高三数学-抛物线专题复习
抛物线知识点总结_高三数学知识点总结
抛物线知识点总结_高三数学知识点总结一、抛物线的定义抛物线是平面上一个点沿着一条直线运动,同时受到一个恒定的垂直于直线的力的作用,这种轨迹叫做抛物线。
抛物线是由二次函数关系定义的曲线。
它是平面上一点到直线上一点的距离与这一点到定点的距离成比例的轨迹。
二、抛物线的标准方程1. 抛物线的标准方程为:y=ax^2+bx+c,其中a≠0。
2. 抛物线的顶点为(-b/2a, c-b^2/4a)。
三、抛物线的性质1. 抛物线的开口方向由二次项系数a的正负号决定。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
2. 抛物线的轴对称线为x=-b/2a,即抛物线的顶点为轴对称点。
3. 抛物线在顶点处的切线平行于x轴。
4. 抛物线的焦点可表示为(F, p),其中F是焦点坐标,p=1/4a是抛物线焦点到顶点的距离。
5. 抛物线的定点到焦点的距离等于焦距。
6. 过抛物线的顶点和焦点的直线称为抛物线的焦线,焦点为该直线的对称中心。
7. 对于平行于抛物线轴的直线,其交点到焦点距离都相等。
四、抛物线的方程求解1. 已知顶点和焦点求抛物线方程:设抛物线的焦点为(F, p),则抛物线的标准方程为:(y-p)^2=2px。
2. 已知焦点和直线求抛物线方程:设焦点为(F,p),直线为l:x=ay+b,则抛物线的标准方程为:y^2=2px3. 已知抛物线的焦点和焦距求抛物线方程:设抛物线的焦点为(F, p),焦距为2a,则抛物线的标准方程为:(y-p)^2=4ax。
4. 已知抛物线的焦点和顶点求抛物线方程:设抛物线的焦点为(F, p),顶点为(V, q),则抛物线的标准方程为:(y-q)^2=4a(x-v)。
5. 已知抛物线上3点求抛物线方程:设抛物线上3点为A(x1, y1),B(x2, y2),C(x3, y3),则通过抛物线的标准方程组成三元二次函数方程,再通过该方程求解。
五、抛物线的应用1. 计算机图形学中,抛物线可以用于生成曲线和图案。
抛物线的基本知识点高三
抛物线的基本知识点高三抛物线是数学中一个非常重要的曲线,广泛应用于物理学、工程学、计算机图形学等领域。
在高三数学课程中,学生需要掌握抛物线的基本知识点。
本文将对抛物线的定义、性质以及相关公式进行介绍,帮助高三学生加深对抛物线的理解。
一、抛物线的定义抛物线是由平面上一个动点P和一个不在同一平面的定点F (称为焦点)所确定的动点P到定点F的距离等于动点P到一条定直线l(称为准线)的距离的集合。
抛物线的形状如同一个碗或者一个开口朝上的弓形。
在平面直角坐标系中,抛物线可以用二次方程的形式表示为y=ax^2+bx+c,其中a、b、c都是实数且a不等于零。
二、抛物线的性质1. 对称性:抛物线关于纵轴对称。
这意味着抛物线上的任意一点P(x,y)与焦点F(x',y')的横坐标之差等于准线上对称的点P'(x,-y)与焦点对应点F'(x',-y')的横坐标之差。
2. 相切与相交:若直线与抛物线相切,则其与准线的切点在一条直线上;若直线与抛物线相交,则其与准线的交点在一条直线上。
3. 焦距:抛物线焦点与准线间的距离称为焦距。
焦点到准线的距离等于焦点到抛物线上任意一点的距离。
4. 高度与开口方向:a的正负决定了抛物线的开口方向。
若a 大于零,则抛物线开口朝上;若a小于零,则抛物线开口朝下。
抛物线的最高点或最低点成为顶点,坐标为(-b/2a, -Δ/4a),其中Δ(b^2-4ac)称为判别式。
三、抛物线经过的特殊点抛物线经过三个特殊点:焦点F、定点A及顶点V。
焦点F的纵坐标等于a的倒数(即1/a),横坐标为0。
焦点到抛物线对称轴的距离为p=1/(4a)。
定点A与焦点F的距离等于准线l的距离,即等于p。
顶点V的横坐标为-a/2,纵坐标为c-Δ/4a。
四、抛物线相关公式1. 对称方程:若抛物线关于x轴对称,则方程为x=ay^2+by+c;若抛物线关于y轴对称,则方程为y=ax^2-bx+c。
高三第一轮复习 抛物线的定义及几何性质
第42讲抛物线第100课时抛物线的定义及几何性质【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质(1)图形与方程2124p x x =;(212y p =-;13|)2sin p AB x x x =++=)以AB 为直径的原与准线(5)/090AC B ∠=; (6)//090A FB ∠=;(7)A 、O 、/B 三点共线;(8)B 、O 、/A 三点共线; (9)112||||AF BF P +=;(10)22sin ABOp Sα=等等。
