12、有趣的数阵图
有趣的数阵图课件
10-1=9 则2+7=3+6=4+5
有趣的数阵图
5
练一练:将 1~7入下图的○内,使得每条边上的三个数 字之和都等于12。
通关小诀窍:确定中间值
3 5
4
6
7
1 2
三条数之和: 3×12=36 2-8数之和:
有趣的数阵图
9
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.
2
3
4
5
1A0
6
7
8
9
有趣的数阵图
10
将1、2、3、4、5、6填在下图中,使每条边上 三个数之和等于9。
1A
6
5
B2
4
3C
三条边数字总和: 3×9=27
1-6六数之和: 1+2+3+4+5+6=21
A+B+C=27-21=6 故只能选1,2,3
有趣的数阵图
14
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于13。
2 4 17 635
有趣的数阵图
15
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于15。
6 31 5 4 72
有趣的数阵图
16
将1-6这六个数字填入下图的圆圈中,使每个大圆 圈上4个数字之和为14。
50-45=5 12346789八个数分为两组, 使每组中四个数字之和:
25-5=20 则1+4+6+9=2+3+7+8
五年级下册数学奥数有趣的数阵图人教版
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
假设重叠数是a、b、c 5+6+7+8+9+10+a+b+c=24×3
45+a+b+c=72 a+b+c=27
8+9+10=27
8 76 9 5 10
2 9 561 3 8 45~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
中间的三个数只加一次, 三个角上的数都加了两次, 有三个数要设字母吗?
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
1
3
2
1+2+…+7+8+a+b=21×2 6
5
36+a+b=42 a+b=6
4
8
7
1+5=6或2+4=6
将1、3、5、7、9、11、13、15这八个数,分别填入图中的 八个○内,使得每个大圆上五个○内数的和都是39。
1+3+5+……+15=64
3
5
1
39×2-64=14
7
9
中间的两个圆圈数重叠一次, 15 13 11
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
假设重叠数是a、b
2
3
1
1+2+…+7+8+a+b=21×2 6
奥数:有趣的数阵图
有趣的数阵图(一)教学要求:1、使学生掌握解答有趣的数阵图的方法。
2、培养学生的逻辑思维能力和推理能力,以及联想、试探归纳等思维能力。
教学过程:一、导入新课语:如果把一些数按照一定的规律填在特定的图形里,那么这种图形,我们就称它为数阵图。
它是一种趣味性很强的游戏,它的形式很多,大概分为三种:封闭型数阵、辐射型数阵、复合型数阵。
二、探索新课:1、教学例1:将2、4、6、8、10填入“十字形数阵图中,使横行、竖列三个数的和相解题思路:找出中间数,填在中间的公关位置,再剩下的数中,找一对和相等的数。
再分别填入。
2、教学例2:把1~6形式尝试,练习。
解题思路:由于三个顶点上的数要加二次,所以我们先假设,顶点,再推出,其它的点。
3、教学例3:把1~9这九个数,填入到方格中,使横、竖、斜上的三个数和相等。
解题思路:先观察数,1+9=2+8=3+7=4+6而5在中间其余的成对来填。
方法有多种。
4、教学例4:把1、2、3、5、6、7、填入右表,使每行三个数和相等,竖列二数也相等。
解题思路:有2行3列,而1+2+3+5+6+7 =24,所以每行为12,这样分成(1、5、6);(2、3、7)两组。
每列和是24÷3=8,所以:(1、7);(2、6);(3、5)。
答案多种。
三、课堂练习:1、填上合适的数,2、用1~534、使横、竖、斜和相等。
余数的妙用(二)教学要求:1、使学生掌握正确计算有余数的除法。
2、培养学生活跃的思维能力,提高学习奥数的兴趣。
教学过程:一、导入新课:同学们都会正确计算有余数的除法,其实有余数除法还蕴含着丰富的数学知识,所以我们运用它还可以解决不少的数学难题。
今天,我们将继续学习余数的妙用(二)。
二、探索新知:1、教学例4:体育课排队,老师让同学们按1、2、3、4、5循环报数,最后一个人报2,这一排有()人。
A、26B、27C、28D、32《吉林省“金翅杯”小学数学竞赛试题》解题思路:答案必须是5的倍数还要加2,所以我们经过计算发现可以选B D。
四年级数学趣的数阵图课件
1
猴博士考考你
把3到7这5个数分别填入到“T”和“十” 字形的方格内,使横、竖两行的3个数的和 相等。
3 3
和猴博士一起玩个数学游戏好吗?
