1实数和代数式

合集下载

数学全部的概念教案初中

数学全部的概念教案初中

数学全部的概念教案初中教案目标:1. 使学生掌握初中数学中的基本概念,包括实数、代数式、方程、不等式、函数等;2. 培养学生对数学概念的理解和运用能力;3. 培养学生的逻辑思维能力和抽象思维能力。

教学内容:1. 实数概念:有理数、无理数、实数的分类和性质;2. 代数式概念:代数式的定义、代数式的运算;3. 方程概念:方程的定义、方程的解法;4. 不等式概念:不等式的定义、不等式的解法;5. 函数概念:函数的定义、函数的性质、函数的图像。

教学过程:一、实数概念:1. 引入实数的概念,让学生了解实数包括有理数和无理数;2. 讲解有理数的定义,如整数、分数等,并让学生进行相关练习;3. 讲解无理数的定义,如根号下非完全平方数的无理数,并让学生进行相关练习;4. 总结实数的分类和性质,让学生掌握实数的基本概念。

二、代数式概念:1. 引入代数式的概念,让学生了解代数式是由字母和数字组成的表达式;2. 讲解代数式的运算规则,如加减乘除、幂的运算等,并让学生进行相关练习;3. 让学生运用代数式解决实际问题,培养学生的运用能力。

三、方程概念:1. 引入方程的概念,让学生了解方程是含有未知数的等式;2. 讲解方程的解法,如代入法、消元法等,并让学生进行相关练习;3. 让学生运用方程解决实际问题,培养学生的运用能力。

四、不等式概念:1. 引入不等式的概念,让学生了解不等式是不相等的等式;2. 讲解不等式的解法,如同号不等式、异号不等式等,并让学生进行相关练习;3. 让学生运用不等式解决实际问题,培养学生的运用能力。

五、函数概念:1. 引入函数的概念,让学生了解函数是自变量和因变量之间的依赖关系;2. 讲解函数的性质,如单调性、奇偶性等,并让学生进行相关练习;3. 讲解函数的图像,如直线、曲线等,并让学生进行相关练习;4. 让学生运用函数解决实际问题,培养学生的运用能力。

教学评价:1. 通过课堂讲解和练习,评价学生对数学概念的理解程度;2. 通过课后作业和测试,评价学生对数学概念的运用能力;3. 结合学生的课堂表现和作业完成情况,评价学生的逻辑思维能力和抽象思维能力。

实数与代数式

实数与代数式

实数与代数式【知识梳理】1.实数(1)分类:实数分数(2)⎪⎩⎪⎨⎧〈-=〉=)0()0(0)0(a a a a a a (3)科学记数法:正数),101(10是整数n a a N n 〈≤⨯=。

2.代数式(1)分类:代数式 分式(2)幂的运算公式: )0(1)()(0≠====÷=⋅-+a a b a ab a a a a a a a a n n n m n n m n m n m n m n m ;;;;。

(3)多项式的乘法:bd bc ad ac d c b a +++=++))((;ab x b a x b x a x +++=++)())((2;22))((b a b a b a -=-+;222)(b ab a b a +±=±;3322))((b a b ab a b a ±=+± 。

【双基训练】一、填空题(时间:10分钟)1.在22,101001.0,,14.3,1,0 π-各数中,整数是_______,分数是__________,无理数是__________; 正整数 零 负整数 正分数 负分数有理数 无理数整数 单项式 多项式有理式 无理式整式2.比较大小:(1)-1 _______ 0 ;(2)43-_______32- ;(3)π _______ 3.14; 3.因式分解:(1)a a 43-=__________;(2)22414a b a -+-=_____________________;(3)652--x x =________________;(4)652+-x x =_________________;4.请写出一个比0.1小的有理数_____________;5.当1,3=-=b a a 时,代数式ab a -2的值是_______________;6.若b a x 122+与b a x 53+-是同类项,则x =_____________;7.用科学记数法表示:0.00000101=______________;8.计算:aa a 214122-+-=_________________; 9.已知: ;;;;; 24552455154415448338333223222222+=+⨯=+⨯=+⨯=+ =+⨯=+b a ab 10a b 102则符合前面式子的规律,若____________; 10. 给出下列等式32-12=8=8×1;52-32=16=8×2;72-52=24=8×3;92-72=32=8×4.观察上面一系列等式,用代数式表示这个规律是:______________。

初中数学数与式的复习概括

初中数学数与式的复习概括

数与式一.实数和代数式的有关概念1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。

数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数是0。

数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等。

4.倒数:1除以一个数的商,叫做这个数的倒数。

一般地,实数a 的倒数为a1。

0没有倒数。

两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。

5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。

a =()()()⎪⎩⎪⎨⎧<-=>0000a a a a a ,绝对值的几何意义:数轴上表示一个数到原点的距离。

6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。

(1)正数大于零,零大于负数。

(2)两正数相比较绝对值大的数大,绝对值小的数小。

(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。

(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。

7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。

单独的一个数或字母也是代数式。

8.整式:单项式与多项式统称为整式。

单项式:只含有数与字母乘积形式的代数式叫做单项式。

一个数或一个字母也是单项式。

单项式中数字因数叫做这个单项式的系数。

一个单项式中所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的代数和多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