方法规律总结1. 抛物线的定义是抛物线问题的本质,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.3.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【指点迷津】【类型一】抛物线的定义及其应用【例1】:已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是( )A .(0,0)B .(3,26)C .(2,4)D .(3,-26)【解析】:由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4). 答案:C.【例2】:已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM |∶|MN |=( ).A .2∶ 5B .1∶2C .1∶ 5D .1∶3【解析】:如图所示,由抛物线定义知|MF |=|MH |,所以|MF |∶|MN |=|MH |∶|MN |.由△MHN ∽△FOA ,则|MH ||HN |=|OF ||OA |=12, 则|MH |∶|MN |=1∶5,即|MF |∶|MN |=1∶ 5. 答案:C.【例3】:已知点P 是抛物线y 2=4x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当|a |>4时,|PA |+|PM |的最小值是________. 【解析】:将x =4代入抛物线方程y 2=4x ,得y =±4,|a |>4,所以A 在抛物线的外部,由题意知F (1,0),则抛物线上点P 到准线l :x =-1的距离为|PN |,由定义知,|PA |+|PM |=|PA |+|PN |-1=|PA |+|PF |-1.当A ,P ,F 三点共线时,|PA |+|PF |取最小值,此时|PA |+|PM |也最小,最小值为|AF |-1=9+a 2-1. 答案:9+a 2-1.【类型二】抛物线的标准方程【例1】:如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是( )A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x【解析】:由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x . 答案:C .【例2】:已知圆x 2+y 2+mx -14=0与抛物线y =14x 2的准线相切,则m =( ).A .±2 2B. 3C. 2 D .± 3【解析】:抛物线的标准方程为x 2=4y ,所以准线为y =-1.圆的标准方程为⎝ ⎛⎭⎪⎫x +m 22+y 2=m 2+14,所以圆心为⎝ ⎛⎭⎪⎫-m 2,0,半径为m 2+12.所以圆心到直线的距离为1,即m 2+12=1,解得m =± 3.答案:D.【例3】:如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( ).A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x 【解析】:如图,分别过A ,B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1, 由抛物线的定义知:|AF |=|AA 1|,|BF |=|BB 1|, ∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴∠BCB 1=30°,∴∠AF x =60°,连接A 1F ,则△AA 1F 为等边三角形,过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于K ,则|KF |=|A 1F 1|=12|AA 1|=12|AF |,即p =32,∴抛物线方程为y 2=3x . 答案:C.【类型三】抛物线的几何性质【例1】:已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A 、B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48【解析】:设抛物线方程为y 2=2px ,当x =p2时,y 2=p 2, ∴|y |=p .