第一关 把1、2、3、4、5、6、7这7个数字填入图中 的 里,使每条线上的 里的3个数的和相等。
6 1 3 7 2
4
5
第二关 将1、2、3、4、5、6填入到下面的小圆圈里, 使每个大圆圈上4个数的和都是16,你能办到吗?
有趣的数阵图
四年级上学期 《数学探究 我快乐》第51页~54页
金坛市金城镇中心小学
丁国新
让猴博士告诉你
将一些数按照一定的规律排列而成的图 形,通常叫做数阵图。
例1 在下面的三角形数阵图的 里, 填入适当的数,使三边上3个 里的数的和 是12。
5
1
3 2
4
6
猴博士考考你
在正方形数阵图中的 里填入适当的 数,使每条线上的3个数的和等于21。
1
5
2
4
6
3
猴博士送你一句数学家名言:
数学好玩!
陈省身
谢谢各位!
; /kxiantu/ k线理论
ath18cwb
蹭过来,谁知 吩咐的是:“我身子如此,不得向诸长辈和姐妹们问安,你且替我去请安、问好、道声惭愧。”请安问好,是露脸的事啊, 光明正大可去菊花会上了,还不用偷溜的!乐韵喜出望外,当即答应下来——话说回来了,表 一向身子太弱,几乎所有的亲族活动都不参 加,也不屑得跟人面子上交代交代,今儿怎么开窍了?乐韵有些疑惑。“对了,替我给诸长辈与姐妹们带些礼物去罢!”宝音道,“你看 带些什么去好?”带点见面礼,哪怕是一朵花一根草呢,接受方出于情面,就要对乐韵有所赏赐了!带个见面礼是好的!乐韵果然拼命动 脑袋的想,临急临忙拿些什么去呢?自家人原不用太贵重,表 屋里也没什么好东西,每个人都送过来太难办……对了!重阳菊花会,就送 花儿罢!乐韵嘻嘻笑道:“ 屋后那两株芙蓉开得倒好,不如乐韵剪一篮子,送去给奶奶姑娘们添妆如何?”芙蓉?宝音微微一怔,想起来, 应该说的是表 屋后木芙蓉树,算起来,现在倒正在着花时候,攒上一篮子没问题,统总拎过去,谁爱拿就拿,做个整团儿人情,可不比给 每人准备礼物来得便当。乐韵在这方面,果然有急智。她点头道:“便是这样罢!”洛月注目宝音,分明想问,那两株木芙蓉,是 心爱之 物,平常都舍不得让人接近的,今儿怎么舍得让人剪了去?真要是韩玉笙在,听了乐韵建议,准气得咳血,不准动花儿分毫,宝音却想花 开无非要谢的,竟不如往合适的地方去,因此轻轻易易便准了。乐韵只怕宝音反悔,忙着道:“那姑娘快休息要紧!乐韵自会照料得。” 兴冲冲往门外去,宝音冷不丁又丢出来一句:“午前必要回还!”乐韵想想,她的午饭按例还在表 屋里开,菊花会那边有头有脸的人都在, 要蹭也不太好蹭,可不要回来吃饭么?这条却使得的,便应了,去掇个竹匾,寻个花剪,挎个三腿小圆凳往后头去。且喜两棵树都生得不 高,踩上凳子,就够到了下头的枝干,咔嚓咔嚓剪起来。这树一株大红、一株粉白。洛月剪完了一色,又去剪另一色,猛抬头看见邱妈妈 拢着手、虎着脸瞪着自己。乐韵一时头皮有些发麻,叫了声“邱妈妈”,辩解道:“这次可是姑娘叫我剪的,您也看见了!”邱妈妈哼了 一声,走开。临走丢下一句话:“仔细摔断你的腿!”乐韵呆了会儿,恨恨举手,“咔叭”又剪下去。这一篮子鲜洁丰丽芙蓉花朵挎去菊 花宴上,众人们反应多半是:“哟,今儿笙妹妹怎么想着我们?”各各拣了几朵,就席面上多多少少也给了乐韵一些儿赏,乐韵勾留至近 午,一向相熟的丫头筱筱过来问她:“你留在这儿吃么?听说今儿中午有九品羹,还有芋大嫂拿手的鲜虾蛋卷,连我们下头人都有份!” 乐韵还未回答,筱筱又“哦”了一声:“不过我是跟着我们四姑娘,才有