中考数学专题:实数与代数式

中考数学专题:实数与代数式

专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。

【高三数学复习讲义】第1讲 高考比较实数(或代数式)的大小-解析版

【高三数学复习讲义】第1讲 高考比较实数(或代数式)的大小-解析版

第1讲 比较实数(或代数式)的大小知识与方法比较实数(或代数式)的大小以不等式的性质为主要依据,涉及不等式、函数等数学知识,具有涉及面广、解法灵活等特点,因此,理解、掌握比较实数(或代数式)大小的基本事实,掌握不等式性质及常用方法,是解决问题的关键.一、基本事实1 0;0;0a b a b a b a b a b a b ->⇔>-=⇔=-<⇔<.2 已知,a b 是两个正数,则1;1;1a a a a b a b a b b b b>⇔>=⇔=<⇔<. 二、不等式性质1 a b b a >⇔<;2 ,a b b c a c >>⇒>;3 a b a c b c >⇒+>+;4 ,0;,0a b c ac bc a b c ac bc >>⇒>><⇒<;5 ,a b c d a c b d >>⇒+>+;6 0,0a b c d ac bd >>>>⇒>;7 ()0,2n n a b a b n n >>⇒>∈N三、常用方法1.作差比较;2.作商比较;3.赋值;4.构造函数.四、易错警示1 利用不等式的性质时需要注意该性质成立的前提条件.2 变形后比较大小需要关注变形的等价性.五、典型例题【例1】已知a>b>0的大小. 【分析】比较代数式大小的基本方法是作差比较,又因为两个代数式都是大于零的,所以也可以尝试作商比较.【解析】解法1:-=+=.⎛⎫=因为0a b>>,0 >>,所以0⎛⎫>,>.解法2:因为0a b>>,=>>.所以2222a ba bb a-=--+()()()332221()0,a ba baba ab ba baba ba bab+=-+⎛⎫-+=+-⎪⎝⎭-=+>所以22>.>.解法3:1a b====+.因为0a b >>,所以11+>,1>.0->,>. 【点睛】(1)作差比较基本步骤:作差、变形、定号、结论.(2)作商比较基本步骤:作商、变形、定号、结论.【例2】已知实数a,b,c,d 满足,a b c d a d b c +=++<+,则a,b,c,d 的大小关系是( ) A.,a c d b B.,a c d b <<C.,a c d b ><D.,a c d b >>【分析】此题不宜用作差比较或作商比较,考虑利用不等式的主要性质.另外,对选择题还可以采用赋值法.【解析】解法1:因为a b c d +=+,所以a c d b -=-.又因为a d b c +<+,所以a c b d -<-,所以d b b d -<-,所以,0d b a c d b <-=-<,即,a c d b <<.故选B.解法2:令3,5,7,1a b c d ====,则满足,a b c d a d b c +=++<+.故选B.【点睛】解法1借助不等式性质构建a c -与b d -的关系,继而得出d b <,从而解决了问题. 解法2既快又准,适用于选择题.【例3】若 0,0,0a b c b d >>>-<<,试比较 ,,,b a b c a d a b a c b d++++的大小.} 【分析】先分成两组,一组比1大,一组比1小,再作差比较.【解析】解法1:因为0a b >>,所以1,1b a a b. 又因为0,0c b d >-<<,所以1,1b c a d a c b d++++. 又因为()()()()0,0a b c b a d b c b a d a a c a a a c b d b b b d --++-=>-=>++++, 故b b c a a d a a c b b d++<<<++. 解法2:令4,3,2,1a b c d ====-, 则3453,,,4362b a bc ad a b a c b d ++====++,故b b c a a d a a c b b d++<<<++. 【点睛】(1)已知0a b >>,且0m >,则b b m a a m+<+; (2)已知0a b >>,且0m >,则a a m b b m+>+. 【例4】已知1,01a b c ><<<,设1,,log cb b x a y zc a -⎛⎫=== ⎪⎝⎭,试比较,,x y z 的大小. 【分析】根据式子结构构造函数,并用函数性质比较大小.【解析】解法1:因为1a >,所以函数xy a =是递增函数. 又因为01b c <<<,所以11c c b y a x a a -⎛⎫==>=> ⎪⎝⎭.又log log 1b b z c b =<=,故y x z >>.解法2:因为,1,0bb c c x a a a b c y a-==>-<, 所以1,1x x y,即1x y <<. 而log log 1b b z c b =<=,故y x z >>.解法3:令4,0.25,0.5a b c ===,则0.50.250.25142,log 0.50.54x y z -⎛⎫====== ⎪⎝⎭.【点睛】根据代数式结构构造函数是突破,用函数的性质比较大小是关键,熟练掌握基本函数及其性质是解题的基础.【例5】已知a,b 为正实数,且242log 42log a ba b +=+,试比较a 与2b 的大小.【分析】等式两边的结构类似,可化成同等结构变成不等式,然后通过构造函数并利用函数的单调性比较大小.【解析】解法1:因为()2224222log 42log 2log 2log 2a b b b a b b b +=+=+<+, 令()22log x f x x =+,则()()2f a f b <.又因为()22log x f x x =+是递增函数,故2a b <.解法2:假设2a b ,则()2222242log 2log 241log 4log 42log a b b b b a b b b b ++=++>+=+,这与已知条件242log 42log a b a b +=+矛盾,所以假设不成立.故2a b <.解法3:令1b =,则22log 4a a +=.因为函数()22log x f x x =+是递增函数,且()()12,25f f ==,则12a <<.【点睛】解法1与解法2是解答题的两种常规解法. 解法1通过放缩变成结构相同的代数式,然后构造函数并利用函数性质解决. 解法2是用反证的恩想,当正面难以解答时,考虑从反面解答. 解法3是赋值法,适用于小题.【例6】已知12,24a b a b -+,求证:54210a b -【分析】建立所求不等式与已知不等式的关系,再利用不等式的性质进行运算.【解析】解法1:设()()()()42a b m a b n a b m n a m n b -=-++=+--,则4,2,m n m n +=⎧⎨-=⎩解得3,1,m n =⎧⎨=⎩即()()423a b a b a b -=-++. 因为12,24a b a b -+,故54210a b -.解法2:令()2f x ax bx =+,则()()1,1,f a b f a b ⎧-=-⎪⎨=+⎪⎩ 所以()()()()11,211,2f f a f f b ⎧+-=⎪⎪⎨--⎪=⎪⎩所以()()42311a b f f -=-+.又因为()()112,214f f -,故54210a b -.【点睛】多次使用不等式性质有可能会扩大取值范围,因此要用整体思想求解,即所求式子用条件表示.强化训练1. 已知,a b 为非零实数,试比较22a b b a-与a b -的大小. 【解析】解法1:()()2233a b a b a b a b b a ab ⎛⎫----=--= ⎪⎝⎭()22a b a b ab+- 所以,当0a b >或0a b >时,22a b a b b a--;当0a b >>时,22a b a b b a -<-; 当0b a >或0b a >时,22a b a b b a --;当b >0a >时,22a b a b b a->-. 【解析】解法2:当a b =时,22a b a b b a-=-; 当a b ≠时,()223322a b a b a ab b b a a b ab a b ab --++===--221a b ab++ 当0a b >>或0a b >>时,22a b a b b a->-; 当0a b >>时,22a b a b b a-<-; 当0b a >>或0b a >>时,22a b a b b a-<-; 当0b a >>时,22a b a b b a->-. 2.(多选题)设01,a b c <<<∈R ,则下列不等式成立的是()A.ac bc >B.33a b <C.11a b <D.()20a b c -【答案】BD【解析】当0c 时选项A 不成立;根据不等式性质,得到33a b <,选项B 成立; 由110b a a b ab --=>得11a b>,选项C 不成立; 因为20,0a b c -<,由不等式性质④得()20a b c -.3.某建筑公司建居民住宅时,要求窗户面积与卧室地面面积的比值达到20%左右,这个比值越大采光条件越好.如果同时减少相等的窗户面积和卧室地面面积,那么采光条件A.变好了B.变差了C.没有发生变化【答案】B【解析】:由0a b >>,且0m >,则b b m a a m+<+,可得采光条件变差了. 4.若,,x y z 是正实数,满足235x y z ==,试比较3,4,6x y z 的大小.【解析】令235x y z k ===,则233log ,4x k y ==354log ,66log k z k =, 所以23lg 33log 33lg3lg27lg21lg 44log 4lg2lg164lg3kk x k y k ====>, 即34x y >.同理可得36,64x z z y >>.故364x z y >>.5.若22sin sin a a b b b a -<-,则()A.a b >B.a b <C.a b <D.a b >【答案】C【解析】:令()2sin f x x x x =+,则()f x 为偶函数. 又当0x >时,()()sin cos 2cos 1f x x x x x x x x =++=+++'sin 0x , 所以()f x 在[)0,∞+上单调递增.因为222sin sin sin sin a a b b b a a a a b b -<-⇔+<2b +,即()()f a f b <,所以a b <.6.若22ππαβ-<<<,则2αβ-的取值范围为_____. 【答案】3,22ππ⎛⎫- ⎪⎝⎭【解析】:因为22ππαβ-<<<,所以0παβ-<-<,所以()322ππααβ-<+-<, 故2αβ-的取值范围为3,22ππ⎛⎫- ⎪⎝⎭. 7.已知ABC 的三边长分别为,,a b c ,且满足3b c a +,则c a的取值范围是_____. 【答案】()0,2【解析】:由已知三角形三边关系得3,,,a b c ab a cc a b<+⎧⎪<+⎨⎪<+⎩所以13,1,1,b ca ab ca ac ba a⎧<+⎪⎪⎪<+⎨⎪⎪<+⎪⎩即13,11,b ca ac ba a⎧<+⎪⎪⎨⎪-<-<⎪⎩故ca的取值范围是()0,2.。

实数与代数式初中数学教案

实数与代数式初中数学教案

实数与代数式初中数学教案一、教学目标:1.了解实数的概念和性质。

2.学习代数式的基本知识和运算方法。

3.掌握实数和代数式的应用。

二、教学内容:1.实数的概念和性质:(1)实数的含义:实数指的是可以用于度量和数量关系的数。

这些数包括自然数、整数、有理数、无理数等。

(2)实数的性质:①可加性:实数之间可以进行加法运算。

②可乘性:实数之间可以进行乘法运算。

③可对比性:实数之间可以进行大小比较。

④稠密性:在任意两个不同实数之间,都可以找到一个实数。

2.代数式的基本知识和运算方法:(1)代数式的含义:代数式指的是数和字母的组合,例如2x+3y。

(2)代数式的基本构成:数、字母、符号(+、-、×、÷)。

(3)代数式的运算法则:加、减、乘、除、分配律、结合律、交换律、分数的加减、乘除等。

(4)字母的运算:提取公因数、移项、合并同类项、配方法等。

3.实数和代数式的应用:(1)实数的应用:计算、大小比较、平均数、方差、分布等。

(2)代数式的应用:解方程、解不等式、求根、构造模型等。

三、教学方法:1.讲解法:讲解实数的概念和性质,介绍实数的应用场景。

2.演示法:演示代数式的构成、运算法则和应用。

3.实践法:进行计算、推导、解题和建模等实践操作。

四、教学步骤:1.实数的概念和性质。

2.代数式的构成和运算法则。

3.实数和代数式的应用。

4.实践操作和应用实例。

五、教学评估:1.课堂讨论:讨论实数和代数式的概念、性质和运算方法。

2.小组合作:小组合作完成代数式的构造和运算实践任务。

3.个人测试:个人测试实数和代数式的应用和解题操作。

六、教学资源:1.教材:《初中数学》等。

2.多媒体教具:电脑、投影仪、智能白板等。

3.实践工具:纸笔计算器、模型材料等。

七、教学反思:本次教学实践主要围绕实数和代数式的概念、性质、构成、应用和实践进行,主要采用讲解法、演示法和实践法。

通过教学实践,学生了解了实数的含义和性质,掌握了代数式的构成和基本运算方法,同时还进行了实际计算、推导和建模等学习实践操作。

代数式——知识篇

代数式——知识篇

成 一项 叫做合 并同类 项 . 合并 的法 则
是 把 系 数 相 加 . 得 的 结 果 作 为 合 并 所
铀 + Ⅱ6 n - 6 6 6 6
因 此 中 间 省 略 号 部 分 的 式 子
为 一 ab 6 1 4 3+ n6 a 3 b.
第 一条 : 当k O时, 函数 图象 “ > 的 两个 分 支分 别在 第 一 、三象 限 内. 在每 个 象 限 内, 自变 量 z 逐渐增 大时. y的值 则 随 着逐
学好高中数学也
补 充省 略 号 部 分 的 内容 .
单项式 、 多项式统称 为整式 , 在整 式 的运算 中要 注意同类 项和合并 同类
项 的处 理 .把 多项 式 中 的 同 类 项 合 并
阅读 ,在 语 文 中要抓 住精
炼 的或 生 动 形 象 的词 与 句 , 而 在数 学 中 。则应抓 住关键 的词



读 时 抓 住 关键 词 语 的 重 要 性。
()、 1 ( /a) (≥0 ; n )

是 代 数 式 运 算 中 的 重 点 知 识 . 类 整 这
式 的 化 简整理 在 高 中二项 式 定 理 中

有 着重要 的应 用 ; 对于 整式的 运算要 掌握 整式 的幂运 算 法则 , 合并 同类 项 法 则 . 能根据 乘 法公 式的结 构特 点 并
化 简 整 式.
式 的化简常用 以下两种 方法 :1利 用 () 除法法 则 :2 利 用分式 的 基本性 质. ()
全平方公式 .乘法公式的学习是数学恒等变换的重要工具和手段 , 作为恒等变换的五个方
面, 在理解和熟练掌握初 中的二个公式 的基础上再拓展 三个乘法公式显得十分必要 , 只有

初中数学实数与代数式概念及运算(第二讲)

初中数学实数与代数式概念及运算(第二讲)

6.若a 4 3,b 4 3,求 a b 的值. a ab a b
点评
此题的关键点是能够将a转化为 a
2
,进而可将式子类
似分解因式进行变化、约分,达到简化计算的目的.
实数的运算
7.计算
1.
1
2
1
0
3 1
2 1 2
2.
12005
1
0.5
31
22
cos
600
4
0
3
分式的化简求值
(4)二次根式:式子
叫做二次根式
(5)最简二次根式:如果一个二次根式同时满足:①被开 方数的因数是整数,因式是整式;②被开方数中不含开 得尽方的因数或因式,这样的二次根式叫做最简二次 根式.
(6)同类二次根式:几个二次根式化为最简二次根式后, 如果它们的被开方数相同,则称这几个二次根式是同 类二次根式.
方根;0的平方根是0.
(2)算术平方根:正数a的正平方根,叫做a的算术平
方方根根记,0的作算: a术a平方0根是0;一个非负数a的算术平
(3)立方根:如果一个数的立方等于a那么这个数
是a的立方根.记作3:a .正数有一个正的立方根,
负数有一个负的立方根,0的立方根是0.
根式
1.根式t;4/3.
点评 求字母的取值范围是中考中常考内容之一,方 法是综合考虑各种因素条件,取所有解集的公共部分.
2.下列各式中属于最简二次根式的是 ( ) A
A. x2 1 B. x2 y5 C. 12 D. 0.5
点评 此题主要考查最简二次根式的概念,判断一个二次根 式是不是最简二次根式必须按其定义中的两个条件,进行判 定,本题A选项中虽然有二次项,但就整体而言,没有能开得 尽方的因式,所以是最简二次根式.

