一次函数复习(期末复习课件)精---
合集下载
期末复习第十九章一 次 函 数-2020春人教版八年级下册数学习题课件(共61张PPT)
易错提示:学生根据关系式s=200-25 t,往往粗心地画成 一条直线,忽略了自变量的取值范围0≤t≤8,从而导致 错误. 正解:解:s与t之间的函数关系式是s=200-25t,其图象 如图M19-1.
学以致用
2. 若△ABC中,∠A=80°,∠B的度数为x°,∠C的度数 为y°,试写出y与x之间的函数关系式,并在图M19-2中画 出函数的图象.
6. 结合对函数关系的分析,能对变量的变化情况进行初 步讨论. 7. 结合具体情境体会一次函数的意义,根据已知条件确 定一次函数表达式. 8. 会利用待定系数法确定一次函数的表达式. 9. 能画出一次函数的图象,根据一次函数的图象和表达 式y =kx+b(k≠0)探索并理解k>0或k<0时,图象的变化 情况. 10. 理解正比例函数. 11. 体会一次函数与二元一次方程的关系. 12. 能用一次函数解决简单实际问题.
日期
1
2
3
4
数量/瓶 120
125
130
135
观察此表,利用所学函数知识预测今年6月7日该商店销售 纯净水的数量约为____1_5_0____瓶.
D. 第四象限
(B )
7. (2019杭州)已知一次函数y1=ax+b和y2=bx+a
(a≠b),函数y1和y2的图象可能是
(A )
8.如图M19-4,一次函数y=ax+b的图象与x轴相交于点(2, 0),与y轴相交于点(0,4),结合图象可知,关于x的 方程ax+b=0的解是_________x_=_2_.
【例1】求函数y=
中自变量的取值范围.
易错提示:此题易出现只考虑分子大于等于0、分母大
于0的情况,而忽略了分子小于等于0、分母小于0的情
一次函数复习课课件ppt
谢谢!
x
当k<0时,图象过二、四象限;
y随x的增大而减少。
15
直线经过一、二、四象限,则
K
0, b
0.
<
>
此时,直线的图象只能是( )
D
2021/1/4
16
与y轴的交点为 (0 , b ) 与x轴的交点为 (- , 0 )
1.若一次函数的图象过点A(1,-1),则。 -2
2 .根据如图所示的条件,求直线的表达式。
建立数学模型
函数
应用 2021/1/4
一次函数 再认识
一元一次方程 一元一次不等式 一元一次方程组
图象 性质
8
八年级 数学 一次函数的概念:
第十一章 函数
一般地,形如(为常数,且k≠0) 的函数叫做一次函数.
当b =0 时 即为 , 所以正比例函数,是一次函数的特例.
2021/1/4
9
考点题型 1:一次函数的概念 (1)考纲要求:理解一次函数、正比例函数的意义 (2)考点:一次函数、正比例函数解析式的特征
2021/1/4
3
正方形的面积S 随边长 x 的变化
2
(x>0)
(1)解析法 (2)列表法 (3)围
第十一章 函数
求出下列函数中自变量的取值范围?
分式的分母不为0
被开方数(式)为非负数
与实际问题有关系的,应使实际问题有意义
(3) h 1 k k 1
29
2021/1/4
y
0
A
B
x 19
4.一次函数14与正比例函数2x的图象经过点(2,-1), (1)分别求出这两个函数的表达式; (2)求这两个函数的图象与x轴围成的三角形的面积。
人教版初中八年级数学下册第19章《一次函数》复习课(公开课)ppt课件
7.如下图,两摞相同规格的碗整齐地放在桌面上,请根据图中的数据信息,解答 下列问题: (1)求整齐摆放在桌面上的碗的高度y(cm)与碗的个数x(个)之间的函数关系式;
(2)把这两摞碗整齐地摆成一摞时,碗的高度是多少?
11cm
14cm
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
一次函数复习课公开课课件
按购买金额打九折付款。某校欲购这种笔10支,练习本x(x ≥10)本,如何 选择方案购买呢?
解:甲、乙两种方案的实际金额y元与练习本x本之间的关系式是:
y甲=(x-10)××5+25×10=5x+200 (x ≥10)
y乙=(10×25+5x) ×0.9=4.5x+225 (x ≥10)
y=5x+200
(A)
y
(B)
y
ox
ox
y (C)
ox
(D)
y
ox
第13页,共29页。
• 图象辨析
1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在 直角坐标系内它的大致图象是( )
A
(A)
(B)
(C)
(D)
2、一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是( )
y
o
x
A
自变 量的 取值 范围
全体
实数
一次
函数
y=kx+b (k≠0)
全体
实数
图象
性质
k>0
0
k>0
b>0 b=0 b<0
0
第8页,共29页。
k<0
0
k<0
当k>0时, y随x的增 大而增大; 当k<0时, y随x的增 大而减少.
b>0 0b<0b=0
一次函数y=kx+b的图象是一条直线, 其中k决定直线增减性,b决定直线与y轴的 交点位置. k和b决定了直线所在的象限.