∴p =|AB |2=122=6,又点P 到AB 的距离始终为6,∴S △ABP =12×12×6=36.故选C.答案:C.【例2】:已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 24-y 25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则A 点的横坐标为( ).A .2 2B .3C .2 3D .4【解析】:抛物线的焦点为⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p 2.双曲线的右焦点为(3,0),所以p2=3,即p =6,即y 2=12x .过A 做准线的垂线,垂足为M ,则|AK |=2|AF |=2|AM |,即|KM |=|AM |,设A (x ,y ),则y =x +3,代入y 2=12x ,解得x =3. 答案:B.【例3】:过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.【解析】:法一 由1|AF |+1|BF |=2p .得|BF |=32.法二 设∠BFO =θ,则⎩⎨⎧|AF |=p +|AF |cos θ,|BF |=p -|BF |cos θ,由|AF |=3,p =2,得cos θ=13,∴|BF |=32. 答案:32.【同步训练】【一级目标】基础巩固组 一、选择题1.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ).A.12B.32C .1 D.3 【解析】:抛物线y 2=4x 的焦点F (1,0),双曲线x 2-y 23=1的渐近线方程是y =±3x ,即3x ±y =0,故所求距离为|3±0|32+2=32. 答案:B.2.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p 的值为( ).A .1B .2 C.12D .4【解析】:圆的标准方程为(x -3)2+y 2=16,圆心为(3,0),半径为4.圆心到准线的距离为3-⎝ ⎛⎭⎪⎫-p 2=4,解得p =2.答案:B.3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( ). A .y =12x 2 B .y =12x 2或y =-36x 2C .y =-36x 2 D .y =112x 2或y =-136x 2 【解析】:分两类a >0,a <0可得y =112x 2,y =-136x 2. 答案:D.4.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12B .1C .2D .4 【解析】:由题知抛物线的准线为x =-p2,圆心为(3,0)、半径为4,由准线与圆相切得圆心到准线的距离d =3+p2=4,解得p =2.答案:C.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( ). A .1 B.32C .2D .3【解析】:由已知得双曲线离心率e =c a=2,得c 2=4a 2,∴b 2=c 2-a 2=3a 2,即b =3a .又双曲线的渐近线方程为y =±ba x =±3x ,抛物线的准线方程为x =-p2,所以不妨令A ⎝ ⎛⎭⎪⎫-p 2,32p ,B ⎝ ⎛⎭⎪⎫-p 2,-3p 2,于是|AB |=3p .由△AOB 的面积为3可得12·3p ·p 2=3,所以p 2=4,解得p =2或p =-2(舍去).答案:C. 二、填空题6.若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是________.【解析】:由题意可知点P 到直线y =-3的距离等于它到点(0,3)的距离,故点P 的轨迹是以点(0,3)为焦点,以y =-3为准线的抛物线,且p =6,所以其标准方程为x 2=12y . 答案:x 2=12y.7.已知抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF |=4,则点M 的横坐标x 0=________.【解析】:抛物线y 2=4x 的焦点为F (1,0),准线为x =-1. 根据抛物线的定义,点M 到准线的距离为4,则M 的横坐标为3. 答案:3.8.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________. 