第四讲-有趣的数阵图学生版-奥数教程-讲义
第四讲有趣的数阵图经典精讲:数阵图: 将一些数按照一定的要求排列成各种各样的图形。
数阵图是一种趣味性很强的填数游戏, 它的形式多样, 绚丽奇妙。
这里给同学们介绍三种形式的数阵图, 即封闭型数阵图、辐射型数阵图和复合型数阵图。
(一)辐射型数阵图(像雪花)从一个中心出发, 向外作若干条射线, 在每条射线上安放同样多个数, 使其和是一个不变的数。
突破关键:确定中间数, 多算的次数, 公共的和线数x公共的和=数和+中心数x重复次数【例1】把1—5 这五个数分别填在左下图中的方格中, 使得横行三数之和与竖列三数之和都等于9。
【例2】把1—7这七个数分别填入图1中的各○内, 使每条线段上三个○内数的和相等。
【课堂练习】将1~11这11个数分别填入图11中的方格内, 每个数只许用一次, 使相邻两个或三个方格内数的和都相等。
(二)封闭型数阵图(像围墙)多边形的每条边放同样多的数, 使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字, 公共的和边数x公和=数和+重叠数和【例3】把1~6这六个数分别填在下图中三角形三条边的六个○内, 使每条边上三个○内数的和相等。
(本题有24种填法, 你能想出几种?)【例4】将2—9这八个数分别填入右图的○里, 使每条边上的三个数之和都等于18。
【课堂练习】1.1—10这十个数, 分别填在图9中五边形五条边上的十个○内, 并使五条边上的三个○内数的和相等。
2.把1—8这8个数, 填入图13中的八个○内, 使每条线段上的四个数的和, 与每个四边形四个顶点上的四个数的和都相等。
(三)复合型数阵图既有辐射型数阵图的特点, 又有封闭型数阵图的特点。
突破点: 找出关键位置重复次数。
【例5】将1~7这七个数分别填入下图的○里, 使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。
【课堂练习】1.将1.2.3.4.5.6六个数字填入图中的小圆圈内, 使每个大圆上四个数字的和是16。
2. 将1—8这八个数, 分别填入图10中两个圆圈的八个○内, 使每个圆圈上五个○内数的和分别为20、21.22。
第五讲有趣的数阵图
例2 把1~7填入下图中,使每条线段上三个 内的数的和相等.
分析: 中心圆填入的数是公共数,它参与3条线的连加, 这意味着每一条线的另外两数相加的和相等即可,将1-7 这7个自然数分组组合便可得到如下的结果: (1)1、(2,7)、(3,6)、(4,5)由此可得中心 圆是1。 (2)4、(1,7)、(2,6)、(3,5)由此可得中心 圆是4。 (3)7、(1,6)、(2,5)、(3,4)由此可得中心 圆是7。
分析:每个面上4个数之和为18, 把这几个数前后配对(1,8)、 (2,7)、(3,6)、(4,5)。
小数学家们,接下来是你们大 展身手的时候咯!加油!
