常常需要知道某一随机变量的平均值,怎样合理地规定随机变量的的平均值呢?先看下面的一个实例.例1.1 设有一批钢筋共10根,它们的抗拉强度指标为110,135,140的各有一根;120和130的各有两根;125的有三根.显然它们的平均抗拉强度指标绝对不是10根钢筋所取到的6个不同抗拉强度:110,120,125,130,135,140的算术平均,而是以取这些值的次数与试验总次数的比值(取到这些值的频率)为权重的加权平均,即平均抗拉强度1(110120212531302135140)10=+⨯+⨯+⨯++⨯123211110120125130135140101010101010=⨯+⨯+⨯+⨯+⨯+⨯ 126=.从上例可以看出,对于一个离散型随机变量X ,其可能取值为12,,,n x x x ,如果将这n 个数相加后除n 作为“均值”是不对的.因为X取各个值的频率是不同的,对频率大的取值,该值出现的机会就大,也就是在计算取值的平均时其权数大.如果用概率替换频率,用取值的概率作为一种“权数”做加权计算平均值是十分合理的.经以上分析,我们可以给出离散型随机变量数学期望的一般定义.1301.离散型随机变量的数学期望定义 1.1 设X 为一离散型随机变量,其分布律为{}k kP X x p ==(1,2,k = ),若级数1k k k x p ∞=∑绝对收敛,则称此级数之和为随机变量X的数学期望,简称期望或均值.记为()E X ,即1()kk k E X xp ∞==∑ (1.1)例 1.2. 某人从n 把钥匙中任取一把去试房门,打不开则除去,另取一把再试直至房门打开.已知钥匙中只有一把能够把房门打开,求试开次数的数学期望.解 设试开次数为X ,则分布律为1{},1,2,,P X k k n n=== ,从而111(1)1()22nk n n n E X k nn =++=⋅=⋅=∑. 例1.3 设随机变量(,)X B n p ,求()E X .解 因为{}C (1)k k n kk n p P X k p p -===- (0,1,,)k n = ,11!()C (1)(1)(1)!()!n n nk kn kk n kk nk k k n E X kp k p p p p k n k --=====-=---∑∑∑11(1)11(1)!(1)(1)![1(1)]![(1)]nk n k k n n np pp k n k np p p np----=--=-----=+-=∑例1.4 设随机变量()X P λ ,求()E X . 解 因为()X P λ ,有131{}!kP X k ek λλ-==0,1,2,,k = ()因此11()!(1)!k k k k E X eeee k k λλλλλλλλλ-∞∞---=====⋅=-∑∑.我们可以类似地给出连续型随机变量数学期望的定义,只要把分布律中的概率k p 改为概率密度()f x ,将求和改为求积分即可.因此,我们有下面的定义.2 . 连续型随机变量的数学期望定义1.2 设X 为一连续型随机变量,其概率密度为()f x ,若广义积分()d xf x x +∞-∞⎰绝对收敛,则称广义积分()d xf x x +∞-∞⎰的值为连续型随机变量X 的数学期望或均值,记为()E X ,即 ()()d E X xf x x +∞-∞=⎰. (1.2)例1.5 设随机变量X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩,其他,求()E X .解 依题意,得,102()()d 2d 3E X xf x x x x x +∞-∞==⋅=⎰⎰.例1.6 设随机变量X 服从区间(,)a b 上的均匀分布,求()E X . 解 依题意,X 的概率密度为1,()0,a x b f x b a⎧<<⎪=-⎨⎪⎩,其他, 因此1321()()d d 2b aa b E X xf x x x x b a+∞-∞+==⋅=-⎰⎰.例1.7 设随机变量X 服从λ为参数的指数分布,求()E X . 解 依题意, X 的概率密度为e ,0,()0,0x x f x x λλ-⎧>=⎨≤⎩,因此1()()d ed xE X xf x x x x λλλ+∞+∞--∞==⋅=⎰⎰.例1.8 设随机变量X 服从正态分布2(,)N μσ,求()E X .解 由于22()21()x f x m s--= ()x -?<+因此()()d E X xf x x x+∞+∞-∞-∞==⎰⎰22()2d x x m s--22()()ed tx t t t 令m s m s+---==+22ed tt m +--==.例1.9 已知二维随机变量(,)X Y 的概率密度为(34)12e ,0,0,(,)0,x y x y f x y -+⎧>>=⎨⎩其他,求()E X .解 由第三章例3.2的结果关于X 的边缘概率密度为33e ,0,()0,0x X x f x x -⎧>=⎨≤⎩,133即(3)X E ,因此1()3E X =.1.2 随机变量函数的数学期望定理1.1 设随机变量Y 是随机变量X 的函数, ()Y g X =(其中g 为一元连续函数).(1)X 是离散型随机变量,概率分布律为{}k k P X x p ==, 1,2,k = ,则当无穷级数1()k k k g x p ∞=∑绝对收敛时,则随机变量Y 的数学期望为1()[()]()kk k E Y E g X g xp ∞===∑; (1.3)(2)X 是连续型随机变量,其概率密度为()f x ,则当广义积分()()d g x f x x +-ò绝对收敛时,则随机变量Y 的数学期望为()[()]()()d E Y E g X g x f x x +∞-∞==⎰.(1.4) 这一定理的重要意义在于,求随机变量()Y g X =的数学期望时,只需利用X 的分布律或概率密度就可以了,无需求Y 的分布,这给我们计算随机变量函数的数学期望提供了极大的方便.定理的证明超出了本书的范围,下面我们仅就连续型随机变量,且()Y g X =单调的情形给出证明.证明 第二章定理4.2给出了随机变量Y 的概率密度[()](),()0,X Y f h y h y y f y αβ⎧⎪⎨⎪⎩'<<=,其他.其中)(x f X 为随机变量X 概率密度,函数)(x g y =是处处可导的严格单134调函数,它的反函数为)(y h x =,则有()()d Y E Y yf y y +∞-∞=⎰[()]|()|d X yf f y h y y βα'=⎰.当()0h y '>时()E Y [()]()d ()()d X X yf f y h y y g x f x x βα+∞-∞'==⎰⎰,当()0h y '<时()E Y [()]()d ()()d X X yf f y h y y g x f x x βα-∞+∞'=-=-⎰⎰()()d X g x f x x +∞-∞=⎰.例1.10 设离散型随机变量X 的分布律为求随机变量232Y X =-的数学期望.解 依题意,可得,22()[3(1)2]0.1(302)0.3E Y =⨯--⨯+⨯-⨯2(312)0.4+⨯-⨯2(322)0.2+⨯-⨯1.9=.例1.11 随机变量X (0,1)N ,求2Y X =的数学期望. 解 依题意,可得22()()()d E Y E X x f x x +∞-∞==⎰222d xxx +∞--∞=⎰22dexx+∞--∞=⎰2222e e dx xx x+∞+∞---∞-∞⎛⎫⎪=-⎪⎭⎰22e d1xx+∞--∞==⎰例 1.12 国际市场每年对我国某种商品的需求量是随机变量X(单位:吨),它服从[2000,4000]上的均匀分布,已知每售出1吨商品,可挣得外汇3万元;若售不出去而积压,则每吨商品需花费库存费等共1万元,问需要组织多少货源,才能使国家受益期望最大?解设组织货源t吨,[2000,4000]tÎ,受益为随机变量Y(单位:万元),按照题意Y是需求X的函数3(),,()3,,X t X X tY g Xt X t当当ì--<ïï==íï³ïîX的概率密度为1,20004000()20000,xf xìïï#ï=íïïïî其它.由(1.4),得()[()]()()dE Y E g X g x f x x+-==ò400020001{[3()]d3d}2000ttx t x x t x=--+蝌21[2140008000000]2000t t=-+-当3500t=时()E Y达到最大值,也就是说组织货源3500吨时国家的期望受益最大.135136例1.13 柯西分布211()1f x xπ=+()x -∞<<+∞的数学期望由于21||d (1)x x x π+∞-∞=+∞+⎰,所以不存在.上述的定理可以推广到两个或两个以上随机变量的函数上去,我们有下面的定理.定理 1.2 设随机变量Z 是随机变量(,)X Y 的函数,(,)Z g X Y =,其中g 为二元连续函数,则(1)如果(,)X Y 为二维离散型随机变量,其分布律为ij j i p y Y x X P ===},{ ,1,2,i j = ,且11(,)ijij j i g x yp ∞∞==∑∑绝对收敛,则随机变量(,)Z g X Y =的数学期望为11()[(,)](,)ijij j i E Z E g X Y g x yp ∞∞====∑∑; (1.5)(2)如果(,)X Y 为二维连续型随机变量时,概率密度为(,)f x y ,且(,)(,)d d g x y f x y x y +∞+∞-∞-∞⎰⎰绝对收敛,则随机变量(,)Z g X Y =的数学期望为()[(,)](,)(,)d d E Z E g X Y g x y f x y x y +∞+∞-∞-∞==⎰⎰. (1.6)例1.14 设二维离散型随机变量(,)X Y 的分布律为137求()E XY 和()E Z ,其中max(,)Z X Y =.解 依题意,可得()000.1010.3100.4110.20.2E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯=; ()00.110.90.9E Z =⨯+⨯=.例1.15 设二维连续型随机变量(,)X Y 的概率密度为212,01,(,)0,y y x f x y ⎧≤≤≤=⎨⎩其他,求(1)()E XY ;(2)2()E X .解 (1)由公式(1.6)得,121()(,)d d d (12)d 2xE X Y xy f x y x y x x y y y +∞+∞-∞-∞===⎰⎰⎰⎰,(2)将2X 看成是函数(,)Z g X Y =的特殊情况,从而利用公式(1.6)进行求解,即122222()(,)d d d 12d 3xE X x f x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.需要说明的是:本题在求解2()E X 时,也可以先求出(,)X Y 关于X 的边缘概率密度,再利用公式22()()d X E X x f x x +∞-∞=⎰,求解2()E X (请读者自行完成).例 1.16 一商店经销某种商品,每周进货量X 与顾客对商品的需求量Y 是相互独立的随机变量,且都服从[10,20]上的均匀分布,商店每售出一单位商品可得利润1000元,若需求量超过进货量,商店可从其它商店调剂供应,这时每单位商品获利润500元,计算经销此商品每周所获得平均利润.解 设Z 表示商店每周所获利润,依题意1000,,(,)1000500(),,Y Y X Z g X Y X Y X Y X ì£ïï==íï+->ïî138由于(,)X Y 的概率密度为1,1020,1020(,)1000,x y f x y ,其他,ìïï##ï=íïïïî所以20201010()(,)(,)d d E Z g x y f x y x y =蝌20202010101011d 1000d d 500()d 100100yyyy xyx y x =?+蝌蝌202021010310(20)d 5(1050)d 2y y y y y y =-+--蝌 200005150014166.673=+椿(元).1.3 数学期望的性质设C 为常数,随机变量X ,Y 的数学期望都存在.关于数学期望有如下性质成立:性质1.则()E X C =; 性质2.()()E CX CE X =; 性质3.()()()E X Y E X E Y +=+;性质4. 如果随机变量X 和Y 相互独立,则()()()E XY E X E Y =. 这里只就连续型随机变量的情形对性质3和性质4给出证明,对于离散型随机变量情况,请读者自行完成.证明:设二维连续型随机变量(,)X Y 的概率密度为(,)f x y ,(,)X Y 关于X 和关于Y 的边缘概率密度为()X f x 和()Y f y ,则有()()(,)d d E X Y x y f x y x y +∞+∞-∞-∞+=+⎰⎰(,)d d xf x y x y +∞+∞-∞-∞=⎰⎰(,)d d yf x y x y +∞+∞-∞-∞+⎰⎰139(,)d d x f x y y x +∞+∞-∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰(,)d d y f x y x y +∞+∞-∞-∞⎡⎤+⎢⎥⎣⎦⎰⎰()d X xf x x +∞-∞=⎰()d Y yf y y +∞-∞+⎰()()E X E Y =+.如果X 和Y 相互独立,则(,)f x y =()X f x ()Y f y ,有()(,)d d E XY xyf x y x y +∞+∞-∞-∞=⎰⎰()()d d X Y xyf x f y x y +∞-∞=⎰ ()d ()d X Y xf x x yf y y +∞+∞-∞-∞=⋅⎰⎰()E XY =例1.17 设两个随机变量X 和Y ,设2()E X 和2()E Y 都存在,证明: 222[()]()()E XY E X E Y ≤ (1.7) 这一不等式称为柯西—许瓦兹(Cauchy Schwarz -)不等式证明 对于任意实数t ,令2()[()]g t E X tY =+ 由数学期望的性质,有2222[()](2)E X tY E X tXY t Y +=++ 222()2()()E X tE XY t E Y =++ 因此 222()()2()()g t E X tE XY t E Y =++由于()0g t ≥,上述关于t 的二次函数的判别式小于或等于0.即 2224[()]4()()0E XY E X E Y ∆=-≤140因此 222[()]()()E XY E X E Y ≤例1.18 设随机变量X 和Y 相互独立,且各自的概率密度为33,0,()0,x X e x f x -⎧>=⎨⎩其他, 44,0,()0,y Y e y f y -⎧>=⎨⎩其他, 求()E XY .解 由性质3得()()()E XY E X E Y =()d ()d X Y xf x x yf y y +∞+∞-∞-∞=⨯⎰⎰3403d 4d xyxex ye y +∞+∞--=⨯⎰⎰1113412=⨯=.例1.19 将n 个球随机放入M 个盒子中去,设每个球放入各盒子是等可能的,求有球盒子数X 的期望.解 令随机变量1,1,2,,0,i i X i M i ⎧==⎨⎩ 第个盒子有球,第个盒子无球,显然有 1Mi i X X ==∑.对于第i 个盒子而言,每只球不放入其中的概率为11M ⎛⎫-⎪⎝⎭,n 个球都不放入的概率为11nM ⎛⎫- ⎪⎝⎭,因此1{0}1ni P X M ⎛⎫==- ⎪⎝⎭1{1}11n i P X M ⎛⎫==-- ⎪⎝⎭141由于 1()1{1}0{0}11ni i i E X P X P X M ⎛⎫=⨯=+⨯==-- ⎪⎝⎭由数学期望的性质,可以得到11()()11nMi i E X E X M M =⎛⎫⎛⎫==-- ⎪ ⎪ ⎪⎝⎭⎝⎭∑.§2 方差2.1 方差及其计算公式数学期望体现了随机变量所有可能取值的平均值,是随机变量最重要的数字特征之一.但在许多问题中只知道这一点是不够的,还需要知道与其数学期望之间的偏离程度.在概率论中,这个偏离程度通常用2{[()]}E X E X -来表示,我们有下面关于方差的定义. 定义2.1 设X 为一随机变量,如果随机变量2[()]X E X -的数学期望存在,则称之为X 的方差,记为()D X ,即2{[()]}D X E X E X =-() (2.1)称X 的标准差或均方差,记作()X σ .由定义2.1可知,随机变量X 的方差反应了X 与其数学期望()E X 的偏离程度,如果X 取值集中在()E X 附近,则方差()D X 较小;如果X 取值比较分散,方差()D X 较大.不难看出,方差()D X 实质上是随机变量X 函数2[()]X E X -的数学期望.如果X 是离散型随机变量,其概率分布律为 {}k k P X x p ==, 1,2,k = ,142则有 221{[()]}[()].kk k D X E X E X xE X p ∞==-=-∑()如果X 连续型随机变量,其概率密度为()f x ,则有22{[()]}[()]()d .D X E X E X x E X f x x +∞-∞=-=-⎰()根据数学期望的性质,可得2{[()]}D X E X E X ()=-22{2()[()]}E X X E X E X =-?22()2()()[()]E X E X E X E X =-?22()[()]E X E X =- .即 22()()[()]D X E X E X =- (2.2) 这是计算随机变量方差常用的公式例2.1 设离散型随机变量X 的分布律为求D X ().解 因为(1)0.100.310.420.20.7E X =-⨯+⨯+⨯+⨯=(), 22222()(1)0.100.310.420.2 1.3E X =-⨯+⨯+⨯+⨯=,222()[()] 1.30.70.81D X E X E X =-=-=().例2.2 设(,)X B n p ,求D X ().解 ()E X np =,令1q p =-,143220()C nk k n kn k E X k p q-==å1![(1)]!()!nk n kk n k k k p qk n k -==-+-å22(2)(2)1(1)(2)!(1)(1)!()!nk n k k n n n k p pqk n k ----=--=---å1!(1)!()!nkn kk n p qk n k -=+--å22(2)(2)2(2)!(1)()(2)!()!nk n k k n n n ppqE X k n k ----=-=-+--å2(1)n n p np =-+,所以 22222()[()](1)D X E X E X n n p np n p npq ()=-=-+-=.例2.3 设()X P λ ,求D X ().解 ()E X l =2201ee()[(1)1]!(1)!k k k k E X kk k k lll l --ゥ====-+-邋2221ee(2)!(1)!k kk k k k lllll-ゥ--==×=? --邋2l l =+所以 22().D X ()l l ll =+-=例2.4 设随机变量X 服从几何分布()X G p ,即 1{},1,2,k P X k pqk -===144其中01,1p q p <<=-,求(),().E X D X解 1111()k k k k E X kpqp kq∞∞--====∑∑由于1,011k k q q q∞==<<-∑,对此级数逐项求导,得1001d dd d k kk k k k q qkqq q ∞∞∞-===⎛⎫==⎪⎝⎭∑∑∑,因此121d 11d 1(1)k k kqq q q ∞-=⎛⎫== ⎪--⎝⎭∑, 从而211()(1)E X p q p=⋅=-。
概率论与数理统计第4章 随机变量的数字特征与极限定理

25
定义4.3 设X是随机变量,若E[X-E(X)]2存 在,则称它为X的方差,记为D(X),即
由定义4.2,随机变量X的方差反映了X的可能取值 与其数学期望的平均偏离程度.若D(X)较小,则X的 取值比较集中,否则,X的取值比较分散.因此,方差 D(X)是刻画X取值离散程度的一个量.