初中数学实数代数式整式知识点归纳

初中数学实数代数式整式知识点归纳

第一章 数与式第⼀节 实数考点⼀:实数的分类与实数的有关概念<实数的分类>实数:是有理数和⽆理数的总称。

定义为与数轴上的点相对应的数。

有理数:整数和分数统称为有理数整数:正整数、零和负整数统称为整数正数:⼤于零的数,正数前⾯可以放上正号“+”来表⽰(常省略不写)负数:⼩于零的数,⽤⼤于零的数前⾯放上负号“-”来表⽰0既不是正数也不是负数分数:正分数、负分数统称为分数⽆理数:⽆限不循环⼩数叫⽆理数。

即⾮有理数之实数,不能写作两整数之⽐。

若将它写成⼩数形式,⼩数点之后的数字有⽆限多个,并且不会循环。

常见的⽆理数有⼤部分的平⽅根、π等。

<数轴、相反数、绝对值、倒数>数轴:规定了原点、单位长度和正⽅向的直线叫做数轴。

任何⼀个有理数都可以在数轴上表⽰。

相反数:如果两个数只有符号不同,那么我们称其中⼀个数为另⼀个数的相反数,也称这两个数互为相反数。

零的相反数是零。

数轴上,表⽰互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

绝对值:把⼀个数载数轴上对应的点到原点的距离叫做这个数的绝对值。

⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;零的绝对值是零。

互为相反数的两个数的绝对值相等。

在数轴上表⽰的两个数,右边的数总⽐左边的数⼤。

倒数:如果两个数互为倒数,则它们的乘积为1。

注意:1.零没有倒数2.求分数的倒数,就是把分数的分⼦分母颠倒位置。

⼀个带分数要先化成假分数。

3.正数的倒数是正数,负数的倒数是负数。

⾃然数⽆理数实数<平⽅根、算术平⽅根、⽴⽅根>平⽅根:⼀般地如果⼀个数的平⽅等于a,那么这个数叫做a的平⽅根,也叫a的⼆次⽅根.⼀个正数有正负两个平⽅根,它们互为相反数;0的平⽅根是0;负数没有平⽅根。

开平⽅:求⼀个数的平⽅根的运算叫做开平⽅。

开平⽅是平⽅运算的逆运算,因此,可以运⽤平⽅运算求⼀个数的平⽅根。

算数平⽅根:正数的正平⽅根称为算数平⽅根。

代数式与实数的分类

代数式与实数的分类

代数式与实数的分类任教初中数学多年,经常碰到有关代数式和实数分类的问题,很多学生都感觉迷茫,今天我们就讨论一下如何对代数式和实数进行分类。

首先,我们来认识一下这些代数式的概念,并结合概念讨论代数式的分类流程。

代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。

(带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式)整式:是指没有除法运算,或有除法运算但除数中不含字母的有理式。

分式:是指有除法运算,而且除式中含有字母的有理式。

根式:是指含有开方运算的代数式。

有理式:对于字母只进行有限次加、减、乘、除和整数次乘方这些运算的代数式.有理式包括整式和分式。

无理式:被开方数含有字母的根式或字母的非整数次乘方的代数式。

(初中阶段不讨论字母的非整数次乘方的情况)现在我们来看看代数式的分类,进行代数式分类时,应该以所给的代数式为对象,而非以变形后的代数式为对象,划分代数式类别时,是从外形来看的。

在初中阶段,对代数式进行分类具体方法是这样的:先根据被开方数中是否含有字母,将有理式与无理式区别开(初中阶段一般不讨论有理式和无理式的分类);再根据除式中是否含有字母,将整式和分式区别开;最后根据整式中有否加减运算,把单项式、多项式区分开。

简记:代数式分类要注意,只看外形不化简,三重标准依次看,标准如下记仔细。

例如:3被开方数不含字母,所以是有理式,且不含除法运算,所以它是整式。

所以a23是多项式。

a3被开方数不含字母,所以是有理式,但分母中含有字母,所以它是分式。

所以b a23+是分式。

24a 被开方数含有字母,所以是无理式,虽然它可以进行如下化简,⎭⎬⎫≤≥⎩⎨⎧-==0022242a a a a a a ,化简后得到的是一个有理整式,但是进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

所以它不能归入整式类。

类似的x x 2虽然化简后可以得到整式x ,但xx 2仍然属于分式类。

七年级数学[上册]思维导图

七年级数学[上册]思维导图

七年级数学[上册]思维导图第一章:数与代数1.1 实数1.1.1 实数的概念1.1.2 实数的分类1.1.3 实数的性质1.1.4 实数的运算1.2 代数式1.2.1 代数式的概念1.2.2 代数式的分类1.2.3 代数式的运算1.3 方程与不等式1.3.1 方程的概念1.3.2 一元一次方程1.3.3 不等式的概念1.3.4 一元一次不等式第二章:几何初步2.1 点、线、面2.1.1 点的概念2.1.2 线的概念2.1.3 面的概念2.2 平面图形2.2.1 线段2.2.2 角2.2.3 三角形2.2.4 四边形2.2.5 圆2.3 空间图形2.3.1 长方体2.3.2 正方体2.3.3 球第三章:统计与概率3.1 统计3.1.1 数据的收集与整理3.1.2 数据的表示3.1.3 数据的分析3.2 概率3.2.1 概率的概念3.2.2 概率的计算3.2.3 概率的运用第四章:数学思维与方法4.1 逻辑思维4.2 抽象思维4.3 创新思维4.4 数学方法七年级数学[上册]思维导图第五章:函数及其图像5.1 函数的概念5.2 函数的表示方法5.3 函数的性质5.4 函数图像的绘制第六章:数列与数列极限6.1 数列的概念6.2 等差数列与等比数列6.3 数列的求和6.4 数列极限的概念第七章:数学建模与实际问题7.1 数学建模的概念7.2 数学建模的方法7.3 实际问题的解决第八章:数学文化8.1 数学发展的历史8.2 数学家的故事8.3 数学文化的传播第九章:数学竞赛与挑战9.1 数学竞赛的种类9.2 数学竞赛的准备9.3 数学竞赛的挑战第十章:数学与生活10.1 数学在生活中的应用10.2 数学与科技的发展10.3 数学与艺术的结合七年级数学[上册]思维导图第十一章:数学与自然科学11.1 数学与物理的关系11.2 数学与化学的关系11.3 数学与生物的关系第十二章:数学与社会科学12.1 数学与经济学的关系12.2 数学与心理学的关系12.3 数学与历史的关系第十三章:数学与信息技术13.1 数学与计算机科学的关系13.2 数学与网络技术的关系第十四章:数学教育与发展14.1 数学教育的重要性14.2 数学教育的现状14.3 数学教育的发展趋势第十五章:数学与个人成长15.1 数学与思维能力15.2 数学与创新能力15.3 数学与人格培养第十六章:数学与团队合作16.1 数学与沟通能力16.2 数学与协作能力16.3 数学与领导力。

中考知识点实数与代数式的转化

中考知识点实数与代数式的转化

中考知识点实数与代数式的转化实数是数学中的一个重要概念,代数式则是运用实数进行数学推理和计算的工具。

实数与代数式之间存在着密切的联系和转化关系。

了解实数与代数式之间的转化方法,能够更好地解决与实数和代数式有关的问题。

一、实数与代数式的基本概念实数是数学中最基本的概念之一,包括有理数和无理数。

有理数是可以表示为两个整数之比的数,包括整数、分数和整数部分为零的小数。

无理数则是不能表示为两个整数之比的数,如π 和√2 等。

代数式是用数和字母按照一定规则组成的式子,可以表示数的关系和运算过程。

二、实数转化为代数式的方法1. 分数的转化当要把一个分数转化为代数式时,可以用字母代替分子和分母,形成含有字母的代数式。

例如,把3/4 转化为代数式,则可以表示为a/b。

2. 平方根的转化当要把一个平方根转化为代数式时,可以用字母代替根号下的数,并平方,得到含有字母的代数式。

例如,把√2 转化为代数式,则可以表示为 a^2。

3. 近似数的转化当要把一个近似数转化为代数式时,可以用字母代替近似数,并保留必要的位数。

例如,把 3.14 转化为代数式,则可以表示为 a。

三、代数式转化为实数的方法1. 代数式的计算对于已知的代数式,可以通过代入数值的方式进行计算,得到实数结果。

例如,对于代数式 2x+3,当 x=2 时,通过计算可得实数结果为7。

2. 几何图形的面积和周长对于求几何图形的面积和周长的问题,往往需要通过代数式转化为实数计算。

例如,求矩形的面积,可以用代数式 l×w 表示,其中 l 代表矩形的长度,w 代表矩形的宽度。

将长度和宽度代入代数式,即可得到矩形的面积。

综上所述,实数与代数式之间存在着紧密的联系和转化关系。

通过实数转化为代数式和代数式转化为实数的方法,可以更好地解决与实数和代数式有关的问题。

在中考中,掌握实数与代数式的转化方法,能够帮助我们更好地理解和应用数学知识,提高解题能力。

代数式的概念

代数式的概念

代数式的概念代数式是数学中的一种基本表达形式,它由数字、变量和运算符号组成。

代数式的运算可以通过代数法则进行,从而进行符号计算和推理。

在代数学中,代数式是研究和解决各种数学问题的重要工具。

本文将介绍代数式的基本概念、性质以及在实际问题中的应用。

一、代数式的定义与组成代数式是由数、字母和运算符号组成的表达式。

其中,数指的是实数,字母(也称为变量)则代表未知数。

运算符号包括加法、减法、乘法、除法、指数等。

代数式可以是一个简单的数,也可以是由数和变量组成的表达式。

代数式由运算符号连接的数与变量,可以进行运算并得到数值结果。

例如,2x + 3y - 4z就是一个代数式,其中2、3和4是数,x、y和z是变量,+和-是运算符号。

二、代数式的性质和运算法则1. 代数式的性质:代数式可以具有以下性质:- 代数式的值可以随着变量的变化而变化。

- 代数式可以通过代数法则进行简化和等价变换。

- 代数式可以通过代数运算进行计算和推导。

2. 代数式的运算法则:代数式的运算可以依照以下法则进行:- 加法和乘法满足交换律和结合律,即a+b=b+a,ab=ba,(a+b)+c=a+(b+c),(ab)c=a(bc)。