8.如图所示的图象分别给出了x与y的对应关系,其中y是x的函
数的是( )
第19页,共29页。
解:甲、乙两种方案的实际金额y元与练习本x本之间的关系式是:
y甲=(x-10)××5+25×10=5x+200 (x ≥10)
y乙=(10×25+5x) ×0.9=4.5x+225 (x ≥10)
y=5x+200
(A)
y
(B)
y
ox
ox
y (C)
ox
(D)
y
ox
第13页,共29页。
• 图象辨析
1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在 直角坐标系内它的大致图象是( )
A
(A)
(B)
(C)
(D)
2、一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是( )
y
o
x
A
自变 量的 取值 范围
全体
实数
一次
函数
y=kx+b (k≠0)
全体
实数
图象
性质
k>0
0
k>0
b>0 b=0 b<0
0
第8页,共29页。
k<0
0
k<0
当k>0时, y随x的增 大而增大; 当k<0时, y随x的增 大而减少.
b>0 0b<0b=0
一次函数y=kx+b的图象是一条直线, 其中k决定直线增减性,b决定直线与y轴的 交点位置. k和b决定了直线所在的象限.
8.如图所示的图象分别给出了x与y的对应关系,其中y是x的函
数的是( )
第19页,共29页。
一次函数复习课件ppt课件精选全文
若它的图象经过原点,则 m=
;
若点(0 ,3) 在它的图象上,则m=
;
6.下列哪个图像是一次函数y=-3x+5 和y=2x-4的大致图像B( )
(A)
(B)
(C)
(D)
小试牛刀
7、已知函数 y = kx的图象在二、四象限,
那么函数y = kx-k的图象可能是B(
)
y
y
0
x
(A ) y
0
x
y (B)
2.一次函数的图像; 3.一次函数的性质; 4. 一次函数的应用
(1)待定系数法;
(2)利用一次函数解决实际问题。 5. 一次函数的与方程、方程组及不 等式的关系
•
.
• 1.直线y=6x-12与x轴的交点坐标是__________,与y轴
的交点坐标是__________.
• 2.已知一次函数,过点(1,-3)且使随的增大而减小.则 一次函数是__________.
2.一次函数的图象
a. 正比例函数y=kx(k≠0)的图象是过点(0,__0___), (_1_,__k__)的_一__条__直__线__。 (__bk__,b0.一)的次_一函__条数__直y_=_线k_x_+_b。(k≠0)的图象是过点(0,b ___),
c.一次函数y=kx+b(k≠0)的图象与k,b符号的关 系:
2.一次函数的概念
一次函数的概念:如果函数y=k__x__+_b__(k、b为 常数,且k__≠__0__),那么y叫做x的一次函数。
特别地,当b___=__0时,函数y=__k_x_(k__≠__0)叫做正比
例函数。
★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是_1__次,
一次函数复习PPT课件
基础知识 基础练习
提升、归纳
典例解析
课内练习
课堂小结
反思纠错
正比例函数
定义
函数y=kx(k≠0)叫做正比例函数
k>0
y
k<0
y
图像
o
x
o
x
图像是经过原点(0,0)的一条直线
性质
图像在一、三象限内,y随x的 增大而增大
图像在二、四象限内,y随x的 增大而减小
一次函数
定义
函数y=kx+b(k,b都是常数,且k≠0)叫做一次函数
(1)、函数y=kx+b的图像不通过第四象限,则( )
A.k>0 b>0 B.k>0 b<0
C.k>0 b=0 D.k>0 b≥0
y
解:函数y=kx+b的图像不通过第四象限,
即如图,所以k>0,b>0,
o
x
因此选A这样做对吗?为什么?
(2)已知函数y=kx+b的图像经过点(0,-4)且
与两坐标轴围成的三角形的面积为8,求它的解析式。
在第一轮复习中,我们会发现,有一些错误 是学生的共性。如何让他们在以后的第二轮复习 中不错或少错,是非常值得我们研究的问题,如 果一味把正确的解法抛给他们,尽管暂时学生会 理解它,但时间一长,往往会所剩无几。如果把 学生经常出现的错误适时展现出来,让他们自己 来纠错,这样印象会深刻得多,自然到达更有效 的教学。
教师讲完第二题,接着问学生:①当x取什么值时,y1>y2 ?②当 x____时,y1>0 ?