ห้องสมุดไป่ตู้
小朋友们,周六晚上见 ~~
例(3)在下图各圆空余部分填上1、2、4、 6,使每个圆中4个数的和都是15。
3 7
5
分析:由于每个圆中4个数的和为15, 求出上圆的和为15-3-5=7,易知1+6=7; 左圆另外两个圆的和为15-3-7=5,易知1+4=5; 右圆另外两个圆的和为15-5-7=3,易知1+2=3。 则中间数一定为1。
有趣的数阵图
让猴博士告诉你
将一些数按照一定的规律排列而成的图 形,通常叫做数阵图。 数阵图的种类繁多,绚丽多彩,这里只 向大家介绍三种数阵图: 封闭型数阵图 辐射型数阵图 复合型数阵图
例1 将1~6分别填在图中,使每条边上的三个 内的数的和都等于9.
分析: 因为 1+2+3+4+5+6 = 21 ,而 每条边上的三个数的和为9,则三条边上的和 为 9×3 = 27 , 27-21 = 6 , 这个 6 就是由于 三个顶点都被重复算了一次。所以三个顶点的 和为 6 ,在 1-----6中,只能选1、2、3 填入三 个顶点中,再将4、5、6填入另外的三个圈即可。
有趣的数阵图一
教学内容:有趣的数阵图(一)教学时间:第一、二课时教学目的:1、掌握数阵图的基本特征。
2、按要求填出数阵。
教学重难点:寻找解题突破口。
教学过程:一、宣布本课学习内容:二、通过例题学习数阵的知识。
1、例1:将1—6填入右图的6个圆圈内,使三角形每条边上的三个数的和都等于S,请你指出S的取值范围。
①试着独立填一填。
②如果让你把所有的答案都填出,你能做到吗?③讲解:三个角上的三个数最小是1、2、3;最大是4、5、6,所以,S的取值范围是9、10、11、12。
④从9、10、11、12四个和中选一个,填出数阵。
2、例2:将1—6填入下图的6个圆圈内,要求四条线上的数字之和都相等。
⑴当每条线上的和是10时,A是多少?⑵当每条线上的和是9时,B是多少?①观察:这6个数哪一个数最特殊?为什么?②求A:1~6的和是21,用21×2-40=2③求B:如右图,用21-18=3④独立填出两个答案。
⑤小结:观察、找特征。
3、例3:将1—9这9个数字填入下图的9个圆圈内,使每个三角形和直线上的3个数字的和都相等。
①计算出1~9的和,用45除以3得15,所以每个和是15。
(为什么?②找规律:在1—9中,三个数的和为15的,只有两种情况:1+9+5和1+8+6。
③填数,调整。
4、例4:将1—9这9个数字填入下图的9个小三角形中,使大三角形每条边上的5个小三角形之和相等,那么这个和的最大值是多少?最小值是多少?①观察:找出每个数用几次。
②如右图,三个阴影三角形上的数字各用了一次,其它的都用了两次。
这三个数最大是7、8、9;最小是1、2、3。
所以,和最小是45×2-24=66;最大是45×2-6=84。
③试验填出:5、例5:把1、2、3、4、5、6、7、8、9、10、14这11个数填入右图的11个○内,使7个加法算式成立,求出□中的数,并填入□中。
①观察数阵,你发现了什么规律?②讲解:将数阵划分为三个区。
2022-2023学年小学四年级奥数测试卷(全国通用)12《有趣的数阵》(解析版)
【四年级奥数举一反三—全国通用】测评卷12《有趣的数阵》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共5小题,满分10分,每小题2分)1.(2分)(2006•创新杯)将非零的自然数l,2,3,⋯按如图格式排列,那么第10行第10列的数为( )A.90 B.91 C.109 D.110【解答】解:注意到第一列是完全平方数:1,4,9,16,25,⋯第1行第1列的数为2101-=,第3行的第3列数为2327-=,⋯,-=,第2行的第2列数为:2213由此类推第10行第10列数为:2-=;10991故选:B。