- 加法满足消去律,即若a+b=a+c,则可得出b=c。

- 乘法满足分配律,即a(b+c)=ab+ac。

三、代数式的应用代数式具有广泛的应用范围。

以下是几个常见的应用领域:1. 代数方程:代数方程是一种基于代数式的等式。

解代数方程的过程就是寻找未知数使方程成立的过程。

代数方程广泛应用于各个领域,如物理、工程、经济学等。

2. 几何问题:在几何学中,代数式用于描述几何形状和变换。

通过代数式与几何问题相结合,可以进行图形和空间的计算、推导和验证。

3. 物理学应用:在物理学中,代数式用于描述物体的运动、力的作用等现象。

通过建立物理方程,可以通过代数式计算出各种物理量的数值结果。

4. 经济学模型:经济学中经常使用代数式来建立经济模型和解决经济问题。

第一篇,基础知识分类解析:第一章 实数与代数式

第一篇,基础知识分类解析:第一章 实数与代数式

第一篇,基础知识分类解析:第一章实数与代数式
常青;李壮筠
【期刊名称】《中学课程辅导:初三版》
【年(卷),期】2005(000)001
【摘要】实数是初中数学的基础内容之一。

也是学习其他学科的基础.本单元的基本概念较多.对所有的概念要牢固掌握,特别是绝对值的意义的理解,会求实数的绝对值,掌握绝对值的非负性及其应用,会灵活地进行实数的混合运算.要真正掌握数形结合的思想.理解数轴上的点与实数之间的一一对应关系.
【总页数】6页(P2-5,55-56)
【作者】常青;李壮筠
【作者单位】无
【正文语种】中文
【中图分类】G633
【相关文献】
1.第一篇基础知识分类解析——第一章数与代数 [J], 杨静霞
2.第一篇基础知识——第一章实数与代数式 [J], 贾麟香
3.第一篇基础知识分类解析第三章统计与概率 [J], 张振香
4.第一篇基础知识分类解析第二章空间与图形 [J], 丁俊荣
5.第一部分基础知识第一章实数与统计 [J], 殷京平
因版权原因,仅展示原文概要,查看原文内容请购买。