【解析】:如图,在等边三角形ABF 中,DF =p ,BD =33p , ∴B 点坐标为⎝ ⎛⎭⎪⎫33p ,-p2.又点B 在双曲线上,故13p 23-p 243=1.解得p =6.答案:6. 三、解答题9.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离为5,求抛物线的方程和m 的值.【解析】:法一:根据已知条件,抛物线方程可设为y 2=-2px (p >0),则焦点F ⎝ ⎛⎭⎪⎫-p 2,0.∵点M (-3,m )在抛物线上,且|MF |=5,故⎩⎨⎧m 2=6p ,⎝⎛⎭⎪⎫-3+p 22+m 2=5,解得⎩⎨⎧p =4,m =26或⎩⎨⎧p =4,m =-2 6.∴抛物线方程为y 2=-8x ,m =±2 6.法二:设抛物线方程为y 2=-2px (p >0),则准线方程为x =p2,由抛物线定义,M点到焦点的距离等于M 点到准线的距离,所以有p2-(-3)=5,∴p =4.∴所求又∵点M (-3,m )在抛物线上,故m 2=(-8)×(-3),∴抛物线方程为y 2=-8x ,m =±2 6.答案:抛物线方程为y 2=-8x ,m =±2 6.10.已知倾斜角为θ的直线过抛物线y 2=2px(p>0)的焦点F ,与抛物线交于A 、B 两点,求证:(1)|AB|=2p sin 2θ; (2)S △AOB =p 22sin θ; (3)以AB 为直径的圆与抛物线的准线相切.【解析】:(1)由抛物线的定义知|AF|等于点A 到准线x =-p2的距离,所以|AF|=x 1+p 2.同理,|BF|=x 2+p2.所以|AB|=|AF|+|BF|=x 1+x 2+p ①又设焦点弦的方程为y =k(x -p 2)(k≠0),所以x =1k y +p2,故x 1+x 2=1k (y 1+y 2)+p.y 2-2p k y -p 2=0,y 1+y 2=2p k .所以x 1+x 2=2pk2+p ② 将②代入①得:|AB|=2p k 2+2p =2p(1+1k 2)=2p(1+1tan 2θ)=2psin 2θ(2)如图,S △AOB =S △AOF +S △BOF =12|OF|·|AF|·sin(π-θ)+12|OF|·|BF|·sin θ=12|OF|·sin θ(|AF|+|BF|)=12|OF|·|AB|·sin θ=12·p 2·2p sin 2θ·sin θ=p 22sin θ. (3)设线段AB 的中点为M ,分别过A 、M 、B 作准线的垂线,垂足为C 、N 、D ,则|MN|=12(|AC|+|BD|)=12(|AF|+|BF|)=12|AB|.所以以AB 为直径的圆与准线相切. 答案:略.【二级目标】能力提升题组 一、选择题1.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ).A .x 2=833y B .x 2=1633y C .x 2=8y D .x 2=16y 【解析】:∵x 2a 2-y 2b 2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴ba = 3.x 2=2py 的焦点坐标为⎝⎛⎭⎪⎫0,p 2,x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,即y =±3x .由题意,得p21+32=2,∴p =8.故C 2:x 2=16y ,选D. 答案:D.2.(2014·洛阳统考)已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( ).A. 3B. 5 C .2 D.5-1【解析】:由题,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为22)1(2|32|-++=5,所以d +|PF |-1的最小值为5-1.答案:D. 二、填空题3.已知椭圆C :x 24+y 23=1的右焦点为F ,抛物线y 2=4x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的倾斜角为120°,那么|PF |=________.【解析】:抛物线的焦点坐标为F (1,0),准线方程为x =-1.因为直线AF 的倾斜角为120°,所以tan 120°=y A -1-1,所以y A =2 3.因为PA ⊥l ,所以y P =y A=23,代入y 2=4x ,得x A =3,所以|PF |=|PA |=3-(-1)=4. 答案:4. 三、解答题4. 