3
定义4.1 设离散型随机变量X的分布律为
4
5
6
7
8
9
4.1.2 几个常用分布的数学期望 1.0—1分布 设随机变量X服从以p为参数的(0—1)分布,则X 的数学期望为
2.二项分布 设随机变量X~B(n,p),则X的数学期望为
10
3.泊松分布 设随机变量X~P(λ)分布,则X的数学期望为
41
Hale Waihona Puke 424.3 协方差、相关系数及矩
4.3.1 协方差 对于二维随机变量(X,Y),除了分量X,Y的数 字特征外,还需要找出能体现各分量之间的联系的数字 特征.
43
44
4.3.2 相关系数 定义4.5 设(X,Y)为二维随机变量,cov (X,Y),D(X),D(X)均存在,且D(X)>0,D(X) >0,称
15
16
17
定理4.2 设(X,Y)是二维随机变量,z=g(x,y) 是一个连续函数. (1)如果(X,Y)为离散型随机变量,其联合分布 律为
18
19
20
4.1.4 数学期望的性质 数学期望有如下常用性质(以下的讨论中,假设所 遇到的数学期望均存在):
概率教材第4章随机变量的数字特征

第4章随机变量的数字特征前面我们讨论的随机变量的分布函数,能够完整地描述随机变量的统计规律性,但是在许多实际问题中,人们并不需要去全面考察随机变量的变化情况,而只要知道它的某些特征即可.例如,评定射击运动员的射击水平时,常感兴趣的是他命中的环数的平均值,以及命中点的集中程度.命中环数的平均值越大,说明运动员的水平越高;命中点越集中,说明运动员水平越稳定.这些与随机变量有关的数值,我们称之为随机变量的数字特征,这些数字特征在概率论与数理统计中起着重要的作用.本章主要介绍随机变量的数学期望和方差、随机变量的矩以及两个随机变量的协方差和相关系数.4.1随机变量的数学期望一、离散型随机变量的数学期望平均值是日常生活中最重要的数字特征之一,已经广泛应用于社会生活和生产实践的各个领域,它对评判事物、做出决策等具有重要作用.例如,在某次教师技能大奖赛上,七位评委为某选手打出的分数如下:9.5,8.9,9.5,9.8,9.6,9.5,9.7,去掉一个最高分和一个最低分后,该教师的平均分是多少?如果用随机变量X表示有效分数,则X的概率分布为:X9.59.69.7P0.60.20.2这时该选手的平均分为:39.519.619.75⨯+⨯+⨯=0.69.50.29.60.29.79.56⨯+⨯+⨯=这个平均分数称为随机变量的数学期望,不难看出,它等于随机变量的取值与对应概率乘积的和,下面我们把这个现象用分析的语言描述出来.定义1设离散型随机变量X 的概率分布为:X 1x 2x …n x …P1p 2p …np …即{},1,2,i i P X x p i ===…,若级数11221iin n i x px p x p x p ∞==++⋅⋅⋅++⋅⋅⋅∑绝对收敛(即1iii x p∞=<+∞∑),则称其和为X 的数学期望,简称期望,也叫均值,记作EX ,即1i ii EX x p ∞==∑(4.1)否则,称X 的数学期望不存在.例1设随机变量X 服从参数为p 的0—1分布,求EX .解由题设知,X 的概率分布为:于是0(1)1EX p p p =⋅-+⋅=.例2一批产品中有一、二、三等品及废品四种,相对应的比例分别为%%%60,20,10和%10,若各等级产品对应的产值分别为6元,4.8元,4元和0元,求产品的平均产值.X 01P1p-p解设产品的产值为X 元,根据题意X 的概率分布为:X 04 4.86P0.10.10.20.6于是40.1 4.80.260.6 4.96EX =⨯+⨯+⨯=(元).例3设随机变量~(,)X B n p ,求EX .解因为~(,)X B n p ,所以X 的概率分布为:{}(1),0,1,2,,.k kn k n P X k C p p k n -==-= 于是00!(1)(1)!()!nnkkn kk n knk k kn EX kC p p p p k n k --===-=--∑∑1(1)(1)1(1)!(1)(1)![(1)(1)]!k n k nk np n p p k n k ----=--=----∑1[(1)]n np p p np -=+-=.例4设随机变量X 服从参数为λ的泊松分布,求EX .解根据题意,X 的概率分布为:{},0,1,2,,.!m e P X m m n m λλ-=== 于是101!(1)!m m m m e EX m e e e m m λλλλλλλλλ--∞∞--======-∑∑.二、连续型随机变量的数学期望定义2设连续型随机变量X 的概率密度为()f x ,若()xf x dx +∞-∞⎰绝对收敛(即()xf x dx +∞-∞<+∞⎰),则称()xf x dx +∞-∞⎰为X 的数学期望,记作EX ,即()EX xf x dx+∞-∞=⎰(4.2)否则,称X 数学期望不存在.例5设随机变量X 服从区间[,]a b 上的均匀分布,求EX .解根据题意得1,,~()0,a xb X f x b a⎧≤≤⎪=-⎨⎪⎩其他,于是1()baEX xf x dx x dx b a+∞-∞==⋅-⎰⎰2122b ax a bb a +==-.该例表明,一维均匀分布的期望为该随机变量取值区间的中点.例6设随机变量X 服从参数0λλ>()的指数分布,求EX .解根据题意得,0,~()0,x e x X f x λλ-⎧>=⎨⎩其他,于是()x EX xf x dx xe dxλλ+∞+∞--∞==⎰⎰xx xe e dx λλ+∞+∞--=-+⎰+011xeλλλ∞-=-=.例7已知连续型随机变量X 的分布函数0,01(),0221,2x F x x x x ≤⎧⎪⎪=<≤⎨⎪>⎪⎩,求EX .解根据题意随机变量X 的密度函数为1,02,()()20,x f x F x ⎧<≤⎪'==⎨⎪⎩其他,所以222001()124x EX xf x dx x dx +∞-∞==⋅==⎰⎰.例8已知随机变量X 的概率密度为:,01()0,ax b x f x +≤≤⎧=⎨⎩其他且7=12EX ,求a 与b 的值.解根据题意1()()12af x dx ax b dx b +∞-∞=+=+=⎰⎰1207()()3212a b EX xf x dx ax bx dx +∞-∞==+=+=⎰⎰解关于a 与b 的方程组得,1a =,1=2b .定义3在考虑n 维随机向量12(,,,)Tn X X X 时,若每个iEX (1,2,,)i n = 都存在,则称12(,,,)T n EX EX EX 为n 维随机向量12(,,,)T n X X X 的数学期望或均值.三、随机变量函数的数学期望设X 是随机变量,()g x 为实函数,则()Y g X =也是随机变量.理论上,可以通过X 的分布求出()Y g X =的分布,再按定义求出数学期望[()]E g X ,但是这种求法一般比较复杂,下面的定理给出了一种直接求解方法.定理1设X 是随机变量,Y 是随机变量X 的函数,()Y g X =,其中()y g x =是一元连续函数.(1)若X 为离散型随机变量,其概率分布为{}i i P X x p ==,1,2,i = ,如果无穷级数1()iii g x p∞=∑绝对收敛,即1|()|iii g x p∞=<+∞∑,则Y 的数学期望为1[()]()i i i EY E g X g x p ∞===∑.(4.3)(2)若X 为连续型随机变量,其概率密度为()f x ,如果广义积分()()g x f x dx +∞-∞⎰绝对收敛,即|()|()g x f x dx +∞-∞<+∞⎰,则Y 的数学期望为[()]()()EY E g X g x f x dx +∞-∞==⎰.(4.4)根据定理1,求随机变量()Y g X =的数学期望时,只需知道X 的分布,无需求Y 的分布,这给我们计算提供了极大的方便.上述定理可以推广到二元或二元以上随机变量函数的情形.定理2设(,)X Y 是二维随机向量,Z 是关于随机向量X 和Y 的函数,(,)Z g X Y =,其中(,)Z g x y =是二元连续函数.(1)若(,)X Y 是二维离散型随机向量,其概率分布为{,}i j ij P X x Y y p ===,,1,2i j = ,,并且11|(,)|i j ij i j g x y p ∞∞==<+∞∑∑,则11[(,)](,)i j ij i j EZ E g X Y g x y p ∞∞====∑∑.(4.5)(2)若(,)X Y 是二维连续型随机向量,其概率密度为(,)f x y ,并且|(,)|(,)g x y f x y dxdy +∞+∞-∞-∞<+∞⎰⎰,则[(,)](,)(,)EZ E g X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.(4.6)定理1和定理2的证明超出本书范围,略.例9设(,)X Y 的概率分布为:Y X 0123103838031818求EX ,EY ,2EX 和()E XY .解关于X 和Y 的边缘分布为:于是31313442EX =⨯+⨯=,13313=0+1+2+3=88882EY ⨯⨯⨯⨯22231=1+3=344EX ⨯⨯,331()(10)0(11)(12)(13)0(30)88819(31)0(32)0(33).84E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=例10随机变量X 服从区间],0[π上的均匀分布,求EX ,2EX ,)(sin X E 及2)]([X E X E -解1()2EX xf x dx x dx πππ+∞-∞==⋅=⎰⎰,22221()3EX x f x dx x dx πππ+∞-∞==⋅=⎰⎰,0112(sin )sin ()sin (cos )0E X xf x dx x x πππππ+∞-∞==⋅=-=⎰⎰X 13i p ⋅3414Y 0123jp ⋅18383818222201[()]()()2212E X E X E X X dx πππππ-=-=-⋅=⎰.例11假定国际市场对我国某种商品的需求量是随机变量X (单位:吨),它服从区间[2000,4000]上的均匀分布,每销售出一吨该商品,可为国家赚取外汇3万元,若销售不出去,则每吨商品需贮存费1万元,问如何计划出口量,能使国家收益最大?解设计划年出口量为t 吨,国家年收益Y 万元,根据题意20004000t ≤≤,且有120004000,~()20000,x X f x ⎧≤≤⎪=⎨⎪⎩,其它,3,=()4,t X t Y g X X t X t ≥⎧=⎨-<⎩,,于是由(4.4)式有400020001()()()2000EY g x f x dx g x dx +∞-∞==⎰⎰400020001(4)32000tt x t dx tdx ⎡⎤=-=⎢⎥⎣⎦⎰⎰()26170004101000t t =-+-⨯易得当3500t =时,EY 达到最大,所以计划出口量为3500吨时,国家年收益最大.例12已知随机变量X 表示某电子元件的使用寿命(单位:小时),并且服从参数为0.001的指数分布,若规定使用寿命X 在500小时以下为废品,产值为0元;在500到1000小时之间为次品,产值为10元;在1000到1500小时之间为二等品,产值为30元;在1500小时以上者为一等品,产值为40元,求该电子元件的平均产值.解设该电子元件的产值为Y 元,由题设知0.0010.001,0,~()0,0,x e x X f x x -⎧>=⎨≤⎩0,500,10,5001000,()30,10001500,40,1500.X X Y g X X X <⎧⎪≤<⎪==⎨≤<⎪⎪≥⎩于是由(4.4)式有()()EY g x f x dx +∞-∞=⎰50010000.0010.00105000(0.001)10(0.001)x x e dx e dx --=⋅+⋅⎰⎰15000.001100030(0.001)xedx -+⋅⎰0.001150040(0.001)x e dx+∞-+⋅⎰15.65≈(元).该例表明,在利用定理1求[()]E g X 时,允许函数()y g x =不连续.例13设,01,01,(,)~(,)0,x y x y X Y f x y +≤≤≤≤⎧=⎨⎩其他,求2EX ,()E X Y +及()E XY .解由(4.6)式,有11222005(,)()12EX x f x y dxdy x x y dxdy +∞+∞-∞-∞==+=⎰⎰⎰⎰,112007()()(,)()6E X Y x y f x y dxdy x y dxdy +∞+∞-∞-∞+=+=+=⎰⎰⎰⎰,11001()(,)()3E XY xyf x y dxdy xy x y dxdy +∞+∞-∞-∞==+=⎰⎰⎰⎰.四、数学期望的性质设,,a b c 为常数,X 和Y 是随机变量,且EX 和EY 都存在,则数学期望有下列性质:性质1Ec c =.(4.7)性质2()E aX b aEX b +=+.(4.8)性质1请读者自己证明,下面给出性质2的证明.证明令Y aX b =+,因为y ax b =+是单调的,所以可以排除X 是连续型随机变量而Y 却是离散型随机变量的可能,也就是说只需分两种情况来证明,即X 与Y 都是离散型随机变量或者X 与Y 都是连续型随机变量.1.当X 为离散型随机变量时,设X 的概率分布为{}1,2,i i P X x p i === ,.则Y 的概率分布为{}i i P Y ax b p =+=,1,2i = .于是1()()i ii EY E aX b ax b p ∞==+=+∑11i i i i i a x p b p ∞∞===+∑∑aEX b =+.2.当X 为连续型随机变量时,设~()X X f x ,并且不失一般性地假设0a ≠(显然Eb b =),则1~()()Y X y bY f y f a a-=.于是()()Y EY E aX b yf y dy +∞-∞=+=⎰1[(X y by f dy a a+∞-∞-=⎰()()X y ax b ax b f x dx +∞-∞=++⎰令()()X X a xf x dx b f x dx+∞+∞-∞-∞=+⎰⎰aEX b =+.性质3()E X Y EX EY ±=±.(4.9)性质3可以推广到任意有限个随机变量的情况,即1212()()()()n n E X X X E X E X E X ±±⋅⋅⋅±=±±⋅⋅⋅±.(4.10)性质4设X 与Y 相互独立,则()E XY EX EY =⋅.(4.11)性质4可以推广到任意有限个相互独立的随机变量的情况,即设12,,,n X X X ⋅⋅⋅相互独立,则1212()()()()n n E X X X E X E X E X ⋅⋅⋅=⋅⋅⋅.(4.12)下面我们来证明性质3和性质4.证明仅就(,)X Y 为二维连续型随机向量的情形加以证明.设二维连续型随机向量(,)X Y 的概率密度为(,)f x y ,其关于X 和关于Y 的边缘概率密度分别为()X f x 和()Y f y ,则()()(,)E X Y x y f x y dxdy +∞+∞-∞-∞±=±⎰⎰(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞-∞-∞-∞-∞=±⎰⎰⎰⎰EX EY =±.性质3得证.又若X 与Y 相互独立,此时(,)()()X Y f x y f x f y =⋅.于是()(,)E XY xyf x y dxdy+∞+∞-∞-∞=⎰⎰()()X Y xf x dx yf y dy +∞+∞-∞-∞=⋅⎰⎰EX EY =⋅.性质4得证.注意到:只要将证明中的“积分”用“和式”代替,就能得到(,)X Y 为二维离散型随机向量情形的证明.性质4的逆命题不成立,即由()E XY EX EY =⋅不能得到X 与Y 一定独立.例如,在例9中,我们已经计算得()94E XY EX EY =⋅=,但{1,0}0,P X Y ==={1}3{0}18,P X P Y ====显然{1,0}{1}{0}P X Y P X P Y ==≠=⋅=,故X 与Y 不独立.例14已知X 与Y 的概率分布分别为并且()8.5E X Y +=,求(1)EX ,(2)E X ,EY ;(2)2(23)E Y +.解(1)10.320.530.2 1.9EX =⨯+⨯+⨯=.由(4.8)式及(4.9)式,有(2)22 1.9 3.8E X EX ==⨯=,()8.5 1.9 6.6EY E X Y EX =+-=-=.(2)由于60.40.6 6.6EY a =⨯+⨯=,故7a =.由(4.3)式,有222(23)(263)0.4(273)0.690.6E Y +=⨯+⨯+⨯+⨯=.这里我们也可以利用定义1计算(2)E X 和2(23)E Y +,只是需要先求出2X 和223Y +的概率分布.例15设(,)X Y 等可能地取(1,0)-,(0,1)-,(1,0)和(0,1),试判断(1)()E XY 与EX EY ⋅是否相等;(2)X 与Y 是否独立.解由题设知(,)X Y 的概率分布为:Y X 1-011-0140014014114X 123P0.30.50.2Y 6a P0.40.6()(1)(1)0E XY =-⨯-⨯11(1)0(1)100(1)00044+-⨯⨯+-⨯⨯+⨯-⨯+⨯⨯1014+⨯⨯1(1)0+⨯-⨯11011004+⨯⨯+⨯⨯=,11(1)0(1)(1)0044EX EY ==-⨯+-⨯+-⨯+⨯1000104+⨯+⨯+⨯111004+⨯+⨯=,于是()E XY EX EY =⋅.(2)由于{0,0}0P X Y ===,并且111{0}{0}0442P X P Y ====++=,于是{0,0}{0}{0}P X Y P X P Y ==≠=⋅=,故X 与Y 不独立.这里已知(,)X Y 的概率分布,也可以利用期望的定义4.1计算()E XY ,EX 和EY .4.2随机变量的方差上一节我们介绍了随机变量的数学期望,它主要用来描述随机变量的平均特征,但是在许多实际问题中,仅仅知道平均值是不够的,为此本节我们引入方差的概念,用它来描述随机变量取值的离散程度.一、方差的概念先看一个例子.设甲、乙两位射击运动员打中靶的环数分别为1X ,2X ,其概率分布为:1X 78910P0.40.30.20.12X 05610计算两位运动员打中靶的环数的期望为170.480.390.2100.18EX =⨯+⨯+⨯+⨯=200.0450.1660.2100.68EX =⨯+⨯+⨯+⨯=虽然两位运动员打中靶环数的期望相同,但是比较两组数据可知甲射手比乙射手技术稳定,因此甲打中靶的环数比较集中.可见在实际问题中,仅仅靠期望来描述随机变量的分布特征还不够完善,还需要进一步研究其离散程度,通常人们关心的是随机变量X 对均值EX 的离散程度.定义4如果随机变量X 的数学期望EX 存在,则称X EX -为随机变量X 的离差.显然,随机变量X 离差的期望为零,即()=0E X EX -.(4.13)这样,如果用()E X EX -来度量X 与EX 的偏差,结果是正负偏差相互抵消,为了消除离差X EX -的符号,通常用2()E X EX -来度量X 与EX 的偏差.定义5设X 是一个随机变量,若2()E X EX -存在,则称其为X 的方差,记作DX 或VarX ,即2()DX E X EX =-.(4.14)为X 的标准差或均方差.