九年级中考总复习之1实数与代数式

九年级中考总复习之1实数与代数式

九年级中考总复习(1)实数& 代数式内容概要1.1 实数1.2 代数式1.3 因式分解1.4 分式1.5 二次根式正分数复习笔记1、实数的分类(1)实数的常见两种分类如下:①实数 ②实数(2)无理数:无限不循环小数即为无理数.2、相关概念(1)相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数.0的相反数为0. (a ,b 互为相反数,则a b =-或0a b +=)(2)倒数:如果两个数乘积为1,那么称其中一个数为另一个数的倒数.(a ,b 互为倒数,则1a b=或1a b ⋅=)(3)平方根:如果一个数的平方等于a ,那么这个数叫做a 的平方根.正数的平方根有两个,0的平方根为0.(4)算术平方根:正数的正平方根和0的平方根,统称算术平方根. (5)立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.3、数轴与绝对值(1)数轴:规定了原点、单位长度和正方向的直线叫做数轴.实数与数轴上的点一、一对应. 数轴三要素:原点、正方向和单位长度.整数负无理数负分数自然数正实数 0 负实数(2)绝对值:绝对值的几何意义:x 表示数轴上x 到原点的距离.绝对值的代数意义:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值为0.即:0||000x x x x xx ⎧>⎪⎪==⎨⎪⎪-<⎩. (3)数轴上A 、B 两点之间的距离公式:||||AB a b =-.4、准确数与近似数(1)与实际完全符合的数称为准确数.例如,班里有50名同学,50是一个准确数.与实际接近的数称为近似数.例如,化学老师体重为100公斤,100是一个近似数. (2)科学计数法:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.(3)有效数字:从左边第一个不是零的数字起,到末位数字为止的所有数字,都叫做这个数的有效数字.(4)精确到**位: 例如,6045.012这个近似数各个数位如下,最后一位是千分位,即精确到到千分位.(注意“带单位”题型)5、实数运算六则运算运算顺序:先乘方、开方,再乘除,最后加减.同级运算从左向右.有括号的先算括号里面的,绝对值运算优先级等同于括号.课堂例题1、现有以下五个结论:①有理数包括所有正数、负数和0;②若两个数互为相反数,则它们相除的商等于-1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数则乘积为负数.其中正确的有__________个.2、如图,M ,N 两点在数轴上表示的数分别是m ,n ,则下列式子中成立的是( ) A .m −1 < n −1 B .−m < −n C .|m |−|n | > 0 D .m +n < 03、实数a 满足||0a a +=,且1a ≠-,那么11a a -+的值等于__________.4、已知a ,b ,c 为有理数,且0a b c +-=,0abc <,则b c a c a ba b c--+++的值为__________.5、PM 2.5是指大气中直径小于或等于32.510-⨯毫米的颗粒物,也称为可入肺颗粒物,把32.510-⨯用小数形式表示正确的是( )A .0.000025B .0.00025C .0.0025D .0.0256、关于近似数32.410⨯,下列说法正确的是( )A .精确到十分位,有2个有效数字B .精确到百位,有4个有效数字C .精确到百位,有2个有效数字D .精确到十分位,有4个有效数字7、如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数,例如,6的不包括自身的所有因数为1,2,3,且6=1+2+3,所以6是完全数;大约2200多年前,欧几里德提出:若2n -1是质数,则2n -1(2n -1)是一个完全数(n 为正整数),请根据这个结论写出6之后的下一个完全数是__________.8、一般的,如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N .例如:由于23=8,所以3是以2为底8的对数,记作log 28=3;由于a 1=a ,所以1是以a 为底a 的对数,记作log a a =1. 对数作为一种运算,有如下的运算性质:如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M •N )=log a M +log a N ; (2)log aMN=log a M -log a N ; (3)log a M n =nlog a M .根据上面的运算性质,计算log 2(47×25)+log 26-log 23的结果是__________.9、下列说法中:①1的算术平方根是±1;②只有正数才有平方根;③任何数都有立方根;④正数a 的算术平方根一定小于a ;⑤a 的立方根与a 的乘积一定是非负数.其中正确的是__________.(填写正确结论的序号)10=__________.11、已知实数a ,b ,c 满足b -c 的平方根等于它本身,则a __________.12232,小数部分为2). (1a ,那么a =__________;(2)如果10b c -=+,其中b 是整数,且01c <<,那么b =__________,c =__________.13、我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax +b =0,其中a 、b 为有理数,x 为无理数,那么a =0且b =0.运用上述知识,解决下列问题:(1)如果(30a b -+=,其中a 、b 为有理数,那么a =__________,b =__________;(2)如果(2(15a b -=,其中a 、b 为有理数,求a+2b 的值.14、定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3-5i )=(2+3)+(1-5)i =5-4i ; (1+i )×(2-i )=1×2-i +2×i -i 2=2+(-1+2)i +1=3+i ; 根据以上信息,下列各式:①i 3=-1; ②i 4=1; ③(1+i )×(3-4i )=-1-i ; ④i +i 2+i 3+i 4+……+i 2019=-1. 其中正确的是__________(填上所有正确答案的序号).课堂练习1、数轴上A 、B 、C 三点所代表的数分别是a ,1,c 且|1||1|||c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为( ) A .B .C .D .2、受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是( ) A .28×105B .2.8×106C .2.8×105D .0.28×1053、我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84B .336C .510D .13264、十进制数278,记作278(10),其实278(10)=2×102+7×101+8×100,二进制数101(2)=1×22+0×21+1×20.有一个k (0<k ≤10为整数)进制数165(k ),把它的三个数字顺序颠倒得到的k 进制数561(k )是原数的3倍,则k =__________.5、取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即如图所示.如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有__________.6、实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若AM 2=BM •AB ,BN 2=AN •AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b −a =2时,a ,b 的大黄金数与小黄金数之差m −n =__________.7、根据下列材料,解答问题. 等比数列求和:概念:对于一列数a 1,a 2,a 3,…a n ,…(n 为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即1k k aa -=q (常数),那么这一列数a 1,a 2,a 3,…a n ,…成等比数列,这一常数q 叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和, 解:令S =1+3+32+33+…+3100 则3S =3+32+33+…+3100+3101因此,3S -S =3101-1,所以S =101312-即1+3+32+33…+3100=101312- 仿照例题,等比数列1,5,52,53,…,52018的和为__________.8、把下列各数分别填入相应的集合里:3.1415926,3.131331333133331…(每两个1之间依次多一个3),2270.1010010001……0.3,2π-,0. 有理数集合:{ }; 无理数集合:{ }; 正实数集合:{ }; 整数集合: { }.9、以下四个命题:①若aaa 是整数,a__________.(填写正确结论的序号)10、已知a -1=20172+20182=__________.11、在平面直角坐标系中,任意两点A (a ,b ),B (c ,d ),定义一种运算:A *B =[(3-c ,若A (9,-1),且A *B =(12,-2),则点B 的坐标是__________.12、b 2的整数部分,若关于x 的方程3(x +4)=2a +5的解大于x 的方程(41)(34)43a x a x +-=的解,求a +b 的取值范围是__________.13、若a 、b 均为整数,当x 1时,代数式x 2+ax +b 的值为0,则a b 的算术平方根为__________.14、小数可分为有限小数和无限小数.无限小数中有循环小数和不循环小数,其中无限不循环小数即为无理数,那么无限循环小数又是什么呢?其实所有的循环小数都是可以化为分数的. 下面提供一种方法:比如0.40.44444....∙=,令0.4x ∙=,那么10 4.4 4.44444....x ∙==,104x x -=,那么94x =,49x =. 请你用类似的方法解决,把下列循环小数化为分数. (1)0.13∙∙(2)1.24∙复习笔记1、代数式(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把__________或表示__________连接而成的式子叫做代数式.(2)代数式的值:用__________代替代数式里的字母,按照代数式里的运算关系,计算后所得的叫做代数式的值.2、整式(1)单项式:由数与字母的__________组成的代数式叫做单项式(单独一个数或__________也是单项式).单项式中的__________叫做这个单项式的系数;单项式中的所有字母的__________叫做这个单项式的次数.(2)多项式:几个单项式的__________叫做多项式.在多项式中,每个单项式叫做多项式的__________,其中次数最高的项的__________叫做这个多项式的次数.不含字母的项叫做__________. (3)整式:__________与__________统称整式.(4)同类项:在一个多项式中,所含__________相同并且相同字母的__________也分别相等的项叫做同类项.合并同类项的法则是____________________.3、整式的乘法&除法(1)单项式乘以单项式:把单项式的系数和字母分别相乘.(2)单项式乘以多项式/多项式乘以多项式:根据乘法分配律,分别进行单项式乘以单项式的运算,最后把所得的积相加.(3)单项式除以单项式:把__________、__________分别相除后,作为商的因式;对于只在被除数里含有的字母,则连同它的指数一起作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商相加. (5)乘法公式:平方差: ()()a b a b +-=____________________. 完全平方: 2()a b +=____________________;2()a b -=____________________.4、幂的运算幂:求几个相同因数的积的运算叫做乘方;n个a相乘表示为n a,乘方的结果叫做幂.在n a中,a叫做底数,n叫做指数.课堂例题1、如果21(2)213axy a y xy ---+是三次三项式,则a =__________,最高次项是__________,常数项是__________,二次项系数是__________.2、若322255(21)()3x ax x x ax x b --+=+--+,其中a ,b 为整数,则a b +之值为__________.3、若关于x 的多项式22251x ax bx x -++--的值与x 无关,则a b +的值__________.4、当1x =时,代数式31342ax bx -+的值是7,则当1x =-时,这个代数式的值是__________.5、若x ,y 满足224250x y x y +--+=,则23x y x -的值是__________.6、(1)若25n a =,216n b =,则()n ab =__________;(2)已知9n +1−32n =72,则n =__________; (3)(3+x )2-x =1,则x =__________;(4)已知6x =192,32y =192,则(-2017)(x -1)(y -1)-2=__________.7、灵活运用完全平方公式222()2a b a ab b +=++和222()2a b a ab b -=-+等,可以实现ab ,a b +,a b -,22a b +的转换(知二得四):比如,已知m 为正实数,且13m m -=,则221m m+=__________.8、(1)若x +y =10,xy =1,则x 3y +xy 3的值是__________;(2)已知(2019)(2018)2017a a --=,则22(2019)(2018)a a -+-=__________.9、如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =10,ab =20.则图中阴影部分的面积为__________.10、已知x =,y =,求代数式226x xy y ++的值.11、当多项式x 2-4xy +5y 2-6y +13取最小值时,代数式(-x -y )2-(-y +x )(x +y )-2xy 的值为__________.12、一般情况下2323m n m n++=+不成立,但有些数可以使得它成立,例如:m =n =0时,我们称使得2323m n m n++=+成立的一对数m ,n 为“相伴数对”,记为(m ,n ). (1)若(m ,1)是“相伴数对”,则m =__________; (2)若(m ,n )是“相伴数对”,则代数式154m -[n +12(6-12n -15m )]的值为__________.13、设52345012345(1)x a a x a x a x a x a x -=+++++.求下列式子的值: (1)0a ;(2)12345a a a a a ++++; (3)135a a a ++.14、把四张形状、大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为m,宽为n的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含n的式子表示出图②中两块阴影部分的周长和?__________(填“能”或“不能”);(2)若能,请你用只含n的式子表示出图②中两块阴影部分的周长和,若不能,请说明理由.15、观察下列算式,尝试问题解决:杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5..)的计算结果中的各项系数:(1)请根据上题中的杨辉三角系数集,仔细观察下列各式中系数的规律,并填空:(a+b)1=a+b各项系数之和1+1=2=21(a+b)2=a2+2ab+b2各项系数之和1+2+1=4=22(a+b)3=a3+3a2b+3ab2+b3各项系数之和1+3+3+1=8=23.