2.(2分)(2005•创新杯)将44⨯的正方形纸片剪去两个1l⨯的小正方形后得到四个图形甲、乙、丙、丁中,能够剪成7个相连的2l⨯小长方形的是()A.甲B.乙C.丙D.丁【解答】解:如图:丙能够剪成7个相连的2l⨯小长方形;故选:C。
3.(2分)(2011•华罗庚金杯模拟)观察下图各数组成的“三角阵”,它的第15行左起的第7个数是()A.232 B.218 C.203 D.217⑤189【解答】解:前14行共有数:⨯+⨯-⨯÷14114(141)22=+⨯⨯÷,14141322=+,14182=;196第14行最后一个数就是196,第15行的左起7个数就是:197、198、199、200、201、202、203,所以第15行第7个数是203.故选:C。
4.(2分)根据如图所示的3条数列,找出其变化规律.那么,下一个出现的数列应该是A、B、C、D中的()A.B.C.D.【解答】解:因为第二列的数是由第一列的数去掉第三个数2所得,第三列的数是由第二列的数去掉第二个数4所得,所以第四列的数应该是第三列的数去掉第一个数5所得,即为9,7,8.故选:D。
5.(2分)(2013•华罗庚金杯)把自然数按如图所示的方法排列,那么排在第10行第5列的数是()A.79 B.87 C.94 D.101【解答】解:根据以上分析知第14斜行的最后一个数是:12314+++⋯+,(141)(132)(87)=++++⋯++,157=⨯,105=,1054101-=.故选:D。
有趣的数阵图
宝安奥数网培训——(下册)第九讲有趣的数阵图(一)(下册)第九讲有趣的数阵图(一)第九讲有趣的数阵图(一)大家都知道了历史悠久的三阶幻方.再推广一些,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,习惯上称为“数阵图”.幻方是特殊的数阵图,幻方发展较快,因为它后来与试验方案设计及一些高深数学分支有关,成为数阵图中最重要课题.本讲主要介绍一般数阵图及解此类题的推理思考方法,由于它既有数字之间运算,又要结合图形,对开发学生综合思考和形象思维很有益.先看例题.例1 下面图形包括六个加法算式,要在圆圈里填上不同的自然数,使六个算式都成立,那么最右边圆圈中的数最少是几?分析为便于说理,各圆圈内欲填的数依次用字母A、B、C、D、E、F、G、H、I 代替(上右图).经观察,I=A+B+C+D.题目要I尽可能小,最极端的想法,希望A、B、C、D 只占用1、2、3、4.但这会产生矛盾.因为1总要和2、3、4中的某两个实施加法,但1+2给予G、H、E、F中某值为3与A、B、C、D中已有的3冲突;同样1+3给于G、H、E、F中某值为4又与A、B、C、D中已有的4冲突;所以A、B、C、D不能是1、2、3、4.那么退而求之,不妨先设A=1.如先考虑B,B尽可能小,最好,B=2,从而决定了E=3,C≠3,D≠3.这样一来,C,D只能取4和5.但如C=4导致G=5和D=5冲突,而C=5,D=4,又导致G=A+C=6和H=B+D=2+4=6冲突.在碰了钉子后,回看在A=1设定后,不应随随便便先填B的值.从结构上看,因为B,C地位对称,不妨先考虑D.D尽可能小,最好设D=2,B、C至少取3、5,若如此,由B+D或C+D产生的5会与B、C中已有的5矛盾.所以,B、C可能取3、6.从而形成了:A=1、D=2、B、C取3、6(B,C地位对称).这样一来其他字母所代表的值就立即推出,不妨设B=3,C=6,A+B=E=4,C+D=6+2=8=F;A+C=1+6=7=G,B+D=3+2=5=H,恰好满足E+F=4+8=12=I;G+H=7+5=12=I;综上所述:A=1,D=2,B=3,C=6决定了其他值,且决定了I=12.是一个较小的I的值,自然要问I值还可能比12小吗?分析I的值有三种不同的获得方式:I=A+B+C+D=E+F=G+H.3I=A+B+C+D+E+F+G+H,而8个字母最少是代表1、2、…、7、8的情况.3I≥(1+2+…+7+8)=36,I≥12.现已推出了使I=12的一种填法,所以是最佳方案了.