如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O)01x =,切线.MA 的斜率为12-.(I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为③,【高考链接】1.(2010年全国Ⅱ卷理15文15)已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M l 相交于点A ,与C 的一个交点为B .若AM MB =,则p = .【解析】:过B 作BE 垂直于准线l 于E ,∵AM MB =,∴M 为中点,∴1BM AB 2=0BAE 30∠=, ∴1BE AB 2=,∴BM BE =,∴M 为抛物线的焦点,∴p =2. 答案:2.2.(2009年广东理科第19题)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.(1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与点D 有公共点,试求a 的最小值. 【解析】:(1)联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221ty s x +=+=,即252,212-=-=y t x s ,又点P 在曲线C 上,∴2)212(252-=-x y 化简可得8112+-=x x y ,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M 的轨迹方程为8112+-=x x y (4541<<-x ).(2)曲线22251:24025G x ax y y a -+-++=,即圆E :2549)2()(22=-+-y a x ,其圆心坐标为)2,(a E ,半径57=r由图可知,当20≤≤a 时,曲线22251:24025G x ax y y a -+-++=与点D 有公共点;当0<a 时,要使曲线22251:24025G x ax y y a -+-++=与点D 有公共点,只需圆心E 到直线:20l x y -+=的距离572||2|22|≤=+-=a a d ,得0527<≤-a ,则a 的最小值为527-.答案: (1) M 的轨迹方程为8112+-=x x y (4541<<-x ). (2) a 的最小值为527-.3.(2013年福建数学(理))如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程; (2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.【解析】:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线的斜率存在,设直线的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx [来源:学*科*网] 此时2100+4000∆=>k ,直线与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x 又120⋅<x x ,∴124=-x x 分别代入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y .答案: (Ⅰ) 抛物线E 方程为210=x y ;(Ⅱ) 直线的方程为 32200-+=x y 或3+2200-=x y .。
高三抛物线知识点归类
高三抛物线知识点归类抛物线是数学中的一个重要概念,也是高中数学课程中的重点内容之一。
在高三阶段,学生需要全面掌握抛物线的相关知识,因此本文将对高三抛物线知识点进行归类,以帮助学生更好地理解和应用。
一、基本概念1. 定义:抛物线是平面上到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹。
2. 轴线:抛物线的对称轴,垂直于准线并通过焦点。
3. 焦点:与抛物线上的任意一点距离相等的定点。
4. 准线:与抛物线上的任意一点距离相等的定直线,其中准线和抛物线的焦点不重合。
二、方程与图像1. 一般形式方程:y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
2. 顶点坐标:抛物线的最高(或最低)点,坐标为(h, k),其中h为顶点的横坐标,k为顶点的纵坐标。
3. 对称轴方程:x = h,是抛物线的对称轴,与抛物线相交于顶点。