①请补全下面展开式的系数:(a-b)6=a6+_____a5b+15a4b2+_____a3b3+15a2b4-6ab5+b6;②请写出(a+b)10各项系数之和:__________;(2)设(x+1)17=a17x17+a16x16+…+a1x+a0,求a1+a2+a3+…+a16+a17的值;(3)你能在(2)的基础上求出a2+a4+a6+…+a14+a16的值吗?若能,请写出过程.课堂练习1、在下列各式的变形中,正确的是( )A .22()()x y y x x y ---+=--B .2223(1)4x x x --=--C .111x x-=- D .1()x y y x --=-2、已知当32x =时,代数式53ax bx cx x +++的值为1,那么当32x =-时,该代数式的值是__________.3、若237a b -=,2ab =,则代数式23a b +的值是__________.4、若实数x 满足x 2−−1=0,则221x x +=__________.5、若13x x +=,则221x x+=__________,2421x x x ++=__________.6、已知x =,y =,则22x xy y ++的值为__________.7、若关于x 的多项式26x px --含有因式3x -,则实数p 的值为__________.8、在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):____________________________________________________________,证明上述速算方法的正确性.上课笔记1、因式分解的定义:就是把一个多项式化为几个整式的__________的形式.分解因式要进行到每一个因式都不能再分解为止.2、因式分解的方法: 示例提公因式法: ()ma mb mc m a b c ++=++公 式 法: 22()()a b a b a b -=+- 2222()a ab b a b ±+=±分组分解法: 1()(1)(1)(1)(1)(1)ab a b ab a b a b b a b +++=+++=+++=++十字相乘法: 2()()()11x p q x pq x p x q q p+++=++3、因式分解的步骤:一般来说,因式分解的步骤为一提(公因式),二用(公式),三分组(分组分解). 对于形如二次三项式的可以考虑十字相乘法进行因式分解.课堂例题1、对下列各式进行因式分解:21222x x ++=__________; 44x -=__________(实数范围内); 4244x x -+=__________; 2222x y x y -++=__________;2221x y x -++=__________; 232793a a a +--=__________.2、已知29x mx -+是完全平方式,则m =__________.3、若a =2019x +2017,b =2019x +2018,c =2019x +2019,则a 2+b 2+c 2-ab -bc -ca 的值为__________.4、设219918a =⨯,2288830b =-,221053747c =-,则数a ,b ,c 按从小到大的顺序排列,结果是__________.5、若多项式x 2-mx +n (m 、n 是常数)分解因式后,有一个因式是x -3,则3m -n 的值为__________.6、若a 3+3a 2+a =0,则363261a a a ++=__________.7、已知a ,b ,c 分别是∆ABC 的三边长,且满足2a 4+2b 4+c 4=2a 2c 2+2b 2c 2,则∆ABC 是( )A .等腰三角形B .等腰直角三角形C .直角三角形D .等腰三角形或直角三角形8、给出三个多项式:①2x2+4x−4 ;②2x2+12x+4 ;③2x2−4x,请把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.9、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2−(a−b)2,则下列结论:①若a@b=0,则a=0或b=0;②a@(b+c)=a@b+a@c;③不存在实数a,b,满足a@b=a2+5b2;④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③课堂练习1、若2916x ax ++是完全平方式,则a =__________.2、若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是__________.(写出一个即可)3、已知x 2+x =3,则2018+2x +x 2-2x 3-x 4=__________.4、已知∆ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足等式3(a 2+b 2+c 2)=(a +b +c )2,则该三角形是__________三角形.5、已知x 、y 均为实数,且满足xy +x +y =17,x 2y +xy 2=66,则x 4+x 3y +x 2y 2+xy 3+y 4=__________.6、设y =kx ,是否存在实数k ,使得代数式2222222(43)4()x y x y x x y +--)(-能化简为4x ?若能,请求出所有满足条件的k 的值;若不能,请说明理由.7、设681×2019−681×2018=a ,2015×2016−2013×2018=b c ,则a ,b ,c 的大小关系是( )A .b <c <aB .a <c <bC .b <a <cD .c <b <a8、发现与探索.(1)根据小明的解答将下列各式因式分解小明的解答:a2-6a+5=a2-6a+9-9+5=(a-3)2-4=(a-5)(a-1)①a2-12a+20=__________________________________________________________________________;②(a-1)2-8(a-1)+7=______________________________________________________________;③a2-6ab+5b2=__________________________________________________________________________.(2)根据小丽的思考解决下列问题:小丽的思考:代数式(a-3)2+4无论a取何值(a-3)2都大于等于0,再加上4,则代数式(a-3)2+4大于等于4,则(a-3)2+4有最小值为4.①说明:代数式a2-12a+20的最小值为-16.②请仿照小丽的思考解释代数式-(a+1)2+8的最大值为8,并求代数式-a2+12a-8的最大值.复习笔记1、分式的定义:(1)分式:整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含__________,那么称AB 为分式. (2)分式有无意义:若__________,则A B 有意义;若__________,则AB无意义;若__________,则AB =0.2、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的___________. 用式子表示为______________________________.约分:把一个分式的分子和分母的__________约去,这种变形称为分式的约分.公分母:通分时一般取各分母的系数的最小公倍数与各分母所有字母的最高次幂的积为公分母. 通分:根据分式的基本性质,把异分母的分式化为__________的分式,这一过程称为分式的通分.3、分式的基本运算:分式的运算类似于分数的运算.分式的加减:①同分母分式加减:分母不变,分子相加减;②异分母分式加减:找公分母,化为同分母,再进行①同分母的运算. 分式的乘除:①分式相乘,分子、分母分别相乘;②分式相除,化为乘法——乘以除数的倒数,再进行①的运算.4、比例:成比例:若::a b c d =,则称a 、b 、c 、d 成比例.其中,a 、d 叫比例外项,b 、c 叫做比例內项,d 叫做第四比例项.基本性质:两内项之积等与两外项之积.合比性质:若a c b d =,则有a kb c kd b d ++=,特别地,有a b c d b d ++=和a b c d b d --=. 等比性质:若==a c e k b d f ==,则有+e a c a ck b d f b d++===++(其中0b d f +++≠),特别地, 若a c b d =,则有a c ab d b+=+(其中0b d +≠).课堂例题1、已知关于x 的分式235x x x a--+,当x =2时,分式无意义,则a =__________,当6a <时,使分式无意义的x 的值共有__________个.2、当11112,3,4......,2018,,,,......,2342018x =时,可分别算出代数式221x x +的值,则所得的结果的和是__________.3、已知a ,b ,c 满足a +b +c =0,abc =8,那么1a +1b +1c的值是( )A .正数B .零C .负数D .正、负不能确定4、a ,b ,c 均不为0,若x y a -=y z b -=z xc-=abc <0,则P (ab ,bc )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5、先化简分式22222936931a a a a a a a a a ---÷-+++-,然后在0、1、2、3中选一个你喜欢的a 值,代入求值.6、已知a b c a b d a c d b c dm d c b a++++++++====,则m 值为__________.7、在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如1112323=-⨯,5112323=+⨯.类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如111(1)1x x x x =-++,仿照上述方法,若分式232xx x --可以拆分成12A B x x ++-的形式,那么(B +1)-(A +1)=__________.8、阅读下面材料,并解答问题.材料:将分式42231x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b =-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b )∵对应任意x ,上述等式均成立,∴113a a b -=⎧⎨+=⎩,∴a =2,b =1.∴42231x x x --+-+=222(1)(2)11x x x -+++-+=2222(1)(2)111x x x x -+++-+-+=x 2+2+211x -+. 这样,分式42231x x x --+-+被拆分成了一个整式(x 2+2)与一个分式211x -+的和.解答:(1)将分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试求422681x x x --+-+( | x |<1 )的最小值;(3)如果211x x -+的值为整数,求x 的整数值.课堂练习1、化简:221()4a ab b a b -÷=__________.2、化简求值:22421441a a a a a -+÷--++,并选择一个自己喜欢的数代入求值.3、已知123x y -=,分式4322x xy yx xy y+-+-的值为__________.4、若实数a ,b ,c 满足条件1a +1b +1c =1a b c++,则a ,b ,c 中( )A .必有两个数相等B .必有两个数互为相反的数C .必有两个数互为倒数D .每两个数都不等5、已知22(1)20(1)(2)x xy x y -+-=++,则1xy +1(1)(1)x y +++……+1(2018)(2018)x y ++的值是__________. 6、已知x b c a +-=y c a b +-=za b c+-,则(b -c )x +(c -a )y +(a -b )z 的值为__________.7、已知a ,b ,c 为非零实数,且a +b +c ≠0,当a b c a b c a b c c b a +--+-++==时,求()()()a b b c c a abc+++的值.8、(1)已知A =11a ++11b +,B =1a a ++1b b +,若A =B ,求a 、b 之间的关系式; (2)已知a 、b 、c 都是正数,P =11a ++11b ++11c +,Q =1bc bc ++1ac ac ++1abab +,若P =Q ,那么a 、b 、c之间有什么关系?试证明你的结论.复习笔记1、二次根式的定义:0)a ≥,a 可以是数也可以是式子.2、二次根式的性质:(1)2a =;(2(0)(0)aa a aa ≥⎧==⎨-<⎩.3、最简二次根式:、不含开的尽方的因数或因式的二同类二次根式:化为最简二次根式后,根号内的部分相同,则为同类二次根式.0)a ≥等.4、二次根式的计算:(1)乘除计算:=0a ≥,0b >); ②步骤:定符号→内乘内,外乘外→化简(目标最简二次根式). (2)加减计算:步骤:化为最简二次根式→合并同类二次根式.5、2(),||,三个“非负”的式子.显然,若2()||0+,那么每一项必定为0.课堂例题1a 的值是__________.2、无论x m 的取值范围为__________.3、(1)当-1<a <0时,则=__________;(2)若a b =0且ab ≠0,则ab的值为__________.42=__________.5、已知m ,n 是两个连续自然数(m <n ),且q =mn .设p p ( ) A .总是奇数 B .总是偶数C .有时是奇数,有时是偶数D .有时是有理数,有时是无理数6、若实数a ,b ,c |2|a b +-=abc =__________.7、已知a 、b 3a =+1a b =-+,则ab 的值为__________.8、若|2017-m m ,则m -20172=__________.9=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是__________.10、如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB =2,DE =1,BD =8,设CD =x .(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小;(3)根据(211m 、n ,是m 2+n 2=x 且mnx ±变成m 2+n 2±2mn =(m ±n )2解:∵3+2+)2+2×1=(2请你仿照上面的方法,化简下列各式:(1;(2.12、公元3ra +得到近似值.他的算法是:先131212≈+=⨯,由近似值公式得到131********-≈+=⨯; (577)408时,近似公式中的a 是__________,r 是__________.课堂练习1、已知∆ABC 的三边a ,b ,c 满足2|2|1025a a =+,则∆ABC 为( ) A .等腰三角形 B .正三角形 C .直角三角形 D .等腰直角三角形2、(121440b b -+=,则221a b ++=__________; (2)已知x ,y 都是有理数,并且满足2217x y +=-__________.3__________.4、已知:2x __________.5、已知非零实数a ,b 满足24242a b a -++=,求a b +的值为__________.6、设正整数a ,m ,n a ,m ,n 的取值( ) A .有一组 B .有二组 C .多于二组 D .不存在7、若x >0,y >0=的值是__________.8、古希腊的几何学家海伦(约公元50年)在研究中发现:如果一个三角形的三边长分别为a ,b ,c ,那么三角形的面积S 与a ,b ,c 之间的关系式是S P =+2a b c+.若三角形的三边长分别为4,6,8,则该三角形的面积为__________.20181)≥⨯的n 可以取得的最小整数是__________.。