通过两条直线的位置关系,以及直线与x轴的位置关系来解决问① ②,较好地体现了函数、方程与不等式之间的关系,突出了新课程重 视基础,关注联系与综合的特点。
练一练
(1)一次函数y=3x-4的图像不经过的象限( )
第12章一次函数期末复习一次函数的交点问题PPT课件(沪科版)
则方程组
x-y-3=0 2x-y+2=0
的解是_x_=__-__5 y=-8
.
7.直线y=x+2和直线y=x-3的位置关系是 平行 , 由此可知方程组 x-y=-2解的情况为_无__解___.
x-y=3
8. 如图,在同一平面直角坐标系中,直线
l1:y=
1 4
x+
1 2
与直线l2:
y=kx+3的图象相交
6.把方程x+1=4y+
x 3
化为y=kx+b的情势,
正确的是( C ).
A.
1 3
1 4
B.
1 6
C.
1 6
1 4
D.
1 3
7.已知函数y=-x +m与y= mx-4的图象的交点
在x轴的负半轴上那么m的值为( D ).
A.±2
B.±4 C.2 D.-2
∵图象的交点在x轴上
∴ y=0 ∴ -x +m=0 ∴ x= m
( 2)两个一次函数的图象的交点
3.求一次函数的图象与坐标轴的交点的方法
(1)求一次函数的图象的与x轴交点坐标 设y=0, 变为求方程kx+b=0的解
(2)求一次函数的图象的与y轴交点坐标
设x=0, 变为求代数式kx+b的值
(3)一次函数y=kx+b的图象的与x轴交点
坐标为(
-
b k
,0
)
;
与y轴的交点坐标
C.( -1,-1) D.( -1,5)
12.如果直线y =kx+b平行于直线 y=5x-m, y= kx+b
则方程组 y= 5x- m 的解的情况是( B ).
A.有无数解
B.无解
C.一组解
D.两组解
填空题 1.已知关于x的方程ax-5=7的解为x=1,则一次
八年级上 一次函数期末复习(一) 课件
(2)画函数图象时,应根据函数自 变量的取值范围来确定图象的范围。
8
上 5 (1)把直线y= -2x向_____平移_____个单位过点(2,1)。 (2)直线y=kx+b经过两点(-1/2,1)(1,7)则解析式为 y=4x+3 。 y1 _____ (0, 5) (3)直线y=ax+5不论a为何值都过定点____ <1 (4)直线y1与y2交于点P(1,2),当x_____时, >1 y1<y2,若x_____时,y1>y2 。 (5)一直线过点(0,—3)且平等于y=-2x,则此直线是 ( C ) A、y=—2x+3 B、y=2x+3 C、y=—2x—3 D、y=2x+3 (6)若ab<0,bc>0,则直线ax+by+c=0不通过( B )象限。 A、1 B、2 C、3 D、4
2
3
2、平移与平行的条件
y
O
(1)把y=kx的图象向上平移b个单位得 y= kx+b ,向下平移b个单位得y= kx-b , x (2)若直线y=k1x+b与y=k2x+b平行,则 k1=k2 ______, b1≠b2 反之也成立。
y
3、求交点坐标
(1)如何求直线y=kx+b与坐标轴的交点坐标? (0,b) b 令x=0,则y= b ;令y=0,则x= k b O x ,0) (
y
O
x
o
x
o
x
观察增减性
7、一次函数y=kx+b(k ≠ 0)的性质: 增大 ⑴当k>0时,y随x的增大而_________。 减小 ⑵当k<0时,y随x的增大而_________。
8、典型例题讲解:
一次函数的全章复习课件
例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看
对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。
八年级数学《一次函数-复习课》课件
这小堂 课结
归纳小结 反馈升华
正比例函数与一次函数有何 异同? 一次函数与方程(组)、不 等式之间的关系
一次函数的图象和性质及应用
学习了哪些数学思想方法?
分层作业 自我评价
A组为必做题, B组为选作题.
A组:1.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,
则弹簧不挂重物时的长度是
解:∵ y=2x-1;
∴k=2>0; ∴y随x的增大而增大.
∵-1 < 2 ; ∴ y1 < y2 .
一题多解 合作探究
例3.已知,点(-1,y1),(2,y2)在
< 一次函数y=2x-1的图象上,则y1
y2.
解法三 图象法:
y
4
画出函数y=2x-1的图象:
3
x… 0 1… y … -1 1 …
2
问题4:该函数有哪些性质?