由定义5知,方差实际上就是随机变量函数2()X EX -的数学期望,所以可以用求随机变量函数2()X EX -的数学期望的方法来求随机变量X 的方差.1.设X 为离散型随机变量,其概率分布为{}i i P X x p ==,1,2,,i = P 0.040.160.20.6若21()ii i x EX p +∞=-<+∞∑,则21()i i i DX x EX p +∞==-∑.(4.15)2.设X 为连续型随机变量,其概率密度为()f x ,若2()()x EX f x dx +∞-∞-<+∞⎰,则2()()DX x EX f x dx +∞-∞=-⎰.(4.16)可见,随机变量的方差是一个非负数.当X 的可能值密集在它的期望值EX 附近时,方差较小,反之则方差较大.因此,方差刻画了随机变量的取值的离散程度.由方差的定义式容易得到下面的常用计算式22()DX EX EX =-.(4.17)证明2()DX E X EX =-22[2()]E X X EX EX =-⋅+222()EX EX EX EX =-⋅+22()EX EX =-.(4.17)式表明2EX 不小于2()EX ,而且提供了一种计算方差的主要方法,即它把方差的计算归结为计算两个容易求得的期望EX 和2EX .例16设随机变量X 服从参数为p 的0—1分布,求DX .解由题设知,X 的概率分布为X 01P1p-p由例1知,EX p =,再由(4.3)式2220(1)1EX p p p =⋅-+⋅=,于是222()(1)DX EX EX p p p p =-=-=-.例17在本节开始所举甲、乙两位射击运动员射击一例中,求1DX 及2DX .解前面已经计算过128EX EX ==,又22222170.480.390.2+100.165EX =⨯+⨯+⨯⨯=22222200.0450.1660.2+100.671.2EX =⨯+⨯+⨯⨯=,所以22111()1DX EX EX =-=,22222()7.2DX EX EX =-=.例18设X 服从区间[,]a b 上的均匀分布,求DX .解由题设知1,,~()0,a xb X f x b a⎧≤≤⎪=-⎨⎪⎩其他.由(4.4)式,有222221()3ba a ab b EX x f x dx x dx b a +∞-∞++==⋅=-⎰⎰,由例5知,2a bEX +=,于是222222()()()3212a ab b a b b a DX EX EX +++-=-=-=.*例19设随机变量~()X P λ,其中0λ>,求DX .解X 的概率分布为{}!m P X m e m λλ-==,(0,1,2,...)m =.由例4可知=EX λ,根据(4.3)式2201(11)!(1)!m m i i EX m e m em m λλλλ∞∞--====-+-∑∑21(2)!(1)!m m m m e e m m λλλλ∞∞--===+--∑∑2122010(2)!(1)!m m m m e e m m λλλλλλ--∞∞---=-==+--∑∑2λλ=+.因此利用(4.17)式有2222()()DX EX EX λλλλ=-=+-=.即=EX DX λ=.例20设X 服从参数为λ的指数分布,即X 的概率密度为,0,()0,x e x f x λλ-⎧>=⎨⎩其他.其中0λ>,求DX .解由例6可知1=EX λ,再由(4.4)式,有2220()x EX x f x dx x e dxλλ+∞+∞--∞==⎰⎰220xx x e xe dxλλ+∞--+∞=-+⎰22λ=.因此,利用(4.17)式有2221()DX EX EX λ=-=.*例21设随机变量2~(,)X N μσ,即X的概率密度为22()2(),x f x μσ--=(x -∞<<+∞),其中μ,σ为实数,并且0σ>,求,EX DX .解根据题意得22()2()x EX xf x dx dxμσ--+∞+∞-∞-∞==⎰⎰令x y μσ-=,则dxdy σ=,由泊松积分221y dy -+∞-∞=⎰,有22y EX dy-+∞-∞=⎰2222y y yedyμ--+∞+∞-∞-∞=+⎰μ=.由(4.16)式,有2()()DX x EX f x dx+∞-∞=-⎰22()22x e dxμσ--+∞-∞=⎰2222y y e d y-+∞-∞⎰=222y de σ-+∞-∞=-⎰222222y y ye dyσ--+∞-∞+∞=+-∞⎰2σ=.特别地,若~(0,1)X N ,则0EX =,1DX =.定义4.6在考虑n 维随机向量12(,,,)Tn X X X 时,若每个i DX (1,2,)i = 都存在,则称12(,,,)T n DX DX DX 为n 维随机向量12(,,,)T n X X X 的方差.二、方差的性质关于方差,我们有下面几个重要性质.设X ,Y 是随机变量,a ,b ,c 为实值常数,则性质10Dc =.(4.18)性质22()D aX a DX =.(4.19)性质3()D X b DX +=.(4.20)性质1到性质3的证明留给读者自己完成.性质42()D aX b a DX +=.(4.21)证明222()[()()][()]D aX bE aX b E aX b E a X EX +=+-+=-222()a E X EX a DX =-=.性质5若X 与Y 相互独立,则()D X Y DX DY ±=+.(4.22)证明由(4.17)式,有22()()[()]D X Y E X Y E X Y ±=±-±2222(2)[()2()]E X XY Y EX EX EY EY =±+-±⋅+2222[2()][()2()]EX E XY EY EX EX EY EY =±+-±⋅+2222[()][()]2[()]EX EX EY EY E XY EX EY =-+-±-⋅2[()]DX DY E XY EX EY =+±-⋅.由X 与Y 独立,有()E XY EX EY =⋅.于是()D X Y DX DY ±=+.性质5的逆命题不成立,即由()D X Y DX DY ±=+,不能得到X 与Y 相互独立.但是它可以推广到任意有限个相互独立的随机变量的情形,即若12,,,n X X X 相互独立,则11()n niii i D X DX===∑∑.(4.23)例22设随机变量~(,)X B n p ,求DX .解根据题意{}ii n in P X i C p q-==,(0,1,,)i n = ,则X 可以理解为n 重伯努利试验中“成功”的次数.若令1,1,2,,,0,i i X i n i ⎧==⎨⎩ 第次成功,第次失败,则12n X X X X =++⋅⋅⋅+,并且(1,2,,)i X i n = 相互独立同服从参数为p 的0—1分布,于是i EX p =,i DX pq =,(1,2i = ,).由(4.10)式及(4.23)式,有11()nni ii i EX E X EXnp =====∑∑,11()nni ii i DX D X DXnpq =====∑∑.例23设随机变量X 与Y 相互独立,并且0EX EY ==,2DX DY σ==,求2()E X Y -.解由(4.9)式,有()0E X Y EX EY -=-=,由X 与Y 独立,得222()2D X Y DX DY σσσ-=+=+=,于是2222()()[()]202E X Y D X Y E X Y σσ-=-+-=+=.4.3常用分布及其数学期望与方差表为了方便今后查询,现将七种常用分布的期望与方差总结为下表.表4—1常用分布及其数学期望与方差总结表4.4协方差与相关系数前面我们介绍了随机变量的数学期望和方差,本节将讨论反映多维随机变量的两个分量之间关系的强弱的数字特征.一、协方差在证明方差的性质时,我们已经知道,在X 与Y 相互独立的条件下,有[()()]0E X EX Y EY --=,可知,当[()()]0E X EX Y EY --≠时,X 与Y 一定不独立.这说明[()()]E X EX Y EY --在一定程度上反映了随机变量X 与Y 之间的关系.定义7设(,)X Y 为二维随机向量,EX 和EY 均存在,若数学期望[()()]E X EX Y EY --存在,则称数值[()()]E X EX Y EY --为X 与Y的协方差,记作cov(,)X Y ,即cov(,)[()()]X Y E X EX Y EY =--.(4.24)显然,cov(,)X X DX=(4.25)由定义7知,X 与Y 的协方差实际上就是二元随机变量函数()()X EX Y EY --的数学期望,因此由定理2有(1)设(,)X Y 是二维离散型随机向量,其概率分布为{,}i j ij P X x Y y p ===,,1,2,i j = ,并且|()()|ij ijijx EX y EY p--<+∞∑∑,则cov(,)()()i j ij ijX Y x EX y EY p =--∑∑.(4.26)(2)设(,)X Y 是二维连续型随机向量,其概率密度为(,)f x y ,并且|()()|(,)x EX y EY f x y dxdy +∞+∞-∞-∞--<+∞⎰⎰,则cov(,)()()(,)X Y x EX y EY f x y dxdy +∞+∞-∞-∞=--⎰⎰.(4.27)此外,协方差还有下面常用性质:1.cov(,)()X Y E XY EX EY =-⋅.(4.28)证明cov(,)()()X Y E X EX Y EY =--()E XY XEY YEX EX EY =--+⋅()E XY EX EY =-⋅.公式(4.28)提供了一种计算协方差的主要方法,即它将协方差的计算归结为计算三个数学期望EX ,EY 和()E XY .2.cov(C,X)0,=C 为任意常数.3.cov(X,X)DX =.4.设X 与Y 独立,则cov(,)0X Y =.5.()2cov(,)D X Y DX DY X Y ±=+±.(4.29)6.对称性cov(,)cov(,)X Y Y X =.(4.30)7.齐次性cov(,)cov(,)aX bY ab X Y =.(4.31)8.可加性cov(,)cov(,)cov(,)X Y Z X Z Y Z ±=±.(4.32)性质2至性质8的证明留给读者自行完成.二、相关系数和相关性协方差在一定程度上反映了X 与Y 相互间的关系,但它还受X 与Y 本身度量单位的影响.例如,kX 和kY 之间的统计关系与X 和Y 之间的统计关系应该是一样的,但协方差却扩大了2k 倍,即2cov(,)cov(,)kX kY k X Y =为了克服这一缺点,可将每个随机变量标准化,即取*X=*Y =并将**cov(,)X Y 作为X 和Y 之间相互关系的一种度量,而********cov(,)()()()()X Y E X Y E X E Y E X Y =-=E===此结果表明,可利用标准差对协方差进行修正,从而得到一个新的数字特征—相关系数.定义8设(,)X Y 为二维随机向量,0DX >,0DY >,则称为X 与Y 的相关系数,记作XY ρ,也可简记为ρ,即XYρ==(4.33)显然,XY ρ的协方差.定理3设X 与Y 是两个随机变量,并且XY ρ存在,则有||1XY ρ≤.证明由定义8知,只需证明2cov (,)X Y DX DY ≤⋅.由于任何随机变量的方差都是一个非负实数,所以对任意实数k ,恒有()D Y kX -2()E Y kX EY kEX =--+222[()2()()()]E Y EY k Y EY X EX k X EX =----+-0≥,即22cov(,)0DY k X Y k DX -+≥.上面不等式的左边是一个关于k 的一元二次函数,因此该不等式成立的充分必要条件为判别式0∆≤,即2[2cov(,)]40X Y DX DY ∆=--⋅≤,于是2cov (,)X Y DX DY ≤⋅.定理4设Y 是随机变量X 的线性函数:Y aX b =+,则当0a >时,1XY ρ=;当0a <时,1XY ρ=-.证明由定义7知cov(,)()()X Y E X EX Y EY =--()[()()]E X EX aX b E aX b =-+-+2()aE X EX =-aDX =.因为2()DY D aX b a DX =+=,所以||||XY aDX aa DX a ρ===,即当0a >时,1XY ρ=;当0a <时,1XY ρ=-.以上两个定理表明,当Y aX b =+时,XY ρ的绝对值达到最大值1.事实上,还可以证明定理4的逆命题也是成立的.因此,X 与Y 的相关系数XY ρ反映了X 与Y 线性关系的密切程度.定义9设XY ρ为X 与Y 的相关系数.(1)如果0XY ρ≠,则称X 与Y 是相关的(实为一定程度的线性相关).其中当||1XY ρ=时,称X 与Y 是完全相关的;当0XY ρ>时,称X 与Y 正相关;当0XY ρ<时,称X 与Y 负相关.(2)如果0XY ρ=,则称X 与Y 不相关(实为线性无关).显然,若X 与Y 相互独立,则0XY ρ=.例24设(,)X Y 的概率分布为Y X 1231-0.10.20.1000.20.110.20.1求X 与Y 的协方差及相关系数.解由(,)X Y 的概率分布,不难得到其关于X 和关于Y 的边缘概率分布为于是(1)0.400.310.30.1EX =-⨯+⨯+⨯=-,10.320.530.2 1.9EY =⨯+⨯+⨯=.由(4.3)式及(4.5)式,有222(1)0.410.30.7EX =-⨯+⨯=,222210.320.530.2 4.1EY =⨯+⨯+⨯=,()(1)10.1(1)20.2(1)30.1010020.2E XY =-⨯⨯+-⨯⨯+-⨯⨯+⨯⨯+⨯⨯030.1110.2120.11300.4+⨯⨯+⨯⨯+⨯⨯+⨯⨯=-.于是222()0.7(0.1)0.69DX EX EX =-=--=,222() 4.11.90.49DY EY EY =-=-=,cov(,)()0.40.11.90.21X Y E XY EX EY =-⋅=-+⨯=-,0.210.360.830.7XY ρ-===-⨯.例25已知随机变量X 服从区间[0,2]π上的均匀分布,并且sin Y X =,sin()Z X k =+,k 为常数,求Y 与Z 的相关系数YZ ρ.解由题设知1,[0,2],~()20,X x X f x ππ⎧∈⎪=⎨⎪⎩其他.由(4.4)及(4.6)式,有201(sin )sin 02EY E X xdx ππ===⎰,X 1-01P0.40.30.3Y 123P0.30.50.2201[sin()])02EZ E X k x k dx ππ=+=+=⎰,222201(sin )sin 0.52EY E X xdx ππ===⎰,222201[sin ()]sin ()0.52EZ E X k x k dx ππ=+=+=⎰,()[sin sin()]E YZ E X X k =+201sin sin()2x x k dx ππ=+⎰201[cos cos(2)]4k x k dxππ=-+⎰1cos 2k =.于是22()0.5DY EY EY =-=,22()0.5DZ EZ EZ =-=,cov(,)()Y Z E YZ EY EZ =-⋅1cos 2k =,1cos 2cos YZ k k ρ==.若2k π=,则0YZ ρ=,此时221Y Z +=.但由于Y 与Z 满足关系221Y Z +=,所以Y 与Z 不独立.例26对于二维随机向量(,)X Y ,设X 服从[1,1]-上的均匀分布,并且2Y X =,证明0XY ρ=.证明由题设知1,[1,1],~()20,X x X f x ⎧∈-⎪=⎨⎪⎩其他.于是0EX =.由(4.4)式及(4.28)式,有13311()02E X x dx -==⎰,cov(,)()X Y E XY EX EY =-⋅3()0E X ==,因此0XY ρ=.但由于X 与Y 满足关系2Y X =,所以X 与Y 不独立.上两例表明,X 与Y 不相关,但它们不独立.因此,由X 与Y 不相关不能得到X 与Y 相互独立.事实上,X 与Y 不相关是指没有线性关系,但并不排除存在其他关系,如平方关系.*例27设二维随机向量1212(,)~(,,,,)X Y N μμσσρ,求X 与Y 的相关系数XY ρ.解根据二维正态分布的边缘概率密度知221212,,,EX EY DX DX μμσσ====而12cov(,)()()(,)X Y x y f x y dxdyμμ+∞+∞-∞-∞=--⎰⎰12()()x y μμ+∞+∞-∞-∞=--⎰222112211()exp 2y x x dxdy μμμρσσσ⎡⎤⎫---⎥⨯--⎪⎥⎭⎦令211211,,y x x t u μμμρσσσ⎛⎫---=-=⎪⎭则有222()/21121cov(,)()2ut X Y u e dtduσσρσσπ+∞+∞-+-∞-∞=+⎰⎰2221222()()2u tu e du e dt ρσσπ+∞+∞---∞-∞=⎰⎰2222)()u tue du te dt +∞+∞---∞-∞⎰⎰12ρσσ==于是XYρρ==.注 1.二维正态分布随机向量(,)X Y 的概率密度中的参数ρ是X 与Y 的相关系数,X 和Y 的各自的数学期望、方差及它们的相关系数可以确定二维正态随机向量的分布;2.在第三章已经讲过,若(,)X Y 服从二维正态分布,则X 和Y 相互独立的充分必要条件为0ρ=.现知XY ρρ=,故对于二维正态随机向量(,)X Y 来讲,X 和Y 不相关与X 和Y 相互独立是等价的.4.5矩、协方差矩阵与相关矩阵本节在推广随机变量的期望、方差和两个随机变量的协方差、相关系数等数字特征基础上,引入矩、协方差矩阵和相关矩阵这些概念.一、矩定义10设X 为随机变量,若1,2,k EX k =,…存在,则称其为X 的k 阶原点矩,(简称k 阶矩),也记作k v .若()2,3,k E X EX k -=,…存在,则称其为X 的k 阶中心矩,也记作k μ.若2,3,kE X EX k -=,…存在,称其为X 的k 阶绝对中心矩.对于二维随机向量X Y (,),若(,1,2,k l E X Y k l =),…存在,则称其为X 和Y 的+k l 阶混合矩.若[()(),1,2,k l E X EX Y EY k l --=],…存在,则称其为X 和Y 的+k l 阶混合中心矩.注1.随机变量X 的数学期望EX 是X 的一阶原点矩;2.随机变量X 的方差DX 是X 的二阶中心矩.二、协方差矩阵与相关矩阵定义11设12(,,,)n X X X 是n 维随机向量,并且(1,2,,)i DX i n = 存在,则以cov(,)i j X X 为元素的n 阶矩阵111212122212.....................n n n n nn v v v v v v V v v v ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,ii i v DX =,cov(,)ij i j v X X =,,1,2,,i j n = 称为该n 维随机向量的协方差矩阵,记作V .显然,协方差矩阵V 是对称矩阵,即ij ji v v =,,1,2,,i j n = .定义12设12(,,,)n X X X 是n 维随机向量,其任意两个分量i X 与j X 的相关系数ij ρ(,1,2,,i j n = )都存在,则以ij ρ为元素的n 阶矩阵111212122212.....................n n n n nn R ρρρρρρρρρ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦称为该n 维随机向量的相关矩阵,记作R .