4. 开口方向:由二次系数a决定,若a > 0,则抛物线开口朝上;若a < 0,则抛物线开口朝下。
5. 图像特征:抛物线关于对称轴对称,图像左右对称。
三、性质与特点1. 焦点与准线距离的关系:抛物线上任意一点P与焦点F的距离等于P到准线的距离。
2. 焦准焦定性质:过抛物线焦点F的直线与抛物线相交于对称点P',且P'也在这条直线上的垂线上,则P'为抛物线上该点P的对称点。
3. 切线与法线关系:抛物线上任意一点P处的切线与过该点的法线垂直。
4. 焦点坐标与相关系数的关系:焦点坐标为(-b/2a, 1-Δ/4a),其中Δ为方程的判别式。
5. 最值点:抛物线的最高(或最低)点即为顶点,最值点的纵坐标等于抛物线函数的值域的下(或上)界。
四、应用1. 抛物线的平移与旋转:通过对抛物线的平移和旋转操作,可以得到不同位置和形状的抛物线函数。
2. 抛物线的最优问题:在一定约束条件下,求解抛物线上的最值点,可以用于解决最小二乘法、优化问题等。
3. 物理应用:抛物线在物理学中有广泛的应用,如炮弹的抛物线轨迹、摆锤的运动、光的反射等。
高三数学知识点总结抛物线
高三数学知识点总结抛物线(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高三数学知识点总结抛物线最新高三数学知识点总结抛物线(归纳)学数学要有阶段目标,阶段化小目标就是你在当前的一个阶段内想达到的程度,例如在月考时要考到班级多少名,这周要看什么科目书籍,什么时候看等。
高三抛物线定理知识点
高三抛物线定理知识点抛物线是高中数学中重要且常见的曲线。
在高三阶段,学生需要掌握抛物线定理,并且能够灵活运用于解决相关问题。
本文将介绍高三抛物线定理的基本概念以及其应用。
一、抛物线的定义与特点抛物线是由平面上距离一个定点距离相等的点构成的图形。
该定点称为焦点,到直线称为准线。
1. 对称性:抛物线以准线为对称轴对称。
2. 焦距:焦点到准线的距离称为焦距,用f表示。
3. 定义域与值域:抛物线的定义域为实数集,值域为y≥d,其中d为抛物线与其准线的最低点的纵坐标。
二、顶点与对称轴在抛物线中,顶点是其中最高(或最低)的点。
对称轴是过焦点和顶点的直线。
1. 顶点:抛物线的顶点坐标为(h,k),其中h和k分别为抛物线的顶点的横坐标和纵坐标。
2. 对称轴:对称轴的方程为 x = h。
三、抛物线的一般方程抛物线的一般方程为 y = ax² + bx + c,其中a≠0。
在高三阶段,学生需要了解如何通过抛物线的顶点和焦点坐标来确定抛物线方程。
四、抛物线的焦点与准线的关系抛物线的焦点坐标为(f,0),其中焦距f的计算公式为 f = 1/4a。
准线的方程为 x = -f。
五、抛物线的平移抛物线可以通过平移进行位置上的变换。
1. 抛物线上下平移:将抛物线原方程中的常数c进行上下平移。
2. 抛物线左右平移:将抛物线原方程中的常数b进行左右平移。
六、抛物线的应用抛物线的定理在物理学、工程学等领域有广泛的应用。
1. 抛物线光学:在光学实验中,抛物线是一种能够将平行光线聚焦于焦点的曲线形状。
2. 抛物线运动:在物理学中,抛物线也描述了平抛运动的轨迹,如投掷物体的运动。
七、高三抛物线定理解题方法1. 根据已知条件绘制抛物线,并确定抛物线的顶点、焦点和准线。
2. 列出抛物线的一般方程,并代入已知条件,解出未知变量。
3. 运用抛物线定理或几何特性,解答相关问题。
八、总结高三抛物线定理是数学中重要的知识点,掌握抛物线的基本概念、性质以及应用方法对于高中数学学习具有重要意义。
抛物线高考专题复习
课 时 作 业
菜
单
高三一轮总复习理科数学 · (安徽专用)
自 主 落 实 · 固 基 础
变式3 已知AB是抛物线y 2 2 px( p 0)的焦点弦, 且A( x1 , y1 ), B( x2 , y2 ), 点F 为抛物线的焦点. 求证:以焦点弦AB为直径的圆与抛物线的准线L相切.
高 考 体 验 · 明 考 情
e=1 |PF|= p -x0+ 2
p y=- 2
p y= 2
高 考 体 验 · 明 考 情
焦半 p |PF|=x0+ 2 径
|PF|= p y0+ 2
|PF|= p -y0+ 2
课 时 作 业
菜
单
高三一轮总复习理科数学 · (安徽专用)
自 主 落 实 · 固 基 础
典 例 探 究 · 提 知 能
抛物线的定义的实质可归结为“一动三定”: 一个动点M, 一个定点F, 一条定直线(准线), 一个定值1(离心率)。 抛物线的定义表明了抛物线上的点到焦点的距离与 到准线的距离的等价性,二者可以相互转化,这一转化 在解题过程中具有重要作用.