2018-2020年吉林省中考数学复习各地区模拟试题分类(长春专版)(1)——实数、代数式

2018-2020年吉林省中考数学复习各地区模拟试题分类(长春专版)(1)——实数、代数式

2018-2020年吉林省中考数学复习各地区模拟试题分类(长春专版)(1)——实数、代数式一.选择题(共12小题)1.(2020•朝阳区二模)若一个整数72700…0用科学记数法表示为7.27×1010,则原数中“0”的个数为( ) A .5B .8C .9D .102.(2019•长春三模)若使等式(﹣4)□(﹣6)=2成立,则□中应填入的运算符号是( ) A .+B .﹣C .×D .÷3.(2020•朝阳区一模)实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d4.(2020•南关区校级模拟)在﹣1,0,−√5,2这四个数中,最大的数是( ) A .0B .2C .−√5D .﹣15.(2020•长春模拟)在0.1,﹣3,√2和13这四个实数中,有理数有( ) A .1个B .2个C .3个D .4个6.(2019•长春三模)下列实数中,无理数是( ) A .0B .√3C .﹣3D .277.(2019•长春模拟)如图,实数﹣2,2,x ,y 在数轴上的对应点分别为E ,F ,M ,N ,这四个数中绝对值最小的数对应的点是( )A .点EB .点FC .点MD .点N8.(2019•朝阳区校级四模)下列各数中,比2大的数是( ) A .πB .﹣1C .1D .√29.(2019•朝阳区校级二模)下列各数中是无理数的是( ) A .√916B .√−83C .237D .π410.(2019•长春模拟)如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A ,则点A 表示的数是( )A .2B .√2C .πD .411.(2019•长春模拟)给出四个实数﹣2,√3,0,﹣1,其中最小的数是( ) A .﹣2.B .√3C .0.D .﹣1.12.(2019•长春模拟)与√26最接近的整数为( ) A .3B .4C .5D .6二.填空题(共19小题)13.(2019•长春一模)一根头发的直径约为0.0000715米,该数用科学记数法表示为 . 14.(2018•朝阳区二模)如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行程序框图,如果输入a ,b 的值分别为3,9,那么输出a 的值为 .15.(2020•长春一模)比较大小:√10 2√3(填“>”、“<”或“=”) 16.(2020•长春二模)计算:√64−1= .17.(2019•长春模拟)比较大小:√3−1 √3−2(填“>”,“<”或“=”号). 18.(2019•长春模拟)比较大小:√5−32 √5−23(选填“>”“<”或“=”) 19.(2019•长春模拟)2−√15的相反数为 .20.(2020•朝阳区一模)原价为x 元的衬衫,若打六折销售,则现在的售价为 元(用含x 的代数式表示)21.(2019•长春三模)某城市3年前人均收入为x 元,预计今年人均收入是3年前的2倍多500元,那么今年人均收入将达元.22.(2019•长春模拟)如图是某运算程序,根据该程序的指令,首先输入x的值为4,则输出的值为2,记作第一次操作;将第一次的输出值再次输入,则输出的值为3,记作第二次操作;…,如此循环操作,则第2019次操作输出的值为.23.(2019•长春模拟)甲、乙两人一起在体育场锻炼,体育场跑道每圈400米,甲跑了m 圈,乙跑了n圈.甲两人共跑了米.24.(2018•长春二模)在一次植树活动中,某校共有a名男生每人植树5棵,共有b名女生每人植树2棵,则该班同学一共植树了棵(用含a,b的代数式表示).25.(2018•长春模拟)我国古代典籍《庄子•天下篇》中有这样一句话:“一尺之棰,日取其半,万世不竭.”意思是说:即使是一尺长的木棍,第一天截取它的一半,以后每天截取剩下部分的一半,那么世世代代也截取不尽.按此做法,第n天后“一尺之棰”剩余的长度为尺(用含n的式子表示).26.(2018•南关区一模)体育委员带了500元钱去体育用品商店,买了一个足球花了x元,买了一个篮球花了y元,则他还剩元.27.(2018•二道区模拟)小红去超市买了2瓶单价为m元的饮料和3个单价为n元的面包,共需元.28.(2018•长春二模)三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为元(用含a、b的代数式表示)29.(2018•长春模拟)某种商品n千克的售价是m元,则这种商品8千克的售价是元.30.(2018•长春模拟)一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.31.(2019•朝阳区二模)比较大小:√113.三.解答题(共3小题)33.(2020•长春二模)任意给出一个非零实数a,按如图所示的程序进行计算.(1)用含a的代数式表示该程序的运算过程,并进行化简.(2)当输入a =−12时,求输出的结果.34.(2020•长春模拟)任意给出一个非零实数m ,按如图所示的程序进行计算. (1)用含m 的代数式表示该程序的运算过程. (2)当m =√3+1时,求输出的结果.35.(2020•长春模拟)计算:(12)﹣1﹣tan60°3−|√3−2|.参考答案与试题解析一.选择题(共12小题)1.【解答】解:用科学记数法表示为7.27×1010的原数为72700000000, 所以原数中“0”的个数为8, 故选:B .2.【解答】解:根据题意得:(﹣4)﹣(﹣6)=﹣4+6=2, 故选:B .3.【解答】解:由数轴可得:|a |>3,|b |=1,|c |=0,1<|d |<2, 故这四个数中,绝对值最大的是:a . 故选:A .4.【解答】解:∵正数大于0,负数小于0,∴在﹣1,0,−√5,2这四个数中,最大的数是2, 故选:B .5.【解答】解:在0.1,﹣3,√2和13这四个实数中,无理数有:√2,有理数是0.1,﹣3,13.故选:C .6.【解答】解:0,﹣3,27是有理数,√3是无理数.故选:B .7.【解答】解:实数﹣2,2,x ,y 在数轴上的对应点分别为E 、F 、M 、N , 则这四个数中绝对值最小的数对应的点是点M , 故选:C .8.【解答】解:根据有理数比较大小的方法, 可得﹣1<1<√2<2<π, 所以各数中,比2大的数是π. 故选:A . 9.【解答】解:A 、√916=34,是有理数,不是无理数,故本选项不符合题意; B 、√−83=−2是有理数,不是无理数,故本选项不符合题意; C 、237是有理数,不是无理数,故本选项不符合题意;D 、π4是无理数,故本选项符合题意;故选:D.10.【解答】解:由题意可知OA的长是圆的周长而C=πd=π×1=π∴OA=π∴点A表示的数是π.故选:C.11.【解答】解:∵﹣2<﹣1<0<√3,∴四个实数﹣2,√3,0,﹣1中最小的是﹣2,故选:A.12.【解答】解:∵5<√26<6,且5.052=25.5025,∴与无理数√26最接近的整数是:5.故选:C.二.填空题(共19小题)13.【解答】解:0.000 0715=7.15×10﹣5;故答案为7.15×10﹣5.14.【解答】解:当a=3、b=9时,b=9﹣3=6;此时a=3、b=6,b=6﹣3=3,则a=b=3,所以输出a的值为3,故答案为:3.15.【解答】解:∵2√3=√12,∴√10<2√3,故答案为:<.16.【解答】解:√64−1=8﹣1=7.故答案为:7.17.【解答】解:√3−1>√3−2.故答案为:>. 18.【解答】解:∵√5−32=3√5−96, √5−23=2√5−46, 3√5−96<2√5−46, ∴√5−32<√5−23.故答案为:<.19.【解答】解:2−√15的相反数是√15−2. 故答案为:√15−2. 20.【解答】解:由题意得, 现在的售价为x •60%=0.6x 元, 故答案为0.6x .21.【解答】解:根据题意得:今年的收入为(2x +500)元. 故答案是:(2x +500).22.【解答】解:第一次输出:12×4=2,第二次输出:2+1=3, 第三次输出:3+1=4, 第四次输出:12×4=2,第五次输出:2+1=3, …,每3次输出为一个循环组依次循环, ∵2019÷3=673,∴第2019次操作输出的数是第673个循环组的第3次输出,结果是4. 故答案为:4.23.【解答】解:甲、乙两人一起在体育场锻炼,体育场跑道每圈400米,甲跑了m 圈,乙跑了n 圈.甲两人共跑了(400m +400n )米; 故答案为:(400m +400n )24.【解答】解:∵a 名男生每人植树5棵,则a 名男生共植树5a 棵; b 名女生每人植树2棵,则b 名女生共植树2b 棵∴该班同学共植树(5a +2b )棵. 故答案为:5a +2b .25.【解答】解:由题意可得:第一次剩下12尺,第二次剩下12×12=12尺,第三次剩下12×12×12=123尺,则第n 天后“一尺之棰”剩余的长度为:12n.故答案为:12n.26.【解答】解:根据题意知买了一个足球花了x 元,买了一个篮球花了y 元,则他还剩(500﹣x ﹣y )元,故答案为:(500﹣x ﹣y ).27.【解答】解:根据题意共需要(2m +3n )元, 故答案为:2m +3n . 28.【解答】解:由题意可得, 剩余金额为:(3a ﹣b )元, 故答案为:(3a ﹣b ). 29.【解答】解:根据题意,得:m n×8=8m n,故答案为:8m n.30.【解答】解:实际售价为:3a ×0.6=1.8a , 所以,每件童装所得的利润为:1.8a ﹣a =0.8a . 故答案为:0.8a .31.【解答】解:∵√9=3,√11>√9, ∴√11>3, 故答案为:>.三.解答题(共3小题)33.【解答】解:(1)根据题意得:(a 3﹣a )÷a +2 =a 2﹣1+2 =a 2+1;(2)当a=−12时,原式=a2+1=114.34.【解答】解:(1)由题意可得:(m2+m)÷m﹣2m;(2)原式=m+1﹣2m=﹣m+1,当m=√3+1时,原式=﹣(√3+1)+1=−√3.35.【解答】解:原式=2−√3+√33−2+√3=√33.。

初一数学代数式知识点

初一数学代数式知识点

初一数学代数式知识点数与式考点一、实数的相关概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、正负数的意义一般的,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在表示这个量的前面放上“+”,把与它意义相反的量规定为负,并在表示这个量的前面放上“-”;3、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin45o等;4、数轴定义:规定了原点、正方向和单位长度的直线;三要素:原点、正方向、单位长度;5、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

6、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

7、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点二、平方根、算数平方根和立方根1、平方根(1)定义:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

(2)一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

(3)正数a的平方根记做“”。

2、算术平方根(1)定义:正数a的正的平方根叫做a的算术平方根,记作“”。

(2)正数和零的算术平方根都只有一个,零的算术平方根是零。

(0)(3);注意的双重非负性:-(<0)03、立方根(1)定义:如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

实数与代数式知识点

实数与代数式知识点
1.整式:单项式和多项式统称为整式。
2.单项式:数字与字母的积的代数式叫做单项式。单独一个数字或字母也是单项式。数字因数叫单项式的系数;所有字母指数的和叫做单项式的次数。
3.多项式:几个单项式的和叫做多项式。每一个单项式就是其中一项;单项式的次数为几就称为几次项,不含字母的项叫做常数项。次数最高的项的次数为多项式次数。
二、二次根式的性质
1.一个非负数的算数平方根的平方等于这个非负数本身
2.一个数的平方的算术平方根等于这个数的绝对值
3.一个非负数的算术平方根等于这个数本身
4.二次根式的双重非负性:对于二次根式,其被开方数 ,它的值
2、二次根式的运算性质
1.积的算术平方根等于算术平方根的积其中每个因式都是非负的
2.商的算数平方根等于被除式的算术平方根除以除式的算术平方根,其中被除式是非负数,除式是正数
2.加法交换律、结合律,乘法交换律、结合律、分配率在实数运算中仍然适用。
3.实数的混合运算顺序:先乘方和开方,再乘除,后加减;有括号先算括号里面的。
4、实数的大小比较
1.一般比较法:正数大于0,0大于负数,正数大于负数;两个正数绝对值大的数就大,两个负数中绝对值大的反而小。
2.数轴比较法:数轴的正方向指向右方,则数轴上右边的点表示的数要大于左边的点表示的数。
2.小数的科学计数法:对于一个大于0小于1的数,用科学计数法表示成a 的形式,其中 ,n为负整数,n的绝对值为原数左起第一个非0数前所有0的个数(包括小数点前的0)。
3.近似数:一个与近似数很接近但又有差别的数。一般的,一个近似数四舍五入到哪一位,就说这个数精确到哪一位。
3、实数的运算(高频考点)
1.在实数范围内进行加、减、乘、除、乘方五种运算,可对非负数进行开平方运算,对实数进行开立方运算。