由于cov(,)i i i X X DX =,1,2,,i n =,因此1ii ρ==,(1,2,,i n = ),ij ρ==(,1,2,,i j n = ).对于协方差矩阵和相关矩阵,我们主要讨论2n =的情况.例28已知二维随机向量(,)X Y 的协方差矩阵为251236a V ⎡⎤=⎢⎥⎣⎦,求参数a 以及相关矩阵R .解根据题意知11221ρρ==,1221120.456ρρ====⨯又由对称性知12a =,因此10.40.41R ⎡⎤=⎢⎥⎣⎦.例29已知随机变量X 的方差2DX σ=,并且32Y X =-,求(,)X Y 的协方差矩阵及相关矩阵.解211v DX σ==,222(32)4v DY D X σ==-=.由于32Y X =-为线性函数,所以1XY ρ=-,即12211ρρ==-.于是2122112cov(,)2XY v v X Y ρρσ===-.因此222221222424V σσσσσ-⎡⎤-⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦,1111R -⎡⎤=⎢⎥-⎣⎦.例30计算例24中(,)X Y 的协方差矩阵V .解由于110.69v DX ==,220.49v DY ==,12cov(,)0.21v X Y ==-,因此0.690.210.210.49V -⎡⎤=⎢⎥-⎣⎦.例31设(,)X Y 的概率密度为221,1,(,)0,x y f x y π⎧+≤⎪=⎨⎪⎩其他,求(,)X Y 的相关矩阵R .解由(4.6)式,有11()()0E XY dy -==⎰11()0EX EY dy -===⎰于是cov(,)()0X Y E XY EX EY =-⋅=显然0DX DY =>,所以120ρ==于是1001R ⎡⎤=⎢⎥⎣⎦.习题四1.盒中有5个球,其中有3个白球、2个黑球,从中一次任取两个球,求取得白球数X 的数学期望与方差.2.设随机变量X 的概率分布为{}1(2,4,,18,20),10P X k k ===…求EX .3.袋中有5个乒乓球,编号为1,2,3,4,5,现从中一次任取3个,用X 表示取出的3个球中最大编号,求EX .4.设随机变量X 的概率分布为求EX ,2EX 和2(35)E X +.5.连续型随机变量X 的概率密度为,01()0,kx x f x α⎧<<=⎨⎩其他,,0k α>(),且0.75EX =,求(1),k α;(2)DX .6.一个螺丝钉的重量是随机变量,平均重10克,标准差为1克,求100个同型号螺丝钉重量的数学期望和方差.7.设随机变量X 的概率密度为110()1010x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩,,,其他,求EX 和DX .8.设随机变量||1~()0x X f x <=⎩,其他,求EX 和DX .X 2-02P0.40.30.39.设随机变量X 的概率密度为0()00,x e x f x x -⎧≥=⎨<⎩,,,求:(1)2Y X=的数学期望;(2)2XY e-=的数学期望.10.设随机变量X 与Y 相互独立,概率密度分别为01()0,X x x f x ≤≤⎧=⎨⎩2,,,其他和55()05,y Y e y f y y -⎧>=⎨≤⎩,,,求()E XY .11.设随机变量X 与Y 相互独立,概率密度分别为01()0,X x f x ≤≤⎧=⎨⎩1,,,其他和0()00,y Y e y f y y -⎧>=⎨≤⎩,,,求()E X Y +.12.设随机变量X 服从柯西分布,即其概率密度为21()(),(1)f x x x π=-∞<<+∞+试证明X 的数学期望不存在.13.设随机变量X 的分布函数为10()0x e x F x λ-⎧->=⎨⎩,,其他,求EX 和DX .14.一台实验仪器中有3个元件,各元件发生故障是相互独立的,其概率分别为0.2,0.3,0.4,求发生故障的元件数的数学期望及方差.15.同时掷2颗骰子,设随机变量X 表示出现点数的最大值,求EX 和DX .16.把4只球随机的投入4个盒子中,设X 表示空盒子的个数,求EX 和DX .17.一批零件中有9个合格品和3个废品,在安装机器时,从这批零件中任取1个,如果取出的是废品就不再放回去.求在取得合格品以前,已经取出废品数的数学期望和方差.18.调查结果表明:某地区的科技人员年龄X 具有如下概率密度4(24)(84),2484,()0,k x x x f x ⎧--≤≤=⎨⎩其他,(1)求常数k 的值;(2)计算该地区科技人员的平均年龄.19.设随机变量X 服从参数为λ的指数分布,并且Y =,求Y 的数学期望与方差.20.设随机变量X 服从区间[0,2]上的均匀分布,并且|1|Y X =-,求EY 和DY .21.对某一目标进行射击,每次射击相互独立并且击中概率为p ,(1)若直到击中为止,求射击次数的数学期望与方差;(2)若直到击中k 次为止,求射击次数的数学期望与方差.22.设X 服从参数为2的泊松分布,32Y X =-,试求,,EY DY cov(,)XY X Y ρ及.23.设随机向量(,)X Y 的概率密度为1(),02,02(,)80,x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩,其他,试求,,cov(,)()XY EX EY X Y D X Y ρ+,,.24.设随机向量(,)X Y 的概率密度为(),0,0,(,)0,x y e x y f x y -+⎧<<+∞<<+∞=⎨⎩其他,求cov(,)X Y .25.设随机变量X 的方差16DX =,随机变量Y 的方差25DY =,又X 与Y 的相关系数0.5XY ρ=,求()D X Y +与()D X Y -.26.设随机向量(,)X Y 服从单位圆域{}22(,)1x y x y +≤上的均匀分布,试证明X ,Y 不相关.27.将3个球随机地放入4个盒子,记(1,2)i X i =表示第i 个盒子内球的个数,求随机向量12(,)X X 的协方差矩阵.28.设随机变量X 的概率密度为0.5,02()0,x x f x <<⎧=⎨⎩其他,求随机变量X 的1至4阶原点矩和中心距.29.设随机变量X 服从拉普拉斯分布,即其概率密度为1(),2xf x e x λλ-=-∞<<+∞,其中0λ>为常数,求X 的k 阶中心距.30.设随机向量21.502,01(,)~(,)0xy x y X Y f x y ⎧≤≤≤≤=⎨⎩,,其他,求随机向量(,)X Y 的均值和协方差矩阵.31.设随机向量22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y Ae -+++-+-=,试确定A 的值,并求X 与Y 的相关矩阵.32.设二维随机向量(,)X Y 的概率密度为sin()(,)(,)0A x y x y Df x y +∈⎧=⎨⎩,,其他,其中D 为矩形区域(,)0,022x y x y ππ⎧⎫≤≤≤≤⎨⎬⎩⎭.(1)求系数A ;(2)求EX EY DX 及DY ;(3)求cov(,)X Y 及XY ρ;(4)求协方差矩阵C 及相关系数矩阵R .选做题四1.某流水生产线上每个产品部合格的概率为01p p <<(),各产品合格与否相互独立,当出现一个不合格产品时即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求X 的数学期望E X ()和方差D X ().2.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格产品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数X 的数学期望;(2)从乙箱中任取一件产品是次品的概率.3.设随机变量X 的概率密度函数为()1cos ,0,220,x x f x π⎧≤≤⎪=⎨⎪⎩其他,对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.4.设两个随机变量,X Y 相互独立,且都服从均值为0,方差为12的正态分布,求随机变量X Y -的方差.5.假设二维随机向量,X Y ()在矩形(){},02,01G x y x y =≤≤≤≤上服从均匀分布,记0,,1,X Y U X Y ≤⎧=⎨⎩若若>,0,2,1,2,X Y V X Y ≤⎧=⎨>⎩若若(1)求U V 和的联合分布;(2)求U V 和的相关系数γ.6.箱中装有6个球,其中红、白、黑球个数分别为1,2,3,现从箱中随机地取出2个球,记X 为取出红球的个数,Y 为取出白球的个数.(1)求随机向量,X Y ()的概率分布;(2)求Cov(,)X Y .7.设二维离散型随机向量,X Y ()的概率分布为Y X 012014014101302112112(1)求{}2P X Y =;(2)求Cov(,)X Y Y -.8.设A B 和为随机事件,且()14P A =,()13P B A =,()12P A B =,令110X Y ⎧⎧==⎨⎨⎩⎩, A发生,, B发生,0,A不发生,,B不发生.(1)求二维随机向量(),X Y 的概率分布;(2)求X Y 和的相关系数XY ρ.9.游客乘电梯从底层到电视塔顶层观光,电梯于每个整点的第5分钟、25分钟和55分钟从底层起行.假设一游客在早晨8点的第X 分钟到底层候梯处,且X 在[0,60]上服从均匀分布,求该游客等候时间的数学期望.10.两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自行开动,试求两台记录仪无故障工作的总时间T 的概率密度f t ()、数学期望和方差.11.一商店经销某种商品,每周进货的数量X 与顾客对该种商品的需求量Y 是相互独立的随机变量,且都服从区间[10,20]上的均匀分布,商品每销售出一单位商品获得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获得利润500元,试计算此商点经销该种商品每周所得利润的期望值.12.设,A B 是两个随机事件,随机变量111,1,A B X Y A B ⎧⎧==⎨⎨--⎩⎩,若出现,,若出现,若不出现,若不出现,试证明:随机变量X Y 和不相关的充分必要条件是A B 与相互独立.13.假设随机变量U 在区间[2,2]-上服从均匀分布,随机变量11111,11,1U U X Y U U ≤-≤⎧⎧==⎨⎨->-->⎩⎩,若,,若,若,若,试求:(1)X Y 和的联合概率分布;(2)()D X Y +.14.设随机变量X 的概率密度为()1,10,21,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩,其他,令()2,,Y X F x y =为二维随机向量(),X Y 的分布函数,求:(1)Y 的概率密度()Y y f ;(2)()Cov ,X Y ;(3)1,42F ⎛⎫- ⎪⎝⎭.。
概率论与数理统计教案 第4章 随机变量的数字特征

第4章 随机变量的数字特征教学要求1.理解随机变量的数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,掌握用数字特征的定义、常用计算公式及基本性质计算具体分布的数字特征.2.掌握利用随机变量X 的概率分布求其函数)(X g 的数字期望[])(X g E ,掌握利用随机变量X 和Y 的联合分布求其函数),(Y X g 的数学期望[]),(Y X g E .3.理解X 与Y 不相关的概念,掌握X 与Y 独立和不相关的关系与判定方法.4.掌握六个常用分布的数学期望和方差,理解二维正态分布中5个参数的意义.5.了解原点矩、中心矩、协方差矩阵的概念.6.了解n 维正态随机变量的四个性质.教学重点数学期望、方差的概念与性质及其应用,用数字特征(数学期望、方差、标准差、协方差、相关系数)的定义、常用计算公式及性质计算具体分布的数字特征.教学难点协方差、相关系数概念的理解.课时安排本章安排6课时.教学内容和要点一、 数学期望1.离散型随机变量数学期望2.连续型随机变量数学期望3.随机变量的函数数学期望4.常用分布的数学期望5.数学期望的性质二、 方差1.方差的概念2.方差的计算3.常用分布的方差4.方差的性质5.随机变量的标准化三、协方差和相关系数1.协方差的定义与性质2.相关系数的定义与性质四、矩与协方差矩阵1.矩与协方差矩阵的概念2. n 维正态分布主要概念1.数学期望(离散型随机变量的数学期望、连续型随机变量的数学期望、随机变量函数的数学期望)2.方差 、标准差3.标准化随机变量4.协方差5.相关系数X Y不相关6.,7.矩8.协方差矩阵。
概率论与数理统计 第4章 随机变量的数字特征

解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15
大学课件概率论与数理统计第4章随机变量的数字特征

(3) Ef (X) g(X) E[f (X)] E[g(X)]
特别地 E[X Y] E[X] E[Y]
E[aX bY c] aE[X] bE[Y] c
(4) 若X, Y相互独立,则E[XY] E[X] E[Y]
(5) 若a X b,则E[X]存在,且a E[X] b
注:这些性质可以推广到多个随机变量上。
E[X] (1) 125 75 2 15 3 1 17 216 216 216 216 216
由于平均赢利小于0,故这一游戏规则对下注 者是不利的。
离散型随机变量函数的数学期望
已知P( X xk ) pk,当 g( xk ) pk 时,
k
g(X)的数学期望为
E[g(X)] g(xk )P(X xk )
E[ X ] 1 0.910 11(1 - 0.910) 7.513 10
结论:分组化验法的次数少于逐一化验法的次数
二、连续型随机变量的数学期望
设X是连续型随机变量,其密度函数为f (x),在
数轴上取很密的分点x0 <x1<x2< …,则X落在小区
间[xi, xi+1)的概率是
阴影面积近似为
9 P(X 9) 10 P(X 10)
由于打出环数的概率不同,所以不 是1到10的算术平均.
1.离散型随机变量的数学期望
设随机变量X的分布律为 P( X xk ) pk ,
若当 xk pk 时,则称 xk pk 为随机
k
k
变量X的数学期望或均值,记作 E[ X ] ,即有
E[ X ] xk pk xk P(X xk )
均匀分布的期望
例7 设X服从均匀分布,其分布密度为
x
b
概率论与数理统计(经管类)复习要点 第4章 随机变量的数字特征

第四章 随机变量的数字特征1. 把刻画随机变量某些方面特征的数值称为随机变量的数字特征,如期望、方差、协方差、相关系数等。
2. 随机变量的期望反映了随机变量取值的集中位置。
离散型随机变量的期望设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…若级数∑ix i p i 绝对收敛(即级数∑i丨x i 丨p i 收敛),则定义X 的数学期望(简称均值或期望)为E (X )=∑ix i p i注:当X 的可能取值为有限多个x 1,x 2,…,x n 时,E (X )=∑=ni 1x i p i 当X 的可能取值为可列多个x 1,x 2,…,x n ,…时,E (X )=∑∞=1i x i p i三种重要离散型随机变量的数学期望:3. 离散型随机变量函数的数学期望 设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…令Y =g (X ),若级数∑∞=1k g (x k )p k 绝对收敛,则随机变量Y 的数学期望为E (Y )= E[g (X )] =∑∞=1k g (x k )p k4. 连续型随机变量的期望三种重要连续型随机变量的数学期望:5. 连续型随机变量函数的数学期望2017.4单解:6. 二维随机变量的期望二维随机变量函数的期望7. 期望的性质(1)常数的期望等于这个常数,即E (C )=C ,其中C 为常数证明 常数C 作为随机变量,它只可能取一个值C ,即P {X =C }=1,所以E (C )=C ⋅1=C(2)常数与随机变量X 乘积的期望等于该常数与随机变量X 的期望的乘积,即E (C X )=C ⋅E (X ) (3)随机变量和的期望等于随机变量期望之和,即E (X +Y )= E (X )+ E (Y ) 推广:E (C 1X +C 2Y )= C 1E (X )+ C 2E (Y ),其中C 1,C 2为常数 一般地,设X 1,X 2,…,X n ,为n 个随机变量,则有E (∑=ni iX 1)=∑=ni iX E 1)(E (∑=ni ii X C 1)=∑=ni iiX E C 1)( 其中C i(i=1,2,…)为常数(4)两个相互独立的随机变量乘积的期望等于期望的乘积,即若X ,Y 是相互独立的随机变量,则E (XY )= E (X )E (Y )由数学归纳法可证得:当X1,X2,…,X n相互独立时有E(X1,X2,…,X n)= E(X1)E(X2)…E(X n)2018.4单解:指数分布的期望值为 1,故E(X)= E(Y)=21,所以E(X Y)= E(X)E(Y)=412018.4计解:(1)平均收益率E(X)=1%×0.1+2%×0.2+3%×0.1+4%×0.3+5%×0.2+6%×0.1=3.6%(2)预期利润10×3.6%=0.36万元2017.10单解:E(-3X +2)=-3 E(X)+2=-3×51+2=572017.4填解:E(X+Y)= E(X)+ E(Y)=20×0.1+2=48. 方差反映了随机变量偏离中心——期望的平均偏离程度。
随机变量的数字特征——期望,方差以及协方差

例12: 设X ~ B(n , p), Y = eaX,求E(Y)。
解:
EY EeaX n eak P( X k)
k0
n
e
akC
k n
pk (1
p)nk
k0
n
C
k n
(e
a
p)k (1
p)nk
k0
(ea p (1 p))n
例13: 设X ~ U[0,], Y =sinX,求E(Y)。
g( xk )pk
k
绝对收敛,则Y 的数学期望存在,且
E(Y ) E[g( X )] g( xk ) pk
k
(2) 设X 为连续型随机变量, 其概率密度为 f (x),且 Y= g(X)也是连续型随机变量。若
g( x) f ( x)dx
绝对收敛,则Y 的数学期望存在,且
E(Y ) E[g(X )] g(x) f (x)dx
2、几种常见离散型分布的数学期望
1) 两点分布 例3:设随机变量X服从参数为p 的两点分布,求EX
解: EX=0×(1-p)+1×p=p
2) 二项分布 例4:设随机变量X~B(n,p),求EX 解: 易知 X 的概率分布为:
P( X k) Cnk pk (1 p)nk , k 0,1, , n
k!
E( X ) kP( X k)
k k e
k0
k0 k!
e
k 1
k0 (k 1)!
ee
例5 某人的一串钥匙上有n把钥匙,其中只有一把能 打开自己的家门,他随意地试用这串钥匙中的某一 把去开门. 若每把钥匙试开一次后除去,求打开门 时试开次数的数学期望.