B
A
一次函数与正比例函数的图象与性质
一次
函数
y=kx+b
(k≠0,
b≠0)
图象
k,b的 符号 经过象
限 增减性
y
y
y
y
(0,b) ox
ox (0,b)
(0,b) ox
(o 0,bx)
k >0 k >0 k< 0 k< 0 b >0 b< 0 b >0 b< 0
一、 二 、三一、三、四 .一、二、四 二、三、四
问题1:分别求出y1,y2关于x的函数关系式;
解决问题 巩固知识
活动一:自主复习,板书展演 问题1:分别求出y1,y2关于x的函数关系式;
甲公司:y1=30x(x≥0) 乙公司:y2=15x+80(x≥0)
全版一次函数期末复习.ppt
3、已知一次函数y=-2x+4的图象上有两点 A(3,a),B(-4,b),则a与b的 大小关系为__a_<__b____
12
图像
.精品课件.
13
观察 比较两个函数图象的相同点与不同点
y 2x
y 2x
若题目告诉你 直线经过原点, k>0 你想k到<0了什么?
相同点 :两图象都是经过原点的 直线 ,
函数y=2x的图象从左向右 上升 ,经过第 一、三 象限,
y随x的增大而 增大 ; 函数y=-2x的图象从左向右 下降 ,经过第 二、四 象限,
(1) y 80 2x; (2)由 y 0且2x y可解得20 x 40.
.精品课件.
8
【问题 1】函数 y 2x 1 中,自变量 x 的取值 x1
范围是
x 1 且x 1 2
.
变式题组:
10.函数 y x 2 1 的自变量 x 的取值范 x2
围为( D ).
A. x 2
.精品课件.
17
y=kx+b
k,b共同决定直线的位置,彼此分工合作
K决定上山,下山,即:
当k﹥0时,y随X的增大而增大,随X的减小而减小。两者是同步的。 当k﹤0时,y随X的增大而减小,随X的减小而增大。两者是相反的。
b决定上移,下移,即:
当b﹥0时,直线与y轴的交点在x轴的上方
当b﹤0时,直线与y轴的交点在x轴的下方
.精品课件.
1
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做 变
量 ;数值始终不变的量叫做 常量
;
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两 个变量x与y,并且对于x的每一个确定的值,y都有 唯一确定的值与其对应,那么我们就说x是自变量, y是x的函数. y写在前面
12
图像
.精品课件.
13
观察 比较两个函数图象的相同点与不同点
y 2x
y 2x
若题目告诉你 直线经过原点, k>0 你想k到<0了什么?
相同点 :两图象都是经过原点的 直线 ,
函数y=2x的图象从左向右 上升 ,经过第 一、三 象限,
y随x的增大而 增大 ; 函数y=-2x的图象从左向右 下降 ,经过第 二、四 象限,
(1) y 80 2x; (2)由 y 0且2x y可解得20 x 40.
.精品课件.
8
【问题 1】函数 y 2x 1 中,自变量 x 的取值 x1
范围是
x 1 且x 1 2
.
变式题组:
10.函数 y x 2 1 的自变量 x 的取值范 x2
围为( D ).
A. x 2
.精品课件.
17
y=kx+b
k,b共同决定直线的位置,彼此分工合作
K决定上山,下山,即:
当k﹥0时,y随X的增大而增大,随X的减小而减小。两者是同步的。 当k﹤0时,y随X的增大而减小,随X的减小而增大。两者是相反的。
b决定上移,下移,即:
当b﹥0时,直线与y轴的交点在x轴的上方
当b﹤0时,直线与y轴的交点在x轴的下方
.精品课件.