数与式、方程、不等式

数与式、方程、不等式

数与式实数与代数式1、数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。

实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。

2、实数和数轴上的点是一一对应的.2.(1)互为倒数的积为1;(2)互为相反数的和为0,商为-1;(3)绝对值是距离,非负数。

3、相反数:只有符号不同的两个数互为相反数.若a 、b 互为相反数,则a+b=0,1-=ab (a 、b ≠0) 4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离去绝对值法则:正数的绝对值是它本身;零的绝对值是零; 负数的绝对值是它的相反数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a数轴:①定义(三要素:原点、正方向,单位长度);②点与实数的一一对应关系。

(2)性质:若干个非负数的和为0,则每个非负数均为0。

5、近似数和有效数字:测量的结果都是近似的;利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

6、科学记数法;一般地,一个大于10的数可以表示成a×10 n 的形式,其中1≤a ﹤10,n 是正整数,这种记数方法叫做科学记数法。

7、整指数幂的运算:()()m m mmn n m n m n m b a ab a a a a a ⋅===⋅+,, (a ≠0) 负整指数幂的性质:pp p a a a ⎪⎭⎫ ⎝⎛==-11 零整指数幂的性质:10=a (a ≠0)正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数8、实数的开方运算:()a a a a a =≥=22;0)(9、实数的混合运算顺序10、无理数的错误认识:(1)无限小数就是无理数如1.414141···(41 无限循环);(2(3但它们的积却是有理数;(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,法在数轴上把它找出来,其他的无理数也是如此.11、实数的大小比较:(1).数形结合法(2).作差法比较(3).作商法比较整式1、代数式的有关概念.(1)代数式是由运算符号把数或表示数的字母连结而成的式子.(2)求代数式的值的方法:①化简求值,②整体代入2、整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.(2)多项式:几个单项式的和,叫做多项式(3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.3、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(2)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数和代数式课标(及考纲)要求:有理数① 理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

② 借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值 (绝对值符号内 不含字母)。

③ 理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算以三步为主)。

④ 理解有理数的运算律,并能运用运算律简化运算。

⑤能运用有理数的运算解决简单的 问题。

实数① 了解平方根、算术平方根,立方根的意义,会用根号表示数的平方根、算术平方根、 立方根② 了解开方和乘方互为逆运算,会用平方运算求某些非负数的算术平方根, 会用立方运 算求某些数的立方根,会用计算器求平方根和立方根③ 了解无理数和实数的概念,知道实数与数轴上的点一一对应, 能求实数的相反数与绝 对值④ 能用有理数估计一个无理数的大致范围⑤ 了解近似数与有效数字的概念,在解决实际问题中,能用计算器进行近似计算,并按 问题的要求对结果去取近似值⑥ 了解二次根式、最简二次根式的概念,其加、减、乘、除运算,会用它们进行实数 的简单四则运算 代数式① 在现实情境中了解一些简单代数式,进一步理解用字母表示数的意义。

② 能分析具体情景中简单问题的数量关系,并用代数式表示。

③ 会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值 进行计算。

整式与分式① 了解整数指数幕的意义和基本性质,会用科学记数法表示数 ② 了解整式的概念,掌握合并同类型和去括号的法则, 能进行简单的整式乘法运算③ 会推导乘法公式:(a 十b ) (a — b ) = a 2— b 2 ; 的几何背景,并能进行简单计算。

④ •会用提公因式法、公式法(直接用公式不超过二次⑤ 了解分式和最简分式的概念,会利用分式的基本性质进行约分和通分,会进行简单 的分式加、减、乘、除运算。

练习检测:一二选择题用的平方根是() A ± 4B 2C 4会进行简单的整式加减运算; (a ± b)2 = a 2 ± 2ab 十 b 2,了解公式 )进行因式分解(指数是正整数)。

1、2、对于实数a、b,给出以下三个判断:B . 23、下列说法正确的是()A. a 一定是正数B.叟不是分数 C . 242是有理数 D.平方等于自身的数只有1 24、温家宝总理强调, 十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入2 2 2 2a +4a =6a 1壬匕卫(m 2-1)的结果是(1 -m①若a = b ,则②若a c b ,贝U a c b .③若a = —b ,则 (-a )2=b 2.其中正确的判断的个数是和新参加工作的大学生住房的需求.把 36 000 000用科学记数法表示应是(A) 3.6X 107(B)3.6X 1065、下列各式计算正确的是A(A ) (―1)0七宀—3(C) 36X 1060.36 X108(B )/ 2\36(a )=a2 2A. -m -2m — 1 B . -m + 2m — 1C. m 2-2m -1D.7、当分式X —1 X +2(A ) 01 1 1 &已知丄-丄=丄, a b 2A 1C1的值为0时,x 的值是((B ) 1则樂的值是 a -b(C )— 1 (D )— 2C.2D.9、设 m> n > 0,m + n 2=4mn2则m mn2—的值等于B.D. 310、如图,从边长为(a + 4) cm 的正方形纸片中剪去一个边长为 (a +1)cm 的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为(A. (2 a 2+5a )cm 2 B)..(3a+15)cm 2C . (6a + 9)cm 2D . (6a+15)cm 2第9题11、把四张形状大小完全相同的小正方形卡片(如图 0)不重叠的放在一个底面为长方形则图②中两块阴影部分的周长和是(A. 4 mcm B . 4 ncm C— -—一 .19、实数a b 在数轴上的位置如图所示,则 J (a + b )2+a 的化简结果为(长为mcm ,宽为ncm )的盒子底部(如图 ②)盒子底面未被卡片覆盖的部分用阴影表示,.2( m + n)cmD.4( mi- n)cmJi刮:12、某企业今年3月份产值为a 万元, 增加了 15%,则5月份的产值是 A. ( a-10%)( a+15%)万元C. ( a-10% +15%)万元 4月份比3月份减少了 10%, )a (1-10%)( 1+15%) a (1-10 % +15%)万元 5月份比4月份B. D. 万元 13、若x 2+kx+9是完全平方式,则 k=A. 9B. -9C. ±9 )D. ±314、 若(7x -a)2 A. 18 B 11—iZ15、 已知 J-/-:= 49x 2-bx+9,则|a + b 之值为何(D . 45.24 C . 39 ;匠,则0的取值范围是( aB . (k <0 16、若分式2x -2x +m不论x 取何实数总有意义,m 的取值范围是 ( ) A m> 1、mi> 1mK 1、mK 117、估计 蠢近 的运算结果应在( A. 6到7之间 B. 7到8之间C. 8到9之间 二、填空题D. 9到10之间18、(x + 1) 2-(x + 2)(X — 2)=,其中弱K XV 打0,且X 是整数。

20、已知分式——,当x= 2时,分式无意义,则a=2x -5x +a,当a<6时,使分式无21、22、23、意义的x的值共有个.若m为正实数,且m-丄=3,则m2-丄mx —1 x —2 2x —x(——二^)宁x x + 1 ' X2+ 2x + 1,其中x满足X2—X—1 =0.分解因式: 2 23m(2x —y) -3mn=24、、分解因式: 25、分解因式: X2—6X—7=26、am+a n+bm+b n=解答题:27、V s -(兀-2 )0+ 2COS450+ 4, (-2)工29、化简(X28、+ sin30。

-1 +(-丄)。

+占X 2 X I — X — 2 W 3)斗¥^,然后从不等组《3的解集中,选取一个你认为符" 2^12/ 2X-5 5-X X -25合题意的X的值代入求值.30、对于任何正整数n,3(n+2)2-3n2是不是12的倍数?说说你的理由。

31、(59-57)能被24整除吗?32、先化简,再求值:a中1丿aa----- ,其中a =sin60°.已知三个数X,y,z满足xy =-2,X十yyz 4y +z 3zxz+x一彳.则的值为xy+ yz +zx练习二:红黄绿蓝紫红黄绿(第 20 题)二、填空3、填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,0 4 2 32 64 324 E e 4410■4、观察上面的图形,它们是按一定规律排列的,依照此规律,第★、 ★ ★★★ ★ ★ ★ ★ ★ 第1个ffl 形第2个图形第3个图形将1、72、也、U 6按下列方式排列.若规定 则(5, 4)与( 15, 7) 表示的两数之积是 1 第1排 72 V3 第2排 76 1 ?2第3排 J 3 恵 1 32 第4排 庙 76 1 72 73第5排5、 数, m , n )表示第m 排从左向右第n 个1、观察图中正方形四个顶点所标的数字规律,可知数1112 1016 )14(A )第502个正方形的左下角(C )第503个正方形的左上角 (B ) (D ) 2、一个纸环链,纸环按红黄绿蓝紫的顺序重复排列, 示,则被截去部分纸环的个数可能是(第502个正方形的右下角第503个正方形的右下角截去其中的一部分,剩下部分如图所2012 (D ) 2013m 的值是个图形共有120个。

★ ★ ★ ★ ★ ★ ★ ★ ★★ 第4个图形4 第I 个 正方形杲第2个正方形-------9 第3个 正方形2011应标在(15_ 13第斗个正方形黄绿蓝紫6观察图形:第3个图形7、它们是按一定规律排列的,依照此规律,第 9个图形中共有 根据图中数字的规律,在最后一个空格中填上适当的数字.&先找规律,再填数: 丄 1 +1 _ ___ ____ ___ _ _12'56 3 一30,7 ' 8 4 一56,9、定义新运算:对任意实数a 、b ,都有a®b=a 2-b,例如,3®2=32-2=7,那么 2® 1 = b=a ( 1-b ),下面给出了关于这种运算的几个结论:11、对实数a 、b ,定义运算★如下:b=!a[a>b,aHO )[a (a 兰 b, aH0)Q 1例如 2^ 3=23=—.计算[2 ★(- 4) ] X [ (-4) ★( - 2)]8**★* *★ ★* *★**★ ★* ★ ★ *★*★第2个图形第4个图形个3 9 [ 305 25 I1111—:= — I则丄+丄2011 2012— 2011X201210、定义运算a① 2 (-2)=6②a b= b a③若a+b=0, 则(a a ) + (b b ) =2 ab ④若a b=0,则a =0其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号)。

相关文档
最新文档