高 考 体 验 · 明 考 情
课 时 作 业
菜
单
高三一轮总复习理科数学 · (安徽专用)
自 主 落 实 · 固 基 础
变式1
已知AB是抛物线y 2 px( p 0)的焦点弦,
2
且A( x1 , y1 ), B( x2 , y2 ), 点F 为抛物线的焦点. 1 1 求证: 为定值. AF BF
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 时 作 业
菜
单
高三一轮总复习理科数学 · (安徽专用)
抛物线知识点总结_高三数学知识点总结
抛物线知识点总结_高三数学知识点总结1. 抛物线的定义抛物线是平面上到定点和到定直线的距离相等的动点的轨迹,这个定直线叫做抛物线的准线,定点叫做抛物线的焦点。
2. 抛物线的标准方程一般来说,抛物线的标准方程为:y=ax^2+bx+c。
其中a、b、c为常数,a≠0。
如果a>0,则抛物线开口朝上;如果a<0,则抛物线开口朝下。
3. 抛物线的焦点和准线抛物线的焦点是平行于抛物线开口的轴与焦点的距离的一半,准线则是焦点平行的那条线。
4. 抛物线的顶点对于标准抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
5. 抛物线的焦半径和准半径对于抛物线的焦点F和定线的距离叫做抛物线的焦半径,而焦半径的x轴坐标叫焦半径。
同理,抛物线的顶点到准线距离称为准半径。
6. 抛物线的判别式对于一般的二次函数y=ax^2+bx+c,它的判别式Δ=b^2-4ac。
用判别式可以判断抛物线的开口方向以及与x轴交点的情况。
7. 抛物线的性质(1)焦半径相等的抛物线是轴对称的。
(2)抛物线的镜面对称轴就是准线。
(3)与y轴平行的抛物线开口方向与x轴平行的抛物线相同。
(4)若a>0,抛物线开口向上;若a<0,抛物线开口向下。
(5)抛物线的焦半径等于准半径。
8. 抛物线的平移对于标准的抛物线y=ax^2+bx+c,若把该抛物线上每个点都向左平移h个单位,则新抛物线的方程为y=a(x-h)^2+b(x-h)+c。
10. 抛物线的应用抛物线广泛应用于科学、工程等领域。
比如在物理学上,抛物线可以用来描述物体的运动轨迹;在工程上,抛物线可以用来设计拱形结构等。
学好抛物线知识对于理解和应用相关领域具有重要意义。
以上就是抛物线的知识点总结,希望能对大家有所帮助。
历年高三数学高考考点之抛物线必会题型及答案
历年高三数学高考考点之<抛物线>必会题型及答案体验高考1.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( ) A.(1,3) B.(1,4)C.(2,3) D.(2,4) 答案 D解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当直线l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k 存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0, 2=5-x 0,x 0=3,即M 必在直线x =3上, 将x =3代入y 2=4x ,得y 2=12, ∴-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.2.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 答案 A解析 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 3.(2016·四川)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33B.23C.22D.1 答案 C 解析 如图,由题意可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0,显然,当y 0<0时,k OM <0;y 0>0时,k OM >0,要求k OM 的最大值,不妨设y 0>0.则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 26p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 20=2p 2时等号成立.故选C.4.(2016·课标全国乙)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2B.4C.6D.8 答案 B解析 不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝ ⎛⎭⎪⎫-p2,5, 点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0, ① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2, ②点D ⎝ ⎛⎭⎪⎫-p2,5在圆x 2+y 2=r 2上,∴⎝ ⎛⎭⎪⎫p 22+5=r 2, ③联立①②③,解得p =4,即C 的焦点到准线的距离为p =4,故选B.5.(2015·上海)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =______. 答案 2解析 根据抛物线的性质,我们知道当且仅当动点Q 运动到原点的时候,才与抛物线焦点的距离最小,所以有|PQ |min =p2=1⇒p =2.