1
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做 变
量 ;数值始终不变的量叫做 常量
;
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两 个变量x与y,并且对于x的每一个确定的值,y都有 唯一确定的值与其对应,那么我们就说x是自变量, y是x的函数. y写在前面
八年级数学一次函数复习PPT省名师优质课赛课获奖课件市赛课一等奖课件
3、考点题型:
单一旳求解析式【题型】:已知y是x旳正百分比函数,而且当x=3 时,y=6,假如点A(a,a+3)是它旳图象上旳点,(1)求a旳值; (2)求平行于该图象,而且经过点B(- a , a +1)旳一次函数旳 解析式。
解(1)设正百分比函数解析式为:y=kx 把x=3 y=6代入y=kx得:k=2 ,即正百分比函数解析式
一次
图象
y
y
y
y
函数 y=kx
+b
b
ox
ox
b
b(b≠0) • k,b旳 k>0
符号
b>0
k>0
k<0
b<0
b>0
k<0 b<0
经过象限 一、二、三 一、三、四 一、二、四 二、三、四
•正 百 分 比 函
增减性
y随x旳增 大而增大
y
y随x旳增 大而增大
y随x旳增 大而降低
y
y随x旳增 大而降低
3、复习一次函数图像旳平移
温馨提醒:直线y=k1x+b1在同一平面直角坐标系中平移到 y=k2x+b2时,有k1=k2且b1≠b2即:两直线位置关系为:平行;直 线平移规律:上加下减;左加右减。
(3) 考点题型:(2023.武汉) 点旳平移思索题(1):点(0,1)向下平移2个单位后坐 标为__(__0_,-_1_)___ 直线旳平移思索题:(1):直线y=2x+1向下平移2个单位 后旳解析式为: y=2x-;1 (2)直线y=2x+1向右平移2个单位后旳解析式:Y=2(x-2)+1
2
0
y
D 23
l2 A(4,0)
人教版初中八年级数学下册第19章《一次函数》复习ppt课件
(1)李华出发时与张强相距 千米. (2)李华行驶了一段路后,自行车发生1故0 障,进行修理,
所用的时间是 小时.
(3)李华出发后 小时与张强相遇.
1
C
(4)若李华的自行车不发3生故障,保持出发时的速度前
进, 小时与张强相遇,相遇点离李华的出发点
千米.在图中表示出这个相遇1 点C.
15
探究1
重庆市2013年7月1日开始实行电价阶梯收 y
____.
4
5.直线l1: y1 k与1x直 线b l2:
所示,则关于x的不等式
的解集为 x<,-方2 程组
为
x 2.
y3
在y同2 一平k面2x直角坐标系中,图象如图 k2xk1xb
的kk 12解x b
y1, y2
如图,l1、l2分别表示张强步行与李华骑车在同一路 上行驶的路程s与时间t的关系.
(2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升, 即随着x的增大y也增大;当k<0时,直线y= kx经过第二,四象限,从 左向右下降,即随着 x的增大y反而减小.
5.一次函数的图象及性质. (1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的 __________.
第十九章 一次函数
本章知识结构图
某些现实问题中相互联系 建立数学模型 的变量之间
函数
应用
一次函数 y=kx+b(k≠0)
再认识
一元一次方程 一元一次不等式 二元一次方程组
图象:一条直线
性质: k>0,y随x的增大而增大; k<0,y随x的增大而减小.
1. 一次函数的概念.
一次函数复习 课件(共30张PPT)
当k<0时,图象过二、四象限;y随x的增大而减少。
y=kx
5、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是___③_____; 函数y随x的增大而增大的是___①___④____; 函数y随x的增大而减小的是____②_______; 图象在第一、二、三象限的是___①_____ 。
x 50 y 250
60 70 80 … 200 150 100 …
《一次函数》复习
三、正比例函数
1、形如 y=kx (k是常数,k≠0)的函数,叫做正比例函数, 其中k叫比例函数。 2、(1)正比例函数y=kx( k是常数,k≠0)的图象是一条经 过 原点的直线,也称它为 直线y=kx ;
(2)画y=kx的图象时,一般选 原 点和_(__1_,__k)
往往需要复杂的计算才能得出。
《一次函数》复习 巩固练习
1、甲车速度为20米/秒,乙车速度为25米/ 秒.现甲车在乙车前面500米,设x秒后两车之间的 距离为y米.求y随x(0≤x≤100)变化的函数解析 式,并画出函数图象.
解:由题意可知: y=500-5x 0≤x≤100 用描点法画图:
x … 10 20 30 40 y … 450 400 350 300
9、若函数y=(2m+6)x2+(1-m)x是正比例函数,则其解
析式是 y=4x ,该图象经过第一、三象限,y随x
的增大而 增大 ,当x1<x2时,则y1与y2的关
是 y1<y2
。
解:∵函数y=(2m+6)x2+(1-m)x是正比例函数
∴2m+6=0,1-m≠0 ∴m=-3
y
一次函数总复习整理ppt课件
技能要求:能从函数图象中读取信息,完成问题。
图象信息(形)
图象上点的坐标特点(数)
对应关系和变化规律
.
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
函数的图象
对于一个函数,若把自变量与函数的每对对应值分别作 为点的横、纵坐标,那么坐标平面内由这些点组成的图 形,就是这个函数的图象。从这个图象中可以方便地看 出当自变量增大时,函数值怎样变化.即函数的增减性。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
变量与函数
在事物运动变化过程中,变化的量叫变量。不变的量叫 常量。变量一般表示为字母,但字母不一定是变量。
数值不断 变化的量
变量
数值固定 不变的量
常量
习题:一个大小不断变化的圆的半径为r,它的面积 S=πr2,其中变量有______,常量有_____.