解:设试开次数为X,
第4章(随机变量的数字特征与极限定理)4.4-4.5

e =E{[Y-(a+bX)]2 } =E(Y2)+b2E(X2)+a2- 2bE(XY)+2abE(X) - 2aE(Y) 这样求出的最佳逼近为
∂e = 2a + 2bE( X) − 2E(Y) = 0L(X)=a0+b0X ∂a ∂e = 2bE( X2 ) − 2E( XY) + 2aE( X) = 0 ∂b
的概率分布为: Y 的概率分布为 P{Y = −1} = 0.55, P{Y = 0} = 0.25, P{Y = 2} = 0.2,
例1 已知离散型随机向量 ( X,Y ) 的概率分布如右表, 的概率分布如右表, 求 cov( X,Y ). 解 于是有
Y X 0 1 2
−1 0.1 0.3 0.15
Cov( X ,Y ) ρ= =0 D( X )D(Y )
并不一定能推出X和 独立. 但由 ρ = 0 并不一定能推出 和Y 独立
服从(-1/2, 1/2)内的均匀分布 而 内的均匀分布,而 例1 设X服从 服从 内的均匀分布 Y=cos X, 不难求得, 不难求得, Cov(X,Y)=0, , 和 不相关 因而 ρ =0,即X和Y不相关 . , 但Y与X有严格的函数关系, X和Y不独立 . 有严格的函数关系, 与 有严格的函数关系 即 和 不独立
−∞ 0
x f X ( x)dx = ∫ x2 ⋅ 4x(1 − x2 )dx ∫−∞
2 0+∞1 Nhomakorabea于是
E(X)= 8/ 15, E(Y )= 4/ 5, E(XY ) = 4/ 9,
从而 cov( X,Y ) = E( XY ) − E( X)E(Y ) = 4/ 225, 又 E( X 2 ) = 1/ 3,
概率论与数理统计第四章随机变量的数字特征

第四章 随机变量的数字特征前面讨论了随机变量的分布函数,我们知道分布函数全面地描绘了随机变量的统计特性.但是在实际问题中,一方面由于求分布函数并非易事;另一方面,往往不需要去全面考察随机变量的变化情况而只需知道随机变量的某些特征就够了.例如,在考察一个班级学生的学习成绩时,只要知道这个班级的平均成绩及其分散程度就可以对该班的学习情况作出比较客观的判断了.这样的平均值及表示分散程度的数字虽然不能完好地描绘随机变量,但能更突出地描绘随机变量在某些方面的重要特征,我们称它们为随机变量的数字特征.本章将介绍随机变量的常用数字特征:数学期望、方差、相关系数和矩.第一节 数学期望1.数学期望的定义粗略地说,数学期望就是随机变量的平均值.在给出数学期望的概念之前,先看一个例子.要评判一个射手的射击程度,需要知道射手平均命中环数.设射手A 在同样条件下进展射击,命中的环数X 是一随机变量,其分布律如下:表4-1由X 的分布律可知,假设射手A 共射击N 次,根据频率的稳定性,所以在N 次射击中,大约有0.1×N 次击中10环,0.1×N 次击中9环,0.2×N 次击中8环,0.3×N 次击中7环,0.1×N 次击中6环,0.1×N 次击中5环,0.1×N 次脱靶.于是在N 次射击中,射手A 击中的环数之和约为10×0.1N +9×0.1N +8×0.2N +7×0.3N +6×0.1N +5×0.1N +0×0.1N .平均每次击中的环数约为N1〔10×0.1N +9×0.1N +8×0.2N +7×0.3N +6×0.1N +5×0.1N +0×0.1N 〕 =10×0.1+9×0.1+8×0.2+7×0.3+6×0.1+5×0.1+0×0.1 =6.7〔环〕.由这样一个问题的启发,得到一般随机变量的“平均数〞,应是随机变量所有可能取值与其相应的概率乘积之和,也就是以概率为权数的加权平均值,这就是所谓“数学期望的概念〞.一般地,有如下定义:定义4.1 设离散型随机变量X 的分布律为P {X =x k }=p k k =1,2,…, 假设级数∑∞=1k k kp x绝对收敛,那么称级数∑∞=1k k kp x为随机变量X 的数学期望〔Mathematical expectation 〕,记为E 〔X 〕.即E 〔X 〕=∑∞=1k k kp x. 〔4.1〕设连续型随机变量X 的概率密度为f 〔x 〕,假设积分⎰+∞∞-x x xf d )(绝对收敛,那么称积分⎰+∞∞-x x xf d )(的值为随机变量X 的数学期望,记为E 〔X 〕.即E 〔X 〕=⎰+∞∞-x x xf d )(. 〔4.2〕数学期望简称期望,又称为均值.例4.1 某商店在年末大甩卖中进展有奖销售,摇奖时从摇箱摇出的球的可能颜色为:红、黄、蓝、白、黑五种,其对应的奖金额分别为:10000元、1000元、100元、10元、1元.假定摇箱内装有很多球,其中红、黄、蓝、白、黑的比例分别为:0.01%,0.15%,1.34%,10%,88.5%,求每次摇奖摇出的奖金额X 的数学期望. 解每次摇奖摇出的奖金额X 是一个随机变量,易知它的分布律为因此,E 〔X 〕=10000×0.0001+1000×0.0015+100×0.0134+10×0.1+1×0.885=5.725. 可见,平均起来每次摇奖的奖金额缺乏6元.这个值对商店作方案预算时是很重要的.例4.2 按规定,某车站每天8点至9点,9点至10点都有一辆客车到站,但到站的时刻是随机的,且两者到站的时间互相独立.其分布律为一旅客8点20分到车站,求他候车时间的数学期望.解 设旅客候车时间为X 分钟,易知X 的分布律为表4-4在上表中p k 的求法如下,例如P {X =70}=P 〔AB 〕=P 〔A 〕P 〔B 〕=1/6×3/6=3/36,其中A 为事件“第一班车在8:10到站〞,B 为事件“第二班车在9:30到站〞,于是候车时间的数学期望为E 〔X 〕=10×3/6+30×2/6+50×1/36+70×3/36+90×2/36=27.22〔分钟〕.例4.3 有5个互相独立工作的电子装置,它们的寿命X k 〔k =1,2,3,4,5〕服从同一指数分布,其概率密度为f 〔x 〕=⎪⎩⎪⎨⎧≤>-.00,0,1/x ,x x θθe〔1〕 假设将这5个电子装置串联起来组成整机,求整机寿命N 的数学期望;〔2〕 假设将这5个电子装置并联组成整机,求整机寿命M 的数学期望.解 X k 〔k =1,2,3,4,5〕的分布函数为F 〔x 〕=⎩⎨⎧≤>--.0,0,0,1/x x x θe〔1〕 串联的情况由于当5个电子装置中有一个损坏时,整机就停顿工作,所以这时整机寿命为N =min{X 1,X 2,X 3,X 4,X 5}.由于X 1,X 2,X 3,X 4,X 5是互相独立的,于是i=min{X 1,X 2,X 3,X 4,X 5}的分布函数为F N 〔x 〕=P {N ≤x }=1-P {N >x }=1-P {X 1>x ,X 2>x ,X 3>x ,X 4>x ,X 5>x }=1-P {X 1>x }·P {X 2>x }·P {X 3>x }·P {X 4>x }·P {X 5>x }=1-[1-)(1x F X ][1- )(2x F X ][1-)(3x F X ][1-)(4x F X ][1-)(5x F X ] =1-[1-F 〔x 〕]5=⎪⎩⎪⎨⎧≤>--.0,0,0,15x x xθe 因此N 的概率密度为f N 〔x 〕=⎪⎩⎪⎨⎧≤>-.0,0,0,55x x xθθe那么N 的数学期望为E 〔N 〕=55)(5θθθ==-∞+∞-∞+∞-⎰⎰x xx x xf xN d ed〔2〕 并联的情况由于当且仅当5个电子装置都损坏时,整机才停顿工作,所以这时整机寿命为M =max{X 1,X 2,X 3,X 4,X 5}.由于X 1,X 2,X 3,X 4,X 5互相独立,类似可得M 的分布函数为F M 〔x 〕=[F 〔x 〕]5=⎪⎩⎪⎨⎧≤>--.0,0,0,)1(5x x x θe因此M 的概率密度为f M 〔x 〕=⎪⎩⎪⎨⎧≤>---.0,0,0,]1[54x x x x θθθe e于是M 的数学期望为E 〔M 〕=.60137)1(5)(0max θθθ=-=-∞+∞-∞+⎰⎰x xx x xf xd e d 这说明:5个电子装置并联联接工作的平均寿命要大于串联联接工作的平均寿命.例4.4 设随机变量X 服从柯西〔Cauchy 〕分布,其概率密度为f 〔x 〕=)1(12x +π,-x <x <+∞, 试证E 〔X 〕不存在.证 由于,)1(1)(2⎰⎰+∞∞-+∞∞-∞=+=x x xx x f x d πd 故E 〔X 〕不存在.2.随机变量函数的数学期望在实际问题与理论研究中,我们经常需要求随机变量函数的数学期望.这时,我们可以通过下面的定理来实现.定理4.1 设Y 是随机变量X 的函数Y =g 〔X 〕〔g 是连续函数〕. 〔1〕 X 是离散型随机变量,它的分布律为P 〔X =x k 〕=p k ,k =1,2,…,假设kk kpx g ∑∞=1)(绝对收敛,那么有E 〔Y 〕=E [g 〔X 〕]=kk kpx g ∑∞=1)(. 〔4.3〕〔2〕 X 是连续型随机变量,它的概率密度为f 〔x 〕,假设⎰+∞∞-x x f x g d )()(绝对收敛,那么有E 〔Y 〕=E [g 〔X 〕]=⎰+∞∞-x x f x g d )()(. 〔4.4〕定理4.4的重要意义在于当我们求E 〔Y 〕时,不必知道Y 的分布而只需知道X 的分布就可以了.当然,我们也可以由的X 的分布,先求出其函数g 〔X 〕的分布,再根据数学期望的定义去求E [g 〔X 〕],然而,求Y =g 〔X 〕的分布是不容易的,所以一般不采用后一种方法.定理4.1的证明超出了本书的范围,这里不证.上述定理还可以推广到二个或二个以上随机变量的函数情形. 例如,设Z 是随机变量X ,Y 的函数,Z =g 〔X ,Y 〕〔g 是连续函数〕,那么Z 也是一个随机变量,当〔X ,Y 〕是二维离散型随机变量,其分布律为P {X =x i ,Y =y j }=p ij 〔i ,j =1,2,…〕时,假设∑∑ijijiipy x g ),(绝对收敛,那么有E 〔Z 〕=E [g 〔X ,Y 〕]=∑∑ijijiipy x g ),(. 〔4.5〕当〔X ,Y 〕是二维连续型随机变量,其概率密度为f 〔x ,y 〕时,假设⎰⎰+∞∞-+∞∞-yx y x f y z g d d ),(),(绝对收敛,那么有E 〔Z 〕=E [g 〔X ,Y 〕]=⎰⎰+∞∞-+∞∞-y x y x f y z g d d ),(),(. 〔4.6〕特别地有E 〔X 〕=⎰⎰+∞∞-+∞∞-y x y x xf d d ),(=⎰+∞∞-.)(x x xf X dE 〔Y 〕=⎰⎰+∞∞-+∞∞-y x y x yf d d ),(=⎰+∞∞-.)(y y yf Y d例4.5 设随机变量X 的分布律为表4-5求E 〔X 〕,E 〔-2x +1〕.解 由〔4.5〕式得E 〔X 2〕=〔-1〕2×18+02×14+22×38+32×14=318, E 〔-2X +1〕=[-2×〔-1〕+1]×18+[-2×0+1]×14+[-2×2+1]×38+[-2×3+1]×14= -74. 例4.6 对球的直径作近似测量,设其值均匀分布在区间[a ,b ]内,求球体积的数学期望.解 设随机变量X 表示球的直径,Y 表示球的体积,依题意,X 的概率密度为f 〔x 〕=⎪⎩⎪⎨⎧≤≤-.,0,,1其他b x a a b球体积Y =361X π,由〔4.6〕式得 E 〔Y 〕=x a b x X E ba d ππ-=⎰161)61(33=).)((24)(6223b a b a x x a b ba++=-⎰πd π例4.7 设国际市场每年对我国某种出口商品的需求量X 〔吨〕服从区间[2000,4000]上的均匀分布.假设售出这种商品1吨,可挣得外汇3万元,但假设销售不出而囤积于仓库,那么每吨需保管费1万元.问应预备多少吨这种商品,才能使国家的收益最大? 解设预备这种商品y 吨〔2000≤y ≤4000〕,那么收益〔万元〕为g 〔X 〕=⎩⎨⎧<--≥.),(3,,3y X X y X y X y那么 E [g 〔X 〕]=⎰⎰-⋅=+∞∞-40002000200040001)()()(x x g x x f x g d d=[]⎰⎰+--40002000320001)(320001y y x y x x y x d d =)1047000(1000162⨯-+-y y . 当y =3500吨时,上式到达最大值.所以预备3500吨此种商品能使国家的收益最大,最大收益为8250万元.例4.8 设二维随机变量〔X ,Y 〕在区域A 上服从均匀分布,其中A 为x 轴,y 轴及直线x +2y=1所围成的三角区域,求E 〔X 〕,E 〔Y 〕,E 〔XY 〕. 解 由于〔X ,Y 〕在A 内服从均匀分布,所以其概率密度f 〔x ,y 〕=⎪⎩⎪⎨⎧⎩⎨⎧∉∈=∉∈.),(,0,),(,1,),(,0,),(,1A y x A y x A y x A y x A 的面积 E 〔X 〕=12(1)001(,)d d d d d d ;3x Axf x y x y x x y x x y +∞+∞--∞-∞===⎰⎰⎰⎰⎰⎰E 〔Y 〕=2122(,)d d d d d d ;3y Ayf x y x y y x y y y x +∞+∞--∞-∞===⎰⎰⎰⎰⎰⎰E 〔XY 〕=;61)1(2),()1(2010210⎰⎰⎰⎰⎰+∞∞-+∞∞--=-==x x x x y y x x y x y x xyf d d d d d3.数学期望的性质下面讨论数学期望的几条重要性质.定理4.2 设随机变量X ,Y 的数学期望E 〔X 〕,E 〔Y 〕存在. 1°E 〔c 〕=c ,其中c 是常数; 2°E 〔cX 〕=cE 〔X 〕;3°E 〔X +Y 〕=E 〔X 〕+E 〔Y 〕;4°假设X ,Y 是互相独立的,那么有E 〔XY 〕=E 〔X 〕E 〔Y 〕.证 就连续型的情况我们来证明性质3°、4°,离散型情况和其他性质的证明留给读者. 3°设二维随机变量〔X ,Y 〕的概率密度为f 〔x ,y 〕,其边缘概率密度为f X 〔x 〕,f Y 〔y 〕,那么E 〔X +Y 〕=⎰⎰+∞∞-+∞∞-+y x y x f y x d d ),()(=⎰⎰⎰⎰+∞∞-+∞∞-+∞∞-+∞∞-+y x y x yf y x y x xf d d d d ),(),(=)()()()(Y E X E y y yf x x xf Y X +=+⎰⎰+∞∞-+∞∞-d d .4°又假设X 和Y 互相独立,此时f 〔x ,y 〕=f X 〔x 〕f Y 〔y 〕,故E 〔XY 〕=⎰⎰⎰⎰+∞∞-+∞∞-+∞∞-+∞∞-=y x y f x xyf y x y x xyf Y X d d d d )()(),(=).()()()(Y E X E y y yf x x xf Y X =⋅⎰⎰+∞∞-+∞∞-d d性质3°可推广到任意有限个随机变量之和的情形;性质4°可推广到任意有限个互相独立的随机变量之积的情形.例4.9 设一电路中电流I 〔安〕与电阻R 〔欧〕是两个互相独立的随机变量,其概率密度分别为g 〔i 〕=⎩⎨⎧≤≤.,0,10,2其他i i h 〔r 〕=⎪⎩⎪⎨⎧≤≤.,0,30,92其他r r试求电压V =IR 的均值.解 E 〔V 〕=E 〔IR 〕=E 〔I 〕E 〔R 〕=2392)()(303102=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎰⎰⎰⎰∞+∞-∞+∞-r r i i r r rh i i ig d d d d 〔伏〕. 例4.10 设对某一目的进展射击,命中n 次才能彻底摧毁该目的,假定各次射击是独立的,并且每次射击命中的概率为p ,试求彻底摧毁这一目的平均消耗的炮弹数.解 设X 为n 次击中目的所消耗的炮弹数,X k 表示第k -1次击中后至k 次击中目的之间所消耗的炮弹数,这样,X k 可取值1,2,3,…,其分布律见表4-6.表4-61X =X 1+X 2+…+X n .由性质3°可得E 〔X 〕=E 〔X 1〕+E 〔X 2〕+…+E 〔X n 〕=nE 〔X 1〕. 又 E〔X 1〕=,111pkpq k k =∑∞=- 故 E 〔X 〕=pn . 4.常用分布的数学期望 〔1〕 两点分布 那么X 的数学期望为E 〔X 〕=0×〔1-p 〕+1×p =p .〔2〕 二项分布设X 服从二项分布,其分布律为P {X =k }=kn k k n p p --)1(C , 〔k =0,1,2,…,n 〕,〔0<p <1〕.那么X 的数学期望为E 〔X 〕=∑∑==----=-nk nk k n k kn kknp p k n k n kp p k 0)1()!(!!)1(C=[]∑=----------nk k n k p pk n k n np)]1()1[(1)1(!)1()1()!1()!1(,令k -1=t ,那么E 〔X 〕=[]∑-=------10])1[()1(!)1(!)!1(n t t n t p p t n t n np=np [p +〔1-p 〕]n -1=np .假设利用数学期望的性质,将二项分布表示为n 个互相独立的0-1分布的和,计算过程将简单得多.事实上,假设设X 表示在n 次独立重复试验中事件A 发生的次数,X i 〔i =1,2,…,n 〕表示A 在第i 次试验中出现的次数,那么有X =1nii X=∑.显然,这里X所以E 〔X i 〕=p ,i =1,2,…,n .由定理4.2的性质3°有E 〔X 〕=∑∑===⎪⎭⎫ ⎝⎛ni i n i i X E X E 11)( =np .〔3〕 泊松分布设X 服从泊松分布,其分布律为P {X =k }=λλ-e !k k, 〔k =0,1,2,…〕,〔λ>0〕.那么X 的数学期望为E 〔X 〕=∑∑∞=--∞=--=11)!1(!k k k kk k k λλλλλee,令k -1=t ,那么有E 〔X 〕=.!0λλλλλλλ=⋅=-∞=-∑e e ek tt .〔4〕 均匀分布设X 服从[a ,b ]上的均匀分布,其概率密度函数为f 〔x 〕=⎪⎩⎪⎨⎧≤≤-.,0,,1其他b x a a b那么X 的数学期望为E 〔X 〕=.2)(ba x ab x x x xf ba +=-=⎰⎰+∞∞-d d . 〔5〕 指数分布设X 服从指数分布,其分布密度为f 〔x 〕=⎩⎨⎧<≥-.0,0,0,x x x λλe那么X 的数学期望为E 〔X 〕=1()d e d x xf x x x x λλλ+∞+∞--∞-∞==⎰⎰.