例2 如右图,五圆相连,每个位置的数字都是按一定规律填写的,请找出规律,并求出x所代表的数.分析经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.解: x+18=17×2x=16.经检验,16和24相加除以2,也恰好等于20.例3 在下图中的各题中,将从1开始的连续自然数填入各题的圆圈中,要使每边上的数字之和都相等,中心处各有几种填法?(每小题请给出一个解)分析1 图(A)中的中心圆填入的数设为x,x参与3条线的连加,设每条线数字和都为S.由题意:1+2+3+…+7+2x=3S即28+2x=3S或28+2x≡0(mod 3)借用同余工具,是在两个未知数的不定方程中先缩小x应该取值的范围.在mod3情况下,只要试探x≡0,1,2三个值,很轻松地解出:x≡1(mod3),回复到x取值范围为1,2,…,7.有x1=1,x2=4,x3=7,得到:x1=1,S1=10;x2=4,S2=12;x3=7,S3=14;由此看出关键在求S(公共和)及x(参与相加次数最多的圆中值).此方法对下面解(B)、(C)、(D).都适用.注意:每条线上的数字之和随着中心数的变化而变化.分析2 我们分析图(B),首先应该考虑中心数,(B)题共10个数,由于中心数比其他数多使用了二次(总共使用三次).如果中心数用x表示,三条边的数码总和应为:1+2+3+4+5+6+7+8+9+10+2x=55+2x同理,因为是3条边,所以55+2x应是3的倍数55+2x≡0(mod 3),把x≡0、1、 2代入试验,得x≡1(mod 3),即x=1、4、7、10.四种解.①当x=1时,55+2x=57,57÷3=19②当x=4时,55+2x=63,63÷3=21③当x=7时,55+2x=69,69÷3=23④当x=10时,55+2x=75,75÷3=25读者可按照上面相似的规律自己去分析一下图中(C)、(D)两题.解:(A)图:中心数可以为1、4、7,有三种填法,请读者补充其他两种解法.(B)图:中心数可以为1、4、7、10.有四种填法,请你补充其他三种填法.(C)图:中心数可以为1、5、9.有三种填法,请你补充其他两种填法.(D)图:中心数可以为1、6、11.有3种填法,请你补充其他两种填法.例4 在下左图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x是多少?分析为了便于说明问题,我们用字母表示各个圆圈内所表示的数,如上右图所示:根据题意,我们观察:因为每一条直线上的三个数中,当中的数是两边的两个数的平均数.所以可以得出:D=(13+17)÷2=15.还可以得出以下三式:C=(B+15)÷2 (1)A=(13+B)÷2 (2)C=(A+17)÷2 (3)将上述三个算式进行变形,成下面三个算式:2C=B+15 (4)2A=13+B (5)2C=A+17 (6)用(4)式减去(5)式得出:2C-2A=2C-A=1C=A+1将C=A+1代入(6)式得到:2(A+1)=A+17,A=15.x=19.即:解:(略)例5 如下左图有5个圆,它们相交后相互分成几个区域,现在两个区域里已分别填上数字10、6,请在另外七个区域里分别填进2、3、4、5、6、7、9七个数字,使每个圈内的数的和都是15.分析为了便于说明,我们用字母表示其他的7个区域.如上右图.根据题意可以得出:A=5、G=9,九个区域中数的总和为:(2+3+4+5+6+7+9)+10+6=52,而每个圆圈内数的和是15,五个圆圈内数的总和为:15×5=75,又75-52=23,由此得出重叠的部分的四个数A、C、E、G的和是23.由于A=5和G=9已经填好,因此,余下的两个部分C+E的和是:23-5-9=9,此时9只有两种分解的可能:2+7=9、3+6=9.在E、F、G这个圆圈内,∵G=9,∴E不能填6、7.也不能填3(否则F也等于3),只能填2,这样,E=2,C=7.