直线y=kx+b1可以看作y=kx+b2向上(b1>b2)或向下 (b1<b2)平移|b1-b2|个单位长度得到的.
习题:直线y=-2x向上平移3个单位长度可以得到直线 ________;向下平移2个单位长度可得直线________。
直线y=-2x-3向上平移3个单位长度可得到直线________; 向下平移4个单位长度可得直线________。
y =k1 x +b1
y
6
4
y =k2 x +b2
-5
2
O -2
.
5
x
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
图象信息(形)
图象上点的坐标特点(数)
对应关系和变化规律
.
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
函数的图象
对于一个函数,若把自变量与函数的每对对应值分别作 为点的横、纵坐标,那么坐标平面内由这些点组成的图 形,就是这个函数的图象。从这个图象中可以方便地看 出当自变量增大时,函数值怎样变化.即函数的增减性。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
变量与函数
在事物运动变化过程中,变化的量叫变量。不变的量叫 常量。变量一般表示为字母,但字母不一定是变量。
数值不断 变化的量
变量
数值固定 不变的量
常量
习题:一个大小不断变化的圆的半径为r,它的面积 S=πr2,其中变量有______,常量有_____.
直线y=kx+b1可以看作y=kx+b2向上(b1>b2)或向下 (b1<b2)平移|b1-b2|个单位长度得到的.
习题:直线y=-2x向上平移3个单位长度可以得到直线 ________;向下平移2个单位长度可得直线________。
直线y=-2x-3向上平移3个单位长度可得到直线________; 向下平移4个单位长度可得直线________。
y =k1 x +b1
y
6
4
y =k2 x +b2
-5
2
O -2
.
5
x
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
第12章一次函数期末复习一次函数的图象及其性质课件
一条 直线 .特别地,正比例函数y=kx(k≠0)的图象 是一条过 原点 的直线.
复习要点 3.正比例函数y =kx的图象及其性质
当k>0时,y随着x的增大而增大;图象经过第三、一象限.
当k<0时,y随着x的增大而减小;图象经过第二、四象限.
y
y
y=kx
O
x
y=kx
O
x
复习要点
4.一次函数y=kx+b与正比例函数y=kx图象的关系
A.y=-2x+3
B.y=-2+3x
C.y=-3x-2
D.y=3-2x
4.一次函数y=mx+|m-1|的图象过点(0,2),且y
随x的增大而增大,则m=( B ).
A.-1 B.3 C.1 D.-1或3
练习巩固
5.点A(4,m) ,B(4.7,n)都在直线y=2.3x-5上,则
m与n之间的关系是( B ).
Ox
∴ m+1=-1<0
A.
B.
y
即k<0
y
∵ m<-2 ∴-m>2
O x∴ 1-m>1 +2>0
C.
即b>0
Ox
D.
10.直线y=kx+2与y=2x+k在同一坐标系内的
大致图象是( D ).
y
k>0
k<0
O
x
y k>0
k<0
O
x
A. y k<0 k>0
O
x
B.
y k<0 k<0
b>0
O
x
C.
D.
y
y=kx+b y=kx
O
x
y=kx+b
复习要点 8.用待定系数法求一次函数解析式一般步骤: (1)先设出一次函数解析式为y=kx+b; (2)将已知两点的坐标代入所设的解析式,建立
复习要点 3.正比例函数y =kx的图象及其性质
当k>0时,y随着x的增大而增大;图象经过第三、一象限.
当k<0时,y随着x的增大而减小;图象经过第二、四象限.
y
y
y=kx
O
x
y=kx
O
x
复习要点
4.一次函数y=kx+b与正比例函数y=kx图象的关系
A.y=-2x+3
B.y=-2+3x
C.y=-3x-2
D.y=3-2x
4.一次函数y=mx+|m-1|的图象过点(0,2),且y
随x的增大而增大,则m=( B ).
A.-1 B.3 C.1 D.-1或3
练习巩固
5.点A(4,m) ,B(4.7,n)都在直线y=2.3x-5上,则
m与n之间的关系是( B ).
Ox
∴ m+1=-1<0
A.
B.
y
即k<0
y
∵ m<-2 ∴-m>2
O x∴ 1-m>1 +2>0
C.
即b>0
Ox
D.