〔6〕 正态分布设X ~N 〔μ,σ2〕,其分布密度为f 〔x 〕=222)(21σμσ--x e π,那么X 的数学期望为E 〔X 〕=22()2()d ed ,x xf x x x x μσ--+∞+∞-∞-∞=⎰令σμ-x =t ,那么E 〔X 〕=⎰∞+∞--+t t t d e π22)(21σμ 注意到t t d eπ⎰∞+∞--222μ=μ,t σt t d e π⎰∞+∞--2221=0,故有E 〔X 〕=μ.第二节 方 差1.方差的定义数学期望描绘了随机变量取值的“平均〞.有时仅知道这个平均值还不够.例如,有A ,B 两名射手,他们每次射击命中的环数分别为X ,Y ,X ,Y 的分布律为:由于E 〔X 〕=E 〔Y 〕=9〔环〕,可见从均值的角度是分不出谁的射击技术更高,故还需考虑其他的因素.通常的想法是:在射击的平均环数相等的条件下进一步衡量谁的射击技术更稳定些.也就是看谁命中的环数比较集中于平均值的附近,通常人们会采用命中的环数X 与它的平均值E 〔X 〕之间的离差|X -E 〔X 〕|的均值E [|X -E 〔X 〕|]来度量,E [|X -E 〔X 〕|]愈小,说明X 的值愈集中于E 〔X 〕的附近,即技术稳定;E [|X -E 〔X 〕|]愈大,说明X 的值很分散,技术不稳定.但由于E [|X -E 〔X 〕|]带有绝对值,运算不便,故通常采用X 与E 〔X 〕的离差|X -E 〔X 〕|的平方平均值E [X -E 〔X 〕]2来度量随机变量X 取值的分散程度.此例中,由于E [X -E 〔X 〕]2=0.2×〔8-9〕2+0.6×〔9-9〕2+0.2×〔10-9〕2=0.4, E [Y -E 〔Y 〕]2=0.1×〔8-9〕2+0.8×〔9-9〕2+0.1×〔10-9〕2=0.2.由此可见B 的技术更稳定些.定义4.2 设X 是一个随机变量,假设E [X -E 〔X 〕]2存在,那么称E [X -E 〔X 〕]2为X 的方差〔Variance 〕,记为D 〔X 〕,即D 〔X 〕=E [X -E 〔X 〕]2. 〔4.7〕 称)(X D 为随机变量X 的标准差〔Standard deviation 〕或均方差〔Mean square deviation 〕,记为σ〔X 〕.根据定义可知,随机变量X 的方差反映了随机变量的取值与其数学期望的偏离程度.假设X 取值比较集中,那么D 〔X 〕较小,反之,假设X 取值比较分散,那么D 〔X 〕较大. 由于方差是随机变量X 的函数g 〔X 〕=[X -E 〔X 〕]2的数学期望.假设离散型随机变量X 的分布律为P {X =x k }=p k ,k =1,2,…,那么D 〔X 〕=k k kp X E x∑∞=-12)]([. 〔4.8〕假设连续型随机变量X 的概率密度为f 〔x 〕,那么D 〔X 〕=⎰+∞∞--.)()]([2x x f X E x d 〔4.9〕由此可见,方差D 〔X 〕是一个常数,它由随机变量的分布惟一确定.根据数学期望的性质可得:D 〔X 〕=E [X -E 〔X 〕]2=E [X 2-2X ·E 〔X 〕+[E 〔X 〕]2]=E 〔X 2〕-2E 〔X 〕·E 〔X 〕+[E 〔X 〕]2=E 〔X 2〕-[E 〔X 〕]2.于是得到常用计算方差的简便公式D 〔X 〕=E 〔X 2〕-[E 〔X 〕]2. 〔4.10〕例4.11 设有甲,乙两种棉花,从中各抽取等量的样品进展检验,结果如下表:其中X ,Y 分别表示甲,乙两种棉花的纤维的长度〔单位:毫米〕,求D 〔X 〕与D 〔Y 〕,且评定它们的质量.解 由于E 〔X 〕=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30, E 〔Y 〕=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30,故得D 〔X 〕=〔28-30〕2×0.1+〔29-30〕2×0.15+〔30-30〕2×0.5+〔31-30〕2×0.15+〔32-30〕2×0.1=4×0.1+1×0.15+0×0.5+1×0.15+4×0.1=1.1,D 〔Y 〕=〔28-30〕2×0.13+〔29-30〕2×0.17+〔30-30〕2×0.4+〔31-30〕2×0.17+〔32-30〕2×0.13=4×0.13+1×0.17+0×0.4+1×0.17+4×0.13=1.38.因D 〔X 〕<D 〔Y 〕,所以甲种棉花纤维长度的方差小些,说明其纤维比较均匀,故甲种棉花质量较好.例4.12 设随机变量X 的概率密度为f 〔x 〕=⎪⎩⎪⎨⎧<≤-<≤-+.,0,10,1,01,1其他x x x x求D 〔X 〕.解 E 〔X 〕=⎰⎰-++-11)1()1(x x x x x x d d =0,E 〔X 2〕=⎰⎰-++-12012)1()1(x x x x x x d d =1/6,于是 D 〔X 〕=E 〔X 2〕-[E 〔X 〕]2=1/6.2.方差的性质方差有下面几条重要的性质.设随机变量X 与Y 的方差存在,那么 1°设c 为常数,那么D 〔c 〕=0;2°设c 为常数,那么D 〔cX 〕=c 2D 〔X 〕; 3°D 〔X ±Y 〕=D 〔X 〕+D 〔Y 〕±2E [〔X -E 〔X 〕〕〔Y -E 〔Y 〕〕]; 4°假设X ,Y 互相独立,那么D 〔X ±Y 〕=D 〔X 〕+D 〔Y 〕; 5°对任意的常数c ≠E 〔X 〕,有D 〔X 〕<E [〔X -c 〕2]. 证 仅证性质4°,5°. 4°D 〔X ±Y 〕=E [〔X ±Y 〕-E 〔X ±Y 〕]2=E [〔X -E 〔X 〕〕±〔Y -E 〔Y 〕〕]2=E [X -E 〔X 〕]2±2E [〔X -E 〔X 〕〕〔Y -E 〔Y 〕〕]+E [Y -E 〔Y 〕]2 =D 〔X 〕+D 〔Y 〕±2E [〔X -E 〔X 〕〕〔Y -E 〔Y 〕〕].当X 与Y 互相独立时,X -E 〔X 〕与Y -E 〔Y 〕也互相独立,由数学期望的性质有E [〔X -E 〔X 〕〕〔Y -E 〔Y 〕〕]=E 〔X -E 〔X 〕〕E 〔Y -E 〔Y 〕〕=0.因此有D 〔X ±Y 〕=D 〔X 〕+D 〔Y 〕.性质4°可以推广到任意有限多个互相独立的随机变量之和的情况.5°对任意常数c ,有E [〔X -c 〕2]=E [〔X -E 〔X 〕+E 〔X 〕-c 〕2]=E [〔X -E 〔X 〕〕2]+2〔E 〔X 〕-c 〕·E [X -E 〔X 〕]+〔E 〔X 〕-c 〕2=D 〔X 〕+〔E 〔X 〕-c 〕2.故对任意常数c ≠EX ,有DX <E [〔X -c 〕2].例4.13 设随机变量X 的数学期望为E 〔X 〕,方差D 〔X 〕=σ2〔σ>0〕,令Y =σ)(X E X -,求E 〔Y 〕,D 〔Y 〕.解 E 〔Y 〕=[],0)()(1)]([1)(=-=-=⎥⎦⎤⎢⎣⎡-X E X E X E X E X E X E σσσ D 〔Y 〕=.1)(1)]([1)(2222===-=⎥⎦⎤⎢⎣⎡-σσσσσX D X E X D X E X D 常称Y 为X 的标准化随机变量.例4.14 设X 1,X 2,…,X n 互相独立,且服从同一〔0-1〕分布,分布律为P {X i =0}=1-p ,P {X i =1}=p , i =1,2,…,n .证明 X =X 1+X 2+…+X n 服从参数为n ,p 的二项分布,并求E 〔X 〕和D 〔X 〕.解 X 所有可能取值为0,1,…,n ,由独立性知X 以特定的方式〔例如前k 个取1,后n -k 个取0〕取k 〔0≤k ≤n 〕的概率为p k 〔1-p 〕n -k,而X 取k 的两两互不相容的方式共有knC 种,故P {X =k }=kn C p k 〔1-p 〕n -k , k =0,1,2,…,n ,即X 服从参数为n ,p 的二项分布. 由于E 〔X i 〕=0×〔1-p 〕+1×p =p ,D 〔X i 〕=〔0-p 〕2×〔1-p 〕+〔1-p 〕2×p =p 〔1-p 〕, i =1,2,…,n ,故有E 〔X 〕=.)(11np X E X E ni i n i i ==⎪⎭⎫ ⎝⎛∑∑==由于X 1,X 2,…,X n 互相独立,得D 〔X 〕= ).1()(11p np X D X D ni i n i i -==⎪⎭⎫ ⎝⎛∑∑==3.常用分布的方差 〔1〕 〔0-1〕分布设X 服从参数为p 的0-1分布,其分布律为由例4.14知,D 〔X 〕=p 〔1-p 〕. 〔2〕 二项分布设X 服从参数为n ,p 的二项分布,由例4.14知,D 〔X 〕=np 〔1-p 〕. 〔3〕 泊松分布设X 服从参数为λ的泊松分布,由上一节知E 〔X 〕=λ,又E 〔X 2〕=E [X 〔X -1〕+X ]=E [X 〔X -1〕]+E 〔X 〕=∑∑∞=--∞=-+-=+-2220)!2(!)1(k k k kk k k k λλλλλλλee=λ2e -λ·e λ+λ=λ2+λ,从而有D 〔X 〕=E 〔X 2〕-[E 〔X 〕]2=λ2+λ -λ2=λ.〔4〕 均匀分布设X 服从[a ,b ]上的均匀分布,由上一节知E 〔X 〕=2ba +,又 E 〔X 2〕=3222b ab a x a b x ba ++=-⎰d , 所以D 〔X 〕=E 〔X 2〕-[E 〔X 〕]2=12)()(41)(312222a b b a b ab a -=+-++.〔5〕 指数分布设X 服从参数为λ的指数分布,由上一节知.E 〔X 〕=1/λ,又E 〔X 2〕=222λλλ=⎰-bax x x d e ,所以D 〔X 〕=E 〔X 2〕-[E 〔X 〕]2=.112222λλλ=⎪⎭⎫⎝⎛-〔6〕 正态分布 设X ~N 〔μ,σ2〕,由上一节知E 〔X 〕=μ,从而D 〔X 〕=[]⎰⎰∞+∞--∞+∞--=--d e πd x x x x f X E x x 222)(2221)()()(σμσμ令σμ-x =t 那么D 〔X 〕=)(22222222222⎰⎰∞+∞--∞+∞--∞+∞--+-=t t t t t t t d eeπd eπσσ=)20(22ππ+σ =σ2.由此可知:正态分布的概率密度中的两个参数μ和σ分别是该分布的数学期望和均方差.因此正态分布完全可由它的数学期望和方差所确定.再者,由上一章第五节例3.17知道,假设X i ~N 〔μi ,σi 2〕,i =1,2,…,n ,且它们互相独立,那么它们的线性组合c 1X 1+c 2X 2+…+c n X n 〔c 1,c 2,…,c n 是不全为零的常数〕仍然服从正态分布.于是由数学期望和方差的性质知道:c 1X 1+c 2X 2+…+c n X n ~⎪⎭⎫⎝⎛∑∑==n i ni i i i i c c N 1122,σμ.这是一个重要的结果.例4.15 设活塞的直径〔以cm 计〕X ~N 〔22.40,0.032〕,气缸的直径Y ~N 〔22.50,0.042〕,X ,Y 互相独立,任取一只活塞,任取一只气缸,求活塞能装入气缸的概率. 解按题意需求P {X <Y }=P {X -Y <0}. 令Z =X -Y ,那么E 〔Z 〕=E 〔X 〕-E 〔Y 〕=22.40-22.50=-0.10, D 〔Z 〕=D 〔X 〕+D 〔Y 〕=0.032+0.042=0.052,即Z ~N 〔-0.10,0.052〕, 故有P {X <Y }=P {Z <0}=⎪⎭⎫⎝⎛Φ=⎭⎬⎫⎩⎨⎧--<--05.010.005.0)10.0(005.0)10.0(Z P =Φ〔2〕=0.9772.第三节 协方差与相关系数对于二维随机变量〔X ,Y 〕,数学期望E 〔X 〕,E 〔Y 〕只反映了X 和Y 各自的平均值,而D 〔X 〕,D 〔Y 〕反映的是X 和Y 各自偏离平均值的程度,它们都没有反映X 与Y 之间的关系.在实际问题中,每对随机变量往往互相影响、互相联络.例如,人的年龄与身高;某种产品的产量与价格等.随机变量的这种互相联络称为相关关系,它们也是一类重要的数字特征,本节讨论有关这方面的数字特征.定义4.3 设〔X ,Y 〕为二维随机变量,称E {[X -E 〔X 〕][Y -E 〔Y 〕]}为随机变量X ,Y 的协方差〔Covariance 〕,记为Cov 〔X ,Y 〕,即Cov 〔X ,Y 〕=E {[X -E 〔X 〕][Y -E 〔Y 〕]}. 〔4.11〕 而)()(),cov(Y D X D Y X 称为随机变量X ,Y 的相关系数〔Correlation coefficient 〕或标准协方差〔Standard covariance 〕,记为ρXY ,即ρXY =)()(),cov(Y D X D Y X . 〔4.12〕特别地,Cov 〔X ,X 〕=E {[X -E 〔X 〕][X -E 〔X 〕]}=D 〔X 〕, Cov 〔Y ,Y 〕=E {[Y -E 〔Y 〕][Y -E 〔Y 〕]}=D 〔Y 〕.故方差D 〔X 〕,D 〔Y 〕是协方差的特例.由上述定义及方差的性质可得D 〔X ±Y 〕=D 〔X 〕+D 〔Y 〕±2Cov 〔X ,Y 〕.由协方差的定义及数学期望的性质可得以下实用计算公式Cov 〔X ,Y 〕=E 〔XY 〕-E 〔X 〕E 〔Y 〕. 〔4.13〕假设〔X ,Y 〕为二维离散型随机变量,其结合分布律为P {X =x i ,Y =y j }=p ij ,i ,j =1,2,…,那么有Cov 〔X ,Y 〕=[][]∑∑--ijijiipY E y X E x )()(. 〔4.14〕假设〔X ,Y 〕为二维连续型随机变量,其概率密度为f 〔x ,y 〕,那么有Cov 〔X ,Y 〕=[][]⎰⎰+∞∞-+∞∞---y x y x f Y E y X E x d d ),()()(. 〔4.15〕例4.16 设〔X ,Y 〕的分布律为表4-120<p <1,求Cov 〔X ,Y 〕和XY .解 易知X 的分布律为P {X =1}=p ,P {X =0}=1-p ,故 E 〔X 〕=p , D 〔X 〕=p 〔1-p 〕.同理E 〔Y 〕=p ,D 〔Y 〕=p 〔1-p 〕,因此Cov 〔X ,Y 〕=E 〔XY 〕-E 〔X 〕·E 〔Y 〕=p -p 2=p 〔1-p 〕, 而ρXY =1)1()1()1(),cov(=-⋅--=⋅p p p p p p DY DX Y X例4.17 设〔X ,Y 〕的概率密度为f 〔x ,y 〕=⎩⎨⎧<<<<+.,0,10,10,其他y x y x求Cov 〔X ,Y 〕.解 由于f X 〔x 〕=⎪⎩⎪⎨⎧<<+,,0,10,21其他x x f Y 〔y 〕=⎪⎩⎪⎨⎧<<+.,0,10,21其他y y E 〔X 〕=127)21(10=+⎰x x x d ,E 〔Y 〕=127)21(10=+⎰y y y d ,E 〔XY 〕=31)(10102101021010=+=+⎰⎰⎰⎰⎰⎰y x xy y x y x y x y x xy d d d d d d因此 Cov 〔X ,Y 〕=E 〔XY 〕-E 〔X 〕E 〔Y 〕=144112712731-=⨯-. 协方差具有以下性质:1°假设X 与Y 互相独立,那么Cov 〔X ,Y 〕=0; 2°Cov 〔X ,Y 〕=Cov 〔Y ,X 〕; 3°Cov 〔aX ,bY 〕=ab Cov 〔X ,Y 〕;4°Cov 〔X 1+X 2,Y 〕=Cov 〔X 1,Y 〕+Cov 〔X 2,Y 〕. 证 仅证性质4°,其余留给读者.Cov 〔X 1+X 2,Y 〕 =E [〔X 1+X 2〕Y ]-E 〔X 1+X 2〕E 〔Y 〕=E 〔X 1Y 〕+E 〔X 2Y 〕-E 〔X 1〕E 〔Y 〕-E 〔X 2〕E 〔Y 〕 =[E 〔X 1Y 〕-E 〔X 1〕E 〔Y 〕]+[E 〔X 2Y 〕-E 〔X 2〕E 〔Y 〕] =Cov 〔X 1,Y 〕+Cov 〔X 2,Y 〕.下面给出相关系数ρXY 的几条重要性质,并说明ρXY 的含义.定理4.3 设D 〔X 〕>0,D 〔Y 〕>0,ρXY 为〔X ,Y 〕的相关系数,那么 1°假设X ,Y 互相独立,那么ρXY =0; 2°|ρXY |≤1;3°|ρXY |=1的充要条件是存在常数a ,b 使P {Y =aX +b }=1〔a ≠0〕. 证 由协方差的性质1°及相关系数的定义可知1°成立. 2°对任意实数t ,有D 〔Y -tX 〕=E [〔Y -tX 〕-E 〔Y -tX 〕]2=E [〔Y -E 〔Y 〕〕-t 〔X -E 〔X 〕〕]2 =E [Y -E 〔Y 〕]2-2tE [Y -E 〔Y 〕][X -E 〔X 〕]+t 2E [X -E〔X 〕]2=t 2D 〔X 〕-2t Cov 〔X ,Y 〕+D 〔Y 〕=[])(),cov()()(),cov()(22X D Y X Y D X D Y X t X D -+⎥⎦⎤⎢⎣⎡-. 令t =)(),cov(X D Y X =b ,于是D 〔Y -bX 〕=[][]).1)(()()(),cov(1)()(),cov()(222XY Y D Y D X D Y X Y D X D Y X Y D ρ-=⎥⎦⎤⎢⎣⎡-=-由于方差不能为负,所以1-2XY ρ≥0,从而|ρXY |≤1.性质3°的证明较复杂,从略.当ρXY =0时,称X 与Y 不相关,由性质1°可知,当X 与Y 互相独立时,ρXY =0,即X 与Y 不相关.反之不一定成立,即X 与Y 不相关,X 与Y 却不一定互相独立.例4.18 设X 服从[0,2π]上均匀分布,Y =cos X ,Z =cos 〔X +a 〕,这里a 是常数.求ρYZ .解 E 〔Y 〕=⎰⋅πd π2021cos x x =0, E 〔Z 〕= ⎰+πd π20)cos(21x a x =0, D 〔Y 〕=E {[Y -E 〔Y 〕]2}=21cos 21202=⎰πd πx x , D 〔Z 〕=E {[Z -E 〔Z 〕]2}=21)(cos 21202=+⎰πd πx a x , Cov 〔Y ,Z 〕=E {[Y -E 〔Y 〕][Z -E 〔Z 〕]}= a x a x x cos 21)cos(cos 2120=+•⎰πd π, 因此 ρYZ =.cos 2121cos 21)()(),cov(a a Z D Y D Z Y =⋅=⋅ ① 当a =0时,ρYZ =1,Y =Z ,存在线性关系;② 当a=π时,ρYZ =-1,Y =-Z ,存在线性关系; ③ 当a =2π或23π时,ρYZ =0,这时Y 与Z 不相关,但这时却有Y 2+Z 2=1,因此,Y 与Z不独立.这个例子说明:当两个随机变量不相关时,它们并不一定互相独立,它们之间还可能存在其他的函数关系.定理4.3 告诉我们,相关系数ρXY 描绘了随机变量X ,Y 的线性相关程度,|ρXY |愈接近1,那么X 与Y 之间愈接近线性关系.