解:例6 如下左图所示4个小三角形的顶点处共有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形三顶点上的数之和相等,问这6个质数的积是多少?分析为了叙述方便,我们用字母表示图中圆圈里的数.如上右图所示.通过观察,我们不难发现,小三角形A1B2C2和小三角形A2B2C2有两个共同的顶点B2,C2,而这两个小三角形顶点上数字的和相等.因此A1=A2.同理有B1=B2,C1=C2,所以,此图只能填A、B、C三个质数(两个A、两个B、两个C.以下:A1=A2记为A,B1=B2记为B,C1=C2记为C)∵6个圆圈中的6个质数之和为20,即:2×(A+B+C)=20A+B+C=10.∴10分成三个质数之和只能是10=2+3+5.这样,A、B、C分别是2、3、5.这时所填6个数的积是:2×2×3×3×5×5=900.解:例7 能否将自然数1~10填入五角星各交点的“○”内使每条直线上的4个数字之和都相等?分析与解答不能,用反证法.假设可以填成数阵图,观察发现:十个点中的每一个点恰好是两条直线的公共点.因而全部直线(共5条)上数字总和,应该等于全部点上数字总和的2倍.记每条直线上数字和为S,则有5S=(1+2+3+…+10)×2,从而解出S=22.10和1必同在某一直线上.不然,如含有10的两条直线都不含有1,这样,这两条线上8个数字(10自然被计上两次)之和(本应为2S)大于等于2×10+2+3+4+5+6+7=47>44=2S.形成矛盾.所以10、1必处同一直线.此外,有三个数字与10不同线,不妨记为x、y、z.显然x+y+z={10数总和}-{其余七个数和}而这{其余七个数和}恰好为2S-10.所以x+y+z=55-2×22+10=21.已推出10,1共线.进一步看出,1无论在什么位置都与x、y、z三数中的两个共线.设1与x、y共线,此线上另一数设为v.则有1+x+y+v=22,从而x+y+v=21.前已证x+y+z=21,因而导致v=z的矛盾.其他情况推证类似,所以没有题设的填法.。
(完整版)小学三年级奥数--数阵图
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1 题。
例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。
219331857_有趣的数阵图
7 2 631 4
5
图3
7 1 62
图5
像图 1 这样,从一个中心出发,向外作了一些线,这类的数 阵图是辐射型数阵图。解题时常用的关系式:已知各数之和+重 叠数×(线的条数-1)=一条线上各数之和×线的条数。
44
Copyright©博看网. All Rights Reserved.
图2
43
Copyright©博看网. All Rights Reserved.
极限挑战
中一种填法,通过调换数的位置(重叠数的位置不变),能得到多 种填法。
(2)确定重叠数是解题的突破口。根据题意,在计算图 1 中 3 条线上的各数之和时,重叠数被多加了 2 次。若重叠数是 a,要使 每条线上各数的和相等,那么 1+2+3+4+5+6+7+a+a(即 28+2a)一定是 3 的倍数。因为 a 是 1~7 中的某一个数,逐个尝试 可知,只有 1,4,7 符合要求。
要用到重叠数,确定重叠数是解题的突破口。
先算出所给 6 个数的和是 1+2+3+4+5+6=21,再思考 3
个重叠数是几。因为每条线上 3 个数的和是 9,所以 3 条线上各数
之和是 9×3=27,此时,3 个重叠数都被多加
了 1 次,可求出 3 个重叠数的和是 27-21=6。
四下第六讲 有趣的数阵图
第六讲有趣的数阵图一、知识要点数阵图是将一些数字按照一定的要求,排列成某些图形。
幻方就是一种特殊的数阵图。
常见的数阵图有三种形式;辐射型数阵图(如例1)、封闭型数阵图(如例2)和复合型数阵图(如例3)。