10.直线y=kx+2与y=2x+k在同一坐标系内的
大致图象是( D ).
y
k>0
k<0
O
x
y k>0
k<0
O
x
A. y k<0 k>0
O
x
B.
y k<0 k<0
b>0
O
x
C.
D.
y
y=kx+b y=kx
O
x
y=kx+b
复习要点 8.用待定系数法求一次函数解析式一般步骤: (1)先设出一次函数解析式为y=kx+b; (2)将已知两点的坐标代入所设的解析式,建立
中考数学专题《一次函数》复习课件(共20张PPT)
2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练2、拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,
那么油箱中的剩油量y(升)与工作时间x(时)之间的函数 关系式和图象是( D )
y=4x-24(0≤x ≤6) y 6 0 x
-24 O
y=-4x+24 y
24 6
y=4x-24 y=24-4x(0 ≤ x ≤ 6) y y
O
24 6 X
5、已知一次函数y=kx+b(k≠0)在x=1时,y=5,且
它的图象与x轴交点的横坐标是6,求这个一次函数的 解析式。 解:由一次函数当x=1时,y=5;且它的图象与x轴交点 是(6,0),得
k b 5 解得 k 1 b 6 6k b 0
∴一次函数的解析式为 y= - x+6。 点评:用待定系数法求一次函数y=kx+b的解析式,可由已知 条件给出的两对x、y的值,列出关于k、b的二元一次方程组。 由此求出k、b的值,就可以得到所求的一次函数的解析式。
y (3 k ) x 2k 18
2
(1) k为何值时,它的图象经过原点
(2)k 为何值时,它的图象经过点(0, -2)
(3)k为何值时,它的图象平行直线 y= - x (4) k为何值时,它的图象向下平移后, 变成直线y=2x+8 (5)k 为何值时, y随x的增大而减小
4、填空题:
求m+n的值为————。
例2.求下列函数自变量的取值范围 (使函数式
有意义): 1 (1) y x 1
(2) y x 1
1 (3) y x2 x 1
直线
y=2x+6 y=-x+6
与y轴交点
(0,6)
(,6)
与x轴交点
(-3,0)
( 6,0)
y=-x
y=5x
y
y=2x+6
指出下列各式子中的变量, 常量.
(1)C=2πr (r≥0), (2)s=60t (t≥0), (3)S=(n-2)×180 ,
kx +b ≠0 1、一次函数y=_______(k 、b为常数,k______) =0 时,函数y=kx叫做正比例函数。正比例函 当b_____ 数是一次函数的特殊情况。 ★理解一次函数概念应注意下面两点: 1 次, ⑴、解析式中自变量x的次数是___ k≠0 。 ⑵、比例系数_____ 2、正比例函数y=kx(k≠0)的图象是过点(_____ 0,0),(______) 1,k 一条直线 。 的_________ 3、一次函数y=kx+b(k≠0)的图象是过点(0,___) b 的 一条直线 __________。
Q 40 20 0
.A
.B
8 t
直线y=kx+b过点(1,3)和点(-1,1),则
k
b
=__________。
已知一次函数 y=(6+3m)x+n-4,n为何值时, 函数图象与y轴交点在x轴的下方?
数形结合训练:
1、已知一次函数y=kx+b(k≠0)平行于 直线y=3x,且过点(1,4),求函数解析式。
(1)有下列函数:① y 6 x 5 , ③ ②y=5x ,
y x 4 , ④ y 4 x 3 。其中过原点的直
② ;函数y随x的增大而增大的是①、②、③ 线是_____ ___________; ④ ;图象在第一、二、 函数y随x的增大而减小的是______ 三象限的是_____ ③ 。
(3)当x≤2时y与x之间的函数关系式是_____。
(4)当x≥2时y与x之间的函数关系式是____。 (5)如果每毫升血液中含药量3毫克或3毫克以上 时,治疗疾病最有效,那么这个有效时间范围是___时。.
y
y=2x+1
y y=2x y=2x-1 o x
y=2x o
x
1 直线y=2x-1是由直线y=2x向下平移 个单位得到。 下 个单位得到。 4 直线y=2x-3是由直线y=2x+1向 平移
例3:已知函数的图象过点(3,5)与(-4,-9),求这 个一次函数的解析式。 用待定系数法求函
数解析式步骤:
------------把x=60,y=5和x=90,y=10代入得
5=60k+b 10=90k+b k=- 6 b=-5
1
1
∴一次函数关系式为y=- 6 x-5(x≥30) (2)当y=0时,x=30 ∴旅客最多可免费携带的行李重量是30kg 。
例7
求直线y=2x-1与两坐标轴所围成的三角形面积
O 6 X (A) (B) (C) (D) 练3:如图所示,向高为H的圆柱形杯中注水,已知水杯底面半
X
-24
y
------
径为2,那么注水量y与水深x的函数关系的图象是( A) -- y y y ● -
● ●
---------
----
O
H
(A)
x O
H xO
(B)
H
(C)
x O
H
x
(D)
例1已知一次函数
生活中充满着许许多多变化 着的量与不变的量,它们之间 还常常存在着一定的关系.函 数是刻画变量之间的关系的一 个数学模型.