当|ρXY |=1时,X 与Y 之间依概率1线性相关.不过,下例说明当〔X ,Y 〕是二维正态随机变量时,X 和Y 不相关与X 和Y 互相独立是等价的.例4.19 设〔X ,Y 〕服从二维正态分布,它的概率密度为f 〔x ,y 〕=⨯-221121ρσσπ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-+------2222212121212)())((2)()1(21exp σμσσμμρσμρy y x x 求Cov 〔X ,Y 〕和ρXY .解 可以计算得〔X ,Y 〕的边缘概率密度为f X 〔x 〕=21212)(121σμσ--x e π,-∞<x <+∞,f Y 〔y 〕=22222)(221σμσ--x e π,-∞<y <+∞,故E 〔X 〕=μ1,E 〔Y 〕=μ2, D 〔X 〕=σ12,D 〔Y 〕=σ22. 而Cov 〔X ,Y 〕=⨯-=--⎰⎰+∞∞-+∞∞-22121121),()()(ρσπσμμy x y x f y x d dy x y x x y x d d ee-2112222121)1(212)(21)()(⎥⎦⎤⎢⎣⎡------∞+∞-∞+∞---⎰⎰σμρσμρσμμμ令t =⎪⎪⎭⎫⎝⎛----1122211σμρσμρx y ,u =11σμ-x ,那么 Cov 〔X ,Y 〕=⎰⎰∞+∞-∞+∞---+-u t u tu t u d d e π2222122122)1(21σρσρσσ =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎰⎰∞+∞--∞+∞--t e u u t u d d e π22221222ρσσ +⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-⎰⎰∞+∞--∞+∞--t t u u t u d e d eπ222212221ρσσ =.2222121σρσσρσ=⋅πππ于是ρXY=ρ.这说明二维正态随机变量〔X ,Y 〕的概率密度中的参数ρ就是X 和Y 的相关系数,从而二维正态随机变量的分布完全可由X ,Y 的各自的数学期望、方差以及它们的相关系数所确定.由上一章讨论可知,假设〔X ,Y 〕服从二维正态分布,那么X 和Y 互相独立的充要条件是ρ=0,即X 与Y 不相关.因此,对于二维正态随机变量〔X ,Y 〕来说,X 和Y 不相关与X 和Y 互相独立是等价的.第四节 矩、协方差矩阵数学期望、方差、协方差是随机变量最常用的数字特征,它们都是特殊的矩〔Moment 〕.矩是更广泛的数字特征.定义4.4 设X 和Y 是随机变量,假设E 〔X k 〕,k =1,2,…存在,称它为X 的k 阶原点矩,简称k 阶矩.假设 E [X -E 〔X 〕]k , k =1,2,… 存在,称它为X 的k 阶中心矩.假设 E 〔X k Y l 〕, k ,l =1,2,… 存在,称它为X 和Y 的k +l 阶混合矩.假设 E {[X -E 〔X 〕]k [Y -E 〔Y 〕]l } 存在,称它为X 和Y 的k +l 阶混合中心矩.显然,X 的数学期望E 〔X 〕是X 的一阶原点矩,方差D 〔X 〕是X 的二阶中心矩,协方差Cov 〔X ,Y 〕是X 和Y 的1+1阶混合中心矩.当X 为离散型随机变量,其分布律为P {X =x i }=p i ,那么E 〔X k〕=∑∞=1i i kip x,E [X -E 〔X 〕]k=1[()]kii i x E X p ∞=-∑.当X 为连续型随机变量,其概率密度为f 〔x 〕,那么E 〔X k 〕=⎰+∞∞-x x f x k d )(,E [X -E 〔X 〕]k =⎰+∞∞--x x f X E x k d )()]([.下面介绍n 维随机变量的协方差矩阵.设n 维随机变量〔X 1,X 2,…,X n 〕的1+1阶混合中心矩σij =Cov 〔X i ,X j 〕=E {[X i -E 〔X i 〕][X j -E 〔X j 〕]}, i ,j =1,2,…,n都存在,那么称矩阵Σ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n σσσσσσσσσ 212222111211 为n 维随机变量〔X 1,X 2,…,X n 〕的协方差矩阵. 由于σij =σji 〔i ,j =1,2,…,n 〕,因此Σ是一个对称矩阵. 协方差矩阵给出了n 维随机变量的全部方差及协方差,因此在研究n 维随机变量的统计规律时,协方差矩阵是很重要的.利用协方差矩阵还可以引入n 维正态分布的概率密度. 首先用协方差矩阵重写二维正态随机变量〔X 1,X 2〕的概率密度. f 〔x 1,x 2〕=221121ρσσ-π×.)())((2)()1(21exp 22222212211212112⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-+------σμσσμμρσμρx x x x 令X =⎪⎪⎭⎫⎝⎛21x x ,μ=⎪⎪⎭⎫⎝⎛21μμ,〔X 1,X 2〕的协方差矩阵为 Σ=.2121212122211211⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛σσρσσρσσσσσσ 它的行列式|Σ|=σ12σ22〔1-ρ2〕,逆阵Σ-1=.121212122⎪⎪⎭⎫⎝⎛--σσρσσρσσ∑ 由于 〔X -μ〕T Σ-1〔X -μ〕= .),(12211212121222211⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----μμσσρσσρσσμμx x x x ∑ =,)())((2)(1122222212211212112⎥⎦⎤⎢⎣⎡-+-----σμσσμμρσμρx x x x , 因此〔X 1,X 2〕的概率密度可写成f 〔x 1,x 2〕=.)()(21exp 211⎭⎬⎫⎩⎨⎧----μ∑μ∑X X T π上式容易推广到n 维的情形.设〔X 1,X 2,…,X n 〕是n 维随机变量,令X =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21, μ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛)()()(2121n n X E X E X E μμμ, 定义n 维正态随机变量〔X 1,X 2,…,X n 〕的概率密度为f 〔x 1,x 2,…,x n 〕=111exp ()().2(2T nX X πμμ-⎧⎫--∑-⎨⎬⎩⎭其中Σ是〔X 1,X 2,…,X n 〕的协方差矩阵.n 维正态随机变量具有以下几条重要性质: 1°n 维随机变量〔X 1,X 2,…,X n 〕服从n 维正态分布的充要条件是X 1,X 2,…,X n的任意的线性组合l 1X 1+l 2X 2+…+l n X n服从一维正态分布.〔其中l 1,l 2,…,l n 不全为零〕.2°假设〔X 1,X 2,…,X n 〕服从n 维正态分布,设Y 1,Y 2,…,Y k 是X 1,X 2,…,X n 的线性函数,那么〔Y 1,Y 2,…,Y k 〕服从k 维正态分布.3°设〔X 1,X 2,…,X n 〕服从n 维正态分布,那么X 1,X 2,…,X n 互相独立的充要条件是X 1,X 2,…,X n 两两不相关.小结随机变量的数字特征是由随机变量的分布确定的,能描绘随机变量某一个方面的特征的常数.最重要的数字特征是数学期望和方差.数学期望E〔X〕描绘随机变量X取值的平均大小,方差D〔X〕=E{[X-E〔X〕]2}描绘随机变量X与它自己的数学期望E〔X〕的偏离程度.数学期望和方差虽不能像分布函数、分布律、概率密度一样完好地描绘随机变量,但它们能描绘随机变量的重要方面或人们最关心方面的特征,它们在应用和理论上都非常重要.要掌握随机变量的函数Y=g〔X〕的数学期望E〔Y〕=E[g〔X〕]的计算公式〔4.3〕和〔4.4〕.这两个公式的意义在于当我们求E〔Y〕时,不必先求出Y=g〔X〕的分布律或概率密度,而只需利用X的分布律或概率密度就可以了,这样做的好处是明显的.我们常利用公式D〔X〕=E〔X2〕-[E〔X〕]2来计算方差D〔X〕,请注意这里E〔X2〕和[E〔X〕]2的区别.要掌握数学期望和方差的性质,提请读者注意的是:〔1〕当X1,X2独立或X1,X2不相关时,才有E〔X1X2〕=E〔X1〕·E〔X2〕;〔2〕设c为常数,那么有D〔cX〕=c2D〔X〕;〔3〕D〔X1±X2〕=D〔X1〕+D〔X2〕±2Cov〔X1,X2〕,当X1,X2独立或不相关时才有D〔X1+X2〕=D〔X1〕+D〔X2〕.例如:假设X1,X2独立,那么有D〔2X1-3X2〕=4D〔X1〕+9D〔X2〕.相关系数ρXY有时也称为线性相关系数,它是一个可以用来描绘随机变量〔X,Y〕的两个分量X,Y之间的线性关系严密程度的数字特征.当|ρXY|较小时X,Y的线性相关的程度较差;当ρXY=0时称X,Y不相关.不相关是指X,Y之间不存在线性关系,X,Y不相关,它们还可能存在除线性关系之外的关系〔参见第3节例4.18〕,又由于X,Y互相独立是指X,Y的一般关系而言的,因此有以下的结论:X,Y互相独立那么X,Y一定不相关;反之,假设X,Y不相关那么X,Y不一定互相独立.特别,对于二维正态变量〔X,Y,〕,X和Y不相关与X和Y互相独立是等价的.而二元正态变量的相关系数ρXY就是参数ρ.于是,用“ρ=0〞是否成立来检验X,Y是否互相独立是很方便的.重要术语及主题数学期望随机变量函数的数学期望数学期望的性质方差标准差方差的性质协方差相关系数相关系数的性质X,Y不相关矩协方差矩阵分布名称分布律或概率密度期望方差参数范围两点分布P{X=1}=p, P{X=0}=q p pq 0<p<1q=1-p二项分布X~B〔n,p〕P{X=k}=knkknqpC〔k=0,1,2,…,n〕np npq 0<p<1q=1-pn为自然数习 题 四求E 〔X 〕,E 〔X 〕,E 〔2X +3〕.2.100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 1234.袋中有N 只球,其中的白球数X 为一随机变量,E 〔X 〕=n ,问从袋中任取1球为白球的概率是多少?5.设随机变量X 的概率密度为f 〔x 〕=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E 〔X 〕,D 〔X 〕.6.设随机变量X ,Y ,Z 互相独立,且E 〔X 〕=5,E 〔Y 〕=11,E 〔Z 〕=8,求以下随机变量的数学期望.〔1〕 U =2X +3Y +1; 〔2〕 V =YZ -4X .7.设随机变量X ,Y 互相独立,且E 〔X 〕=E 〔Y 〕=3,D 〔X 〕=12,D 〔Y 〕=16,求E 〔3X -2Y 〕,D 〔2X -3Y 〕.8.设随机变量〔X ,Y 〕的概率密度为f 〔x ,y 〕=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E 〔XY 〕.9.设X ,Y 是互相独立的随机变量,其概率密度分别为f X 〔x 〕=⎩⎨⎧≤≤;,0,10,2其他x x f Y 〔y 〕=⎩⎨⎧>--.,0,0,)5(其他y y e 求E 〔XY 〕.10.设随机变量X ,Y 的概率密度分别为f X 〔x 〕=⎩⎨⎧≤>-;0,0,0,22x x x e f Y 〔y 〕=⎩⎨⎧≤>-.0,0,0,44y y y e 求〔1〕 E 〔X +Y 〕;〔2〕 E 〔2X -3Y 2〕.11.设随机变量X 的概率密度为f 〔x 〕=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求〔1〕 系数c ;〔2〕 E 〔X 〕;〔3〕 D 〔X 〕.12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出〔取出后不放回〕,设在取出合格品之前已取出的废品数为随机变量X ,求E 〔X 〕和D 〔X 〕. 13.一工厂消费某种设备的寿命X 〔以年计〕服从指数分布,概率密度为f 〔x 〕=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备假设在一年内损坏可以调换.假设售出一台设备,工厂获利100元,而调换一台那么损失200元,试求工厂出售一台设备赢利的数学期望. 14.设X 1,X 2,…,X n 是互相独立的随机变量,且有E 〔X i 〕=μ,D 〔X i 〕=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--ni i X X n 12)(11. 〔1〕 验证)(X E =μ,)(X D =n2σ;〔2〕 验证S 2=)(11122∑=--ni i X n X n ; 〔3〕 验证E 〔S 2〕=σ2.15.对随机变量X 和Y ,D 〔X 〕=2,D 〔Y 〕=3,Cov 〔X ,Y 〕=-1, 计算:Cov 〔3X -2Y +1,X +4Y -3〕.16.设二维随机变量〔X ,Y 〕的概率密度为f 〔x ,y 〕=⎪⎩⎪⎨⎧≤+.,0,1122其他y x ,π试验证X 和Y 是不相关的,但X 和Y 不是互相独立的.验证X 和Y 是不相关的,但X 和Y 不是互相独立的. 18.设二维随机变量〔X ,Y 〕在以〔0,0〕,〔0,1〕,〔1,0〕为顶点的三角形区域上服从均匀分布,求Cov 〔X ,Y 〕,ρXY . 19.设〔X ,Y 〕的概率密度为f 〔x ,y 〕=⎪⎩⎪⎨⎧≤≤≤≤+.0,20,20),sin(21其他,y x y x ππ求协方差Cov 〔X ,Y 〕和相关系数ρXY . 20.二维随机变量〔X ,Y 〕的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数. 21.对于两个随机变量V ,W ,假设E 〔V 2〕,E 〔W 2〕存在,证明:[E 〔VW 〕]2≤E 〔V 2〕E 〔W 2〕.这一不等式称为柯西许瓦兹〔Couchy -Schwarz 〕不等式.22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F 〔y 〕. 〔2002研考〕 23.甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:〔1〕乙箱中次品件数Z 的数学期望;〔2〕从乙箱中任取一件产品是次品的概率. 〔2003研考〕 24.假设由自动线加工的某种零件的内径X 〔毫米〕服从正态分布N 〔μ,1〕,内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,销售利润T 〔单位:元〕与销售零件的内径X 有如下关系T =⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若 问:平均直径μ取何值时,销售一个零件的平均利润最大? 〔1994研考〕25.设随机变量X 的概率密度为f 〔x 〕=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y 2的数学期望.〔2002研考〕26.两台同样的自动记录仪,每台无故障工作的时间T i 〔i =1,2〕服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T =T 1+T 2的概率密度f T 〔t 〕,数学期望E 〔T 〕及方差D 〔T 〕. 〔1997研考〕 27.设两个随机变量X ,Y 互相独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X -Y |的方差. 〔1998研考〕 28.某流水消费线上每个产品不合格的概率为p 〔0<p <1〕,各产品合格与否互相独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已消费了的产品个数为X ,求E 〔X 〕和D 〔X 〕. 〔2000研考〕 29.设随机变量X 和Y 的结合分布在点〔0,1〕,〔1,0〕及〔1,1〕为顶点的三角形区域上服从均匀分布.〔如图〕,试求随机变量U =X +Y 的方差. 〔2001研考〕 30.设随机变量U 在区间[-2,2]上服从均匀分布,随机变量X =⎩⎨⎧->-≤-,U ,U 1,11,1若若 Y =⎩⎨⎧>≤-.1,11,1U ,U 若若试求〔1〕X 和Y 的结合概率分布;〔2〕D 〔X +Y 〕. 〔2002研考〕 31.设随机变量X 的概率密度为f 〔x 〕=x-e 21,〔-∞<x <+∞〕 〔1〕 求E 〔X 〕及D 〔X 〕;〔2〕 求Cov 〔X ,|X |〕,并问X 与|X |是否不相关?〔3〕 问X 与|X |是否互相独立,为什么? 〔1993研考〕 32.随机变量X 和Y 分别服从正态分布N 〔1,32〕和N 〔0,42〕,且X 与Y 的相关系数ρXY =-1/2,设Z =23YX +. 〔1〕 求Z 的数学期望E 〔Z 〕和方差D 〔Z 〕; 〔2〕 求X 与Z 的相关系数ρXZ ;〔3〕 问X 与Z 是否互相独立,为什么? 〔1994研考〕33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数ρXY . 〔2001研考〕 Y X -1 0 10 10.07 0.18 0.15 0.08 0.32 0.20试求X 和Y 的相关系数. 〔2002研考〕 35.对于任意两事件A 和B ,0<P 〔A 〕<1,0<P 〔B 〕<1,那么称。
随机变量的数字特征

随机变量 X 和 Y 的 k+l 阶混合矩 E(X kY l) l=1,2,…
随机变量 X 和 Y 的 k+l 阶混合中心矩 E{[X-E(X)] k [Y-E(Y)] l }
2
第四章 随机变量的数字特征
一.数学期望和方差的定义
随机变量 X
离散型随机变量
连续型随机变量
分布律 P{X=x i}= pi ( i =1,2,…)
概率密度 f (x)
数学期望(均值)E(X) 方差 D(X)=E{[X-E(X)]2}
xi pi (级数绝对收敛)
i 1
xi
E(X
)2
pi
i 1
xf(x)dx(积分绝对收敛) [ x E( X )]2 f ( x)dx
2.X,Y 为任意随机变量时, E (X±Y)=E(X)±E(Y) .