探究要点:1.仔细观察所要填数的图形,虽然要填的数有很多,但往往最关键的位置只有一两个,要抓住图形的关键位置。
如:三角形的顶点,长方形、正方形的顶点,某些不规则图形的的中间位置等;2.要善于把图形和题中的数字联系起来思考;3.需要计算和尝试,有时有多种满足数阵图的填法。
二、自我探究【例1】把1~5这五个数分别填在下图的方格中,使得横行三数之和与竖列三数之和都等于8。
【例2】把1、2、3、4、5、6填在图5-1的6个○中,使每条边上的三个数之和都等于9。
【例3】把1~7这七个数分别填入图中,使每条线段上三个○内数的和相等。
【例4】在下图中,有三个正的“品”字,请将1~6分别填入六个□中,使得三个“品”字中的数字之和都相等。
三、自我挑战第一关:1.将数字1~5分别填在下图中的○内,使每条线段上3个○内的数的和相等。
2.把1~9这九个数分别填在下图的方格中,使得横行三数之和与竖列三数之和都等于27。
3.将1~6填入下面各○里,使得每条线上的和相等。
4.将1~6这六个数填入下图的○里,使得每条直线上的三个数的和都为9。
第二关:1.把1~8这八个数分别填在下图的方格中,使每一横行、每一竖列相邻3个□内的数字和相等。
2.把1~12这十二个数,分别填在下图正方形四条边上的十二个○内,使每条边上的四个○内数的和都等于22,试求出一个基本解。
3.将数字1~8这八个数分别填入下图的8个○内,使每个圆圈上的五个数的和都是21。
第三关:下图球体有3个圆周,在6个○里分别填上1,2,3,4,5,6,使得每一个圆周上四个数相加的和都是14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
6
3
7
2
4
5
9
把1—8这8个数,填入下图中的八个○内,使 每条线段上的四个数的和,与每个四边形 四个顶点上的四个数的和都相等。 3 2 1 4 8 7 5 3 1 7 2 8 6 5
6
4
例题五 将1~7这七个数分别填入下图 的○里,使得每条直线上三个数之和与 每个圆圈上的三个数之和都相等。 7 1 4 5 3 6 2
• 1、将1、2、3、4、5、6六个数字填入图中 的小圆圈内,使每个大圆上四个数字的和 是16。
4
5 6
3 2
1
• 2、 将1—8这八个数,分别填入图中两个 圆圈的八个 ○内,使每个圆圈上五个 ○ 内数的和分别为20、21。 2 6 8 3 7 1 6 8 4 7 2 5 1 4 5 3
将1到9的9个数字填入方框中,使竖行、 横行、斜行的三个数的和都相等。
有趣的数阵图
例题一 把1—5 这五个数分别填在左下 图中的方格中,使得横行三数之和与竖 列三数之和都等于9。 1 4 3 2 5
4 5 3 1 2
1 4 3 把1—7这七个数分别填入图中的 各○内,使每条线段上三个○内数的和 相等。
7
1
4 2 6 3 5
练习
把2—8这七个数分别填入图中的各○内,使 每条线段上三个○内数的和相等。 8 3 2 5 6 4 7
例题三 把1~6这六个数分别填在下图中 三角形三条边的六个○内,使每条边上 三个 ○内数的和相等。(本题有24种填 法,你能想出几种?)
•
5 3 4 4 1 6 2 2 1 6 5 2
3 4
6 5 1 1
2 6
5 6 2 2 4 4 3
4
3
6 1
3
3
5
1
5
例题四 将2—9这八个数分别填入 右图的○里,使每条边上的三个数 之和都等于18。
4
3 5
7
8
1 6
9
2
将1到9的9个数字填入方框中,使竖行、 横行、斜行的三个数的和都相等。
9 5
将1到9的9个数字填入方框中,使竖行、 横行、斜行的三个数的和都相等。
5
9
将1到9的9个数字填入方框中,使竖行、 横行、斜行的三个数的和都相等。
5 9
将3、7、11、15、19、23、27、31、 35填入方框中,使竖行、横行、斜行 的三个数的和都相等。
15 35
7
11 31 19
27
3 23