思一思
在一个过程中,可以取不同数值的量称为变 量 在一个过程中,固定不变的量称为 常 量
小王家距离学校800米,小王每分钟步行100米,X分 钟后小明距离学校Y米 小王家离学校800米;小王步行速度100米/分钟 这里的常量是______________________________________ 时间(X)和小王离学校的距离(Y) 这里的变量是____________________________
y=kx+3
x
例 5、
柴油机在工作时油箱中的余油量Q(千克)
与工作时间t(小时)成一次函数关系,当工作开始时 油箱中有油40千克,工作3.5小时后,油箱中余油22.5 千克(1)写出余油量Q与时间t的函数关系式;(2)画出 这个函数的图象。 解:(1)设Q=kt+b。把t=0,Q=40;t=3.5, Q=22.5,分别代入上式,得 k 5 b 40 解得 b 40 22.5 3.5k b
例4、已知y与x-1成正比例,x=8时,y=6,
写出y与x之间函数关系式,并分别求出x=-3 时y的值和y =-3时x的值。 解:由 y与x-1成正比例可设y=k(x-1)
6 ∴ y与x之间函数关系式是:y= (x-1) 7 6 18 当x=4时,y= ×(4-1)= 7 7 6 当y =-3时,-3= 7 (X-1) X= 2.5
(1)它的图像是经过原点(0,0)的一条直线;
(2)y的值随x值的增大而增大。 请你举出一个满足上述条件的函数(用关系式表示)
2 7、函数 y x 4 的图像与x轴交点坐标为________, 3
与y轴的交点坐标为____________。
8. 设点P(3,m),Q(n,2)都在函数y=x+b的图象上,
解:(如图)∵当x=0时,y=-1 ∴ y=2x-1与y轴的交点为(0,-1) y ∵当y=0时,x=½ ∴ y=2x-1与x轴的交点为(½ ,0) ∴AO=½ ,BO=1 O ∴SΔAB0= ½ ·AO·BO -1 = ½ ×½ ×1 = 1/4
y=2x-1
A
½
B
x
答:直线y=2x-1与两坐标轴所围成的三角形面积 为1/4。
●
6●
5
在同一直角坐 标系中作出下 列函数的图象:
4 3 2 1
● O -3 -2 -1 -1
y= 2x+6
y= -x+6
y= -x,
1 2 3 4 5 6
y x 6
x
y=5x
-2
y 5x
y x
y
y kx b(k 0)
y kx(k 0)
o x
(0,b)
一次函数y=kx+b(k≠0)的图象是 经过点(0,b)且平行于直线y=kx (k≠0)的一条直线。
解: ①设这个函数的解析式为 (1)先设出函数解析式
y kx b
② 因为函数图象过点(3,5)和(- 4,-9), 则
(2)根据条件建 立含k,b的两个方程 (3)解方程组求 出待定字母
5=3k+b -9=-4k+b
k=2 b=-1
所以函数的解析式为:y=2x-1.
例5、旅客乘车按规定可随身携带一定重量的行李,如 果超过规定,则需购行李票,该行李费y(元),行李 重量x(kg)的一次函数,如图所示。 y(元) 求:(1)y与x之间的函数关系式; 10 ---------------5 ------------(2)旅客最多可免费携带多少 O 60 90 x(k 行李的重量。 g) 解:(1)设一次函数关系式为y=kx+b(k≠0)
3、一次函数的性质
名
函数表达式 称 与图象
正 比 例 函 数 y=kx(k≠0)图象是 经过 (0,0),(1,k) 两点的一条直线.
系数 符号
k>0 k<0
图象
性质
y随x增大而 增大 y随x增大而 减少
一 次 函 数 一 y=kx+b(k≠0)图 象是经过(0,b) 次 的一条直线. 函 数
b>0 k>0 b<0 b>0 k<0 b<0
3 y x 1 x之间的函数关系式为_________________ 。 2
(2)、已知y-1与x成正比例,且x=-2时,y=4,那么y与
5、在下列函数中, x是自变量, y是x的函数, 那些是一 次函数?那些是正比例函数? y=2x y=-3x+1 y=x2