3. X 与 Y 相互独立时, E(XY)=E(X)E(Y) , D(X±Y)=D(X)+D(Y) .
4. D(X) = 0 P{X = C}=1 ,C 为常数.
三.六种重要分布的数学期望和方差
E(X)
ቤተ መጻሕፍቲ ባይዱ
D(X)
1.X~ (0-1)分布 P{X=1}= p (0<p<1)
=E(X2)-[E(X)]2
(级数绝对收敛)
(积分绝对收敛)
函数数学期望 E(Y)=E[g(X)] g( xi )pi (级数绝对收敛)
i 1
g( x) f ( x)dx (积分绝对收敛)
标准差(X)=√D(X) .
二.数学期望与方差的性质
1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .
随机变量的数字特征

随机变量的数字特征第四章随机变量的数字特征第⼀节基本概念1、概念⽹络图→切⽐雪夫不等式矩⽅差期望⼀维随机变量→协⽅差矩阵相关系数协⽅差⽅差期望⼆维随机变量2、重要公式和结论例4.1:箱内装有5个电⼦元件,其中2个是次品,现每次从箱⼦中随机地取出1件进⾏检验,直到查出全部次品为⽌,求所需检验次数的数学期望。
例4.2:将⼀均匀骰⼦独⽴地抛掷3次,求出现的点数之和的数学期望。
例4.3:袋中装有标着1,2,…,9号码的9只球,从袋中有放回地取出4只球,求所得号码之和X 的数学期望。
例4.4:设随机变量X 的概率密度为,)(21)(||+∞<<-∞=-x e x f x求E (X )及D (X )。
例4.5:设随机变量X~N (0, 4), Y~U (0, 4),且X ,Y 相互独⽴,求E (XY ),D (X+Y )及D (2X-3Y )。
例4.6:罐中有5颗围棋⼦,其中2颗为⽩⼦,另3颗为⿊⼦,如果有放回地每次取1⼦,共取3次,求3次中取到的⽩⼦次数X 的数学期望与⽅差。
例4.7:在上例中,若将抽样⽅式改为不放回抽样,则结果⼜是如何?例4.8:“随机变量X 的数学期望E(X)= µ.”的充分条件:(1)X 的密度函数为f(x)=λµλ--x e21 (λ>0,-∞(2) X 的密度函数为222)(21)(σµσπ--=x ex f ,(+∞<<∞-x )例4.9:利⽤切⽐雪夫不等式估计随机变量与其数学期望之差⼤于3倍标准差的概率。
例4.10:设随机变量X 和Y 的⽅差存在且不等于0,则D (X+Y )=D (X )+D (Y )是X 和Y(A )不相关的充分条件,且不是必要条件;(B )独⽴的充分条件,但不是必要条件;(C )不相关的充分必要条件;(D )独⽴的充分必要条件。
()。
例4.11:设X 与Y 相互独⽴都服从P (λ),令U=2X+Y ,V=2X-Y 。
第四章 随机变量的数字特征总结

第四章随机变量得数字特征㈠数学期望表征随机变量取值得平均水平、“中心”位置或“集中”位置.1、数学期望得定义(1) 定义离散型与连续型随机变量X得数学期望定义为其中Σ表示对X得一切可能值求与.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中得积分绝对收敛;否则认为数学期望不存在.①常见得离散型随机变量得数学期望1、离散型随机变量得数学期望设离散型随机变量得概率分布为,若,则称级数为随机变量得数学期望(或称为均值),记为, 即2、两点分布得数学期望设服从0—1分布,则有,根据定义,得数学期望为、3、二项分布得数学期望设服从以为参数得二项分布,,则。
4、泊松分布得数学期望设随机变量服从参数为得泊松分布,即,从而有。
①常见得连续型随机变量得数学期望1)均匀分布设随机变量ξ服从均匀分布,ξ~U[a,b] (a<b),它得概率密度函数为:= 则=∴E(ξ)=(a+b)/2. 即数学期望位于区间得中点.2)正态分布设随机变量ξ服从正态分布,ξ~N(μ,σ2),它得概率密度函数为:(σ>0, <μ<+ )则令得∴ E(ξ)=μ 、3)指数分布设随机变量服从参数为得指数分布,得密度函数为,则、(2) 随机变量得函数得数学期望设为连续函数或分段连续函数,而X就是任一随机变量,则随机变量得数学期望可以通过随机变量X 得概率分布直接来求,而不必先求出得概率分布再求其数学期望;对于二元函数,有类似得公式:()(){}()()()()⎪⎩⎪⎨⎧====⎰⎰∑∑∞∞-∞∞-.;连续型离散型 d d ,, ,,,y x y x f y x g y Y x X y x g Y X g Z i jj i j i P E E 设为二维离散型随机变量,其联合概率函数 如果级数绝对收敛,则得函数得数学期望为 ; 特别地、设为连续型随机变量,其概率密度为,如果广义积分 绝对收敛,则得函数得数学期望为. 设为二维连续型随机变量,其联合概率密度为,如果广义积分绝对收敛,则得函数得数学期望为;特别地 ,、注:求E(X,Y)就是无意义得,比如说二维(身高,胖瘦)得数学期望就是无意义得,但就是二维随机变量函数Z= E(X,Y)就是有意义得,她表示得就是函数下得另一个一维意义。
第四章-随机变量的数字特征PPT课件

k 1
k 1
变量X的数学期望,记为E(X),即
EX xk pk k1
§4.1 数学期望
关于定义的几点说明 (1) E(X)是一个实数,而非变量,它是一种加权平均,与
一般的算术平均值不同 , 它从本质上体现了随机变量 X 取可能值的真正的平均值, 也称均值.
(2) 级数的绝对收敛性保证了级数的和不随级数各 项次序的改变而改变 , 之所以这样要求是因为数学期望 是反映随机变量X 取可能值的平均值,它不应随可能值的 排列次序而改变.
❖ 例3:设 X(),求 E (X)。
解 : X 的 分 布 律 为 : P ( X k ) k e k 0 , 1 , 0 k ! X的 数 学 期 望 为 :
E(X) k ke
k0 k!
e
k1
k1
(k 1)!
ee
即E(X)
§4.1 数学期望
三、连续型随机变量的数学期望
设连续型随机变量X 的概率密度为f ( x), 若积分
§4.2 方差
(2) 利用公式计算
D (X ) E (X 2 ) [E (X )2 .] 证明 D (X ) E {X [ E (X )2 } ]
E { X 2 2 X ( X ) E [ E ( X )2 } ] E ( X 2 ) 2 E ( X ) E ( X ) [ E ( X )2] E (X 2)[E (X )2] E (X2)E 2(X).
§4.1 数学期望
❖ 例2:某车站每天8:00—9:00,9:00—10:00都恰有一 辆客车到站,但到站的时刻是随机的,且两者到站的时间 相互独立。其规律为
8:10 8:30 8:50
到站时刻
9:10 9:30 9:50
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即
不绝对收敛,所以 不存在。 例6 有5个相互独立工作的电子装置,其寿命 服从同一指数分布,分布函数为
若将这5个电子装置串联组成整机,求整机寿命N的数学期望; 1. 若将这5个电子装置串联组成整机,求整机寿命M的数学期 望。
2. 若将这5个电子装置并联组成整机,求整机寿命M的数学期望。
解 设随机变量
(i=1,2,...10) 则有 由题意,任一旅客在第ห้องสมุดไป่ตู้个车站不下车的概率为
表示第i站没有旅客下车,故20位旅客都不在第i站下车的概率为
,在第i站有人下车的概率为
,于是得
的分布律如下: Xi P
因此
0 (9/10)20
1
1(9/10)20
从而
这表明班车平均停车约9次。 类似本例将
分解为若干个随机变量的和,然后利用数学期望的性质再求 的数学期望的方法,具有一定的普遍意义,使用得当,可使复杂问题简 单化。 例13 设二维随机变量密度函数为
若 为连续型随机变量,且其联合密度函数为 ,则有 这里要求等式右端的级数或积分都是绝对收敛的。 例7 设随机变量 服从参数为 的二项分布, 求E(Y )。 解 因为 ,分布律为 所以
其中 8. 设二维随机变量
的密度函数为
求 解
例9 设二维随机变量 的密度函数为 求 和/ 解
例10设国际市场上每年对我国某种出口商品的需求量是随机变量 (单位:吨),它服从[2000,4000]上的均匀分布。若售出这种商品1吨,
解 由随机变量函数的分布可知 (1) 的分布函数为
其密度函数为
故
2. 的分布函数
其密度函数为
故
由
可知,同样5个电子装置,并联组成整机的平均寿命是串联组成整机的 平均寿命的11.4倍。
3. 随机变量函数的数学期望 在实际问题中常常需要求出随机变量的函数的数学期望,例如 ,要求 。我们可以不必求出 的密度函数,而直接由 的密度函数来求 ,下面的定理说明了这点。 定理4.1 设随机变量 是随机变量 的函数 ( 为连续函数)。
试验证 但 是不独立的. 解 因为
所以 的边缘密度函数
即
同理可得
的边缘密度函数
因为,所以
和 是不独立的。 本例说明由 是不能得出 和 是相互独立的结论的.
证 可将 看成离散型随机变量,分布律为 故由定义即得
2. 设 为常数, 为随机变量,则有 证设 的密度函数为 ,则有
3. 设 为任意两个随机变量,则有 证 设二维随机变量 的密度函数为 ,边缘密度函数分别为 ,则
这一性质可以推广到任意有限多个随机变量之和的情形,即 一般地,随机变量线性组合的数学期望,等于随机变量数学期望的线性
可赚3万元,但销售不出去,则每吨需付仓库保管费1万元,问该商品应 出口多少吨才可的得到最大利益? 解 设每年出口该种商品y吨 ,则收益
于是由
得
当y = 3500时, 取到最大值,故出口此种商品3500吨长可得到最大收益。
3. 数学期望的性质 现在给出数学期望的几个常用性质。在下面的讨论中,所遇到的随机变 量的数学期望均假设存在,且只对连续型随机变量给予证明,至于对离 散型随机变量的证明只需将积分换为类似的求和即可。 1. 设 为常数,则有
第四章 随机变量的数字特征
由前面的讨论知道,分布函数完整地描述了随机变量的统计规律,然而 在一些实际问题中要确定一个随机变量的分布函数却是非常困难的,而 且有一些实际问题,并不要求全面考察随机变量的统计规律,而只需知 道它的某些特征,因而并不需要求出它的分布函数,例如考察日光灯管 的质量,常常关心的是日光灯管的平均寿命,即其平均寿命是一个重要 指标.这就是说,随机变量的平均值,常常是一个重要的数量特征。在 考察日光灯管的质量时还不能单就平均寿命来决定其质量,还必须要考 察日光灯管的寿命与平均寿命的偏离程度,只有平均寿命较长同时偏离 程度又较小的日光灯管才是质量较好的。随机变量与其平均值偏离的程 度也是一个重要的数量特征。这些与随机变量有关的数量,虽不能完整 地描述它的统计规律,但已反映出随机变量在某些方面的重要特征,它 们在理论和实践上都具有重要的意义。本章将介绍常用的随机变量的数 字特征:数学期望、方差、相关系数和矩。
1. 设 为离散型变量,其分布律为
若级数
绝对收敛,则有
2. 设 为连续型变量,其密度函数为 。若积分
绝对收敛,则有
这个定理说明,在求 的数学期望时,不必知道 的分布而只需知道 的分布即可。定理的证明超出了本书的范围,此处从略。 这个定理还可以推广到两个或多个随机变量的函数的情况。 设 是随机变量 , 的函数 ( 为连续函数),则 也是一个随机变量. 若 为离散型随机变量,且其联合分布律为 则有
绝对收敛,称该积分值为随机变量 的数学期望或平均值,简称期望或均值,记为 ,即
若积分
不绝对收敛,则称随机变量X的数学期望不存在。 设在x轴上连续分布着质量,其线密度为 ,则由
可知 的物理意义是质量密度为 的一维连续质点系的质量中心的坐标。 例5设随机变量 服从柯西(Cauchy)分布,其密度函数为
组合,即 = 其中 为常数。 4. 设 为相互独立的随机变量,则有 证 因为 与 相互独立,其联合密度函数与边缘密度函数满足 ,所以
这一性质可以推广到任意有限多个相互独立的随机变量之积的情形,即 若 为相互独立的随机变量,则有 例11 一民航机场的送客班车载有20位旅客,自机场开出,沿途旅客有 10个车站可以下车。如到达一个车站没有旅客下车班车就不停。设每位 旅客在各个车站下车是等可能的。且各旅客是否下车相互独立,以 表示停车的次数,求 。
=1,则(4-1)式就表示质点系的重心坐标。
2. 设随机变量 的分布列为
求 。 解 由(4-1)式有
若将此例视为甲、乙两人“赌博”,甲赢的概率为
,输的概率为
,但甲每赢一次可从乙处得3元,而每输一次,要给乙1元,则
是指甲平均每次可赢
元。 每个“赌徒”在参加赌博时,心中首先要盘算这个数字。这正是称
为“期望“的原因。 按规定,某公交车每天8点至9点和9点至10点都恰有一辆公交车到站, 各车到站的时刻是随机的,且各车到站的时间是相互独立的,其规律为
的分布律为
10
30
50
70
90
从而该乘客候车时间的数学期望为
(分). 例4 从一个装有。 个白球和 个红球的袋中取球,直到出现白球为止。若每次取出的球仍放回袋中, 试求取出红球数的数学期望.
解 设取出的红球数为 ,则 的分布律为
令
则 于是
4. 1。2 连续型随机变量的数学期望 若 为连续型随机变量,其密度函数为 ,则 落入 内的概率可近似地表为 ,它与离散型随机变量的 类似,下面给出定义。 定义4.2 设连续型随机变量 的密度函数为 。若积分
到站时刻
概率
其乘客8:20到站,求他候车时间的数学期望。 解 设乘客的候车时间为
(单位为分),若该乘客8:20到车站,而8点到9点的一趟车已于8:10开 走,第二趟车9:10开,则他候车的时间为50分钟,对应的概率为事 件“第一趟车8:10开走,且第二趟9:10开”发生的概率,即
该乘客其余候车时间对应的概率可类似得到,于是候车时间
4.1 随机变量的数学期望 4.1.1 离散型随机变量的数学期望
1. 甲、乙两射手进行射击训练,已知在100次射击中命中环数与 次数记录如下:
甲: 环数 8 9 10 次数 30 10 60 乙: 环数 8 9 10 次数 20 50 30 试问如何评定甲、乙射手的技术优劣? 解 从上面的成绩表很难立即看出结果,我们可以从其平均射中的 环数来评定其技术优劣。 甲平均射中的环数为
(环), 乙平均射中的环数为
(环), 故从平均射中的环数看,甲的技术优于乙。 本例中
等是事件 在100次试验中发生的频率( 为命中环数),当射击次数相当大时,这个频率接近于事件 一次试验中发生的概率 ,上述平均环数的计算可表示为
,称之为随机变量 的数学期望或均值.下面给出定义。 定义4.1 设离散型随机变量 的分布律为 若级数
绝对收敛,则称其和为随机变量 的数学期望或平均值,简称期望或均值,记为 ,即
. (4-1) 随机变量 的数学期望 完全是由 的分布律确定的,而不应受 的可能取值的排列次序的影响,因此要求级数
绝对收敛。若级数
不绝对收敛,则称随机变量 的数学期望不存在。 若把 看成 轴上质点的坐标,而 看成相应质点的质量,质量总和