高考必会题型题型一 抛物线的定义及其应用例1 已知P 为抛物线y 2=6x 上一点,点P 到直线l :3x -4y +26=0的距离为d 1.(1)求d 1的最小值,并求此时点P 的坐标;(2)若点P 到抛物线的准线的距离为d 2,求d 1+d 2的最小值. 解 (1)设P (y 206,y 0),则d 1=|12y 20-4y 0+26|5=110|(y 0-4)2+36|,当y 0=4时,(d 1)min =185,此时x 0=y 206=83,∴当P 点坐标为(83,4)时,(d 1)min =185.(2)设抛物线的焦点为F , 则F (32,0),且d 2=|PF |,∴d 1+d 2=d 1+|PF |,它的最小值为点F 到直线l 的距离|92+26|5=6110,∴(d 1+d 2)min =6110.点评 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.变式训练1 (1)(2016·浙江)若抛物线y 2=4x 上的点M 到焦点的距离为10,则点M 到y 轴的距离是________.(2)已知点P 在抛物线y 2=4x 上,那么点P 到Q (2,1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A.(14,1) B.(14,-1)C.(1,2) D.(1,-2) 答案 (1)9 (2)B解析 (1)抛物线y 2=4x 的焦点F (1,0).准线为x =-1,由M 到焦点的距离为10,可知M 到准线x =-1的距离也为10,故M 的横坐标满足x M +1=10,解得x M =9,所以点M 到y 轴的距离为9.(2)抛物线y 2=4x 焦点为F (1,0),准线为x =-1, 作PQ 垂直于准线,垂足为M ,根据抛物线定义,|PQ |+|PF |=|PQ |+|PM |,根据三角形两边之和大于第三边,直角三角形斜边大于直角边知:|PQ |+|PM |的最小值是点Q 到抛物线准线x =-1的距离. 所以点P 纵坐标为-1,则横坐标为14,即(14,-1).题型二 抛物线的标准方程及几何性质例2 (2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.方法一 (1)解 由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 方法二 (1)解 同方法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0.所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.点评 (1)由抛物线的标准方程,可以首先确定抛物线的开口方向、焦点的位置及p 的值,再进一步确定抛物线的焦点坐标和准线方程.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.变式训练2 已知抛物线C 的顶点在坐标原点O ,其图象关于y 轴对称且经过点M (2,1). (1)求抛物线C 的方程;(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;(3)过点M 作抛物线C 的两条弦MA ,MB ,设MA ,MB 所在直线的斜率分别为k 1,k 2,当k 1+k 2=-2时,试证明直线AB 的斜率为定值,并求出该定值. 解 (1)设抛物线C 的方程为x 2=2py (p >0), 由点M (2,1)在抛物线C 上,得4=2p , 则p =2,∴抛物线C 的方程为x 2=4y .(2)设该等边三角形OPQ 的顶点P ,Q 在抛物线上, 且P (x P ,y P ),Q (x Q ,y Q ), 则x 2P =4y P ,x 2Q =4y Q ,由|OP |=|OQ |,得x 2P +y 2P =x 2Q +y 2Q , 即(y P -y Q )(y P +y Q +4)=0.又y P >0,y Q >0,则y P =y Q ,|x P |=|x Q |, 即线段PQ 关于y 轴对称. ∴∠POy =30°,y P =3x P , 代入x 2P =4y P ,得x P =43,∴该等边三角形边长为83,S △POQ =48 3. (3)设A (x 1,y 1),B (x 2,y 2), 则x 21=4y 1,x 22=4y 2,∴k 1+k 2=y 1-1x 1-2+y 2-1x 2-2=14x 21-1x 1-2+14x 22-1x 2-2=14(x 1+2+x 2+2)=-2.∴x 1+x 2=-12,∴k AB =y 2-y 1x 2-x 1=14x 22-14x 21x 2-x 1=14(x 1+x 2)=-3.题型三 直线和抛物线的位置关系例3 已知圆C 1的方程为x 2+(y -2)2=1,定直线l 的方程为y =-1.动圆C 与圆C 1外切,且与直线l 相切.(1)求动圆圆心C 的轨迹M 的方程;(2)直线l ′与轨迹M 相切于第一象限的点P ,过点P 作直线l ′的垂线恰好经过点A (0,6),并交轨迹M 于异于点P 的点Q ,记S 为△POQ (O 为坐标原点)的面积,求S 的值. 解 (1)设动圆圆心C 的坐标为(x ,y ),动圆半径为R , 则|CC 1|=x 2+(y -2)2=R +1,且|y +1|=R , 可得x 2+(y -2)2=|y +1|+1.由于圆C 1在直线l 的上方,所以动圆C 的圆心C 应该在直线l 的上方, ∴有y +1>0,x 2+(y -2)2=y +2,整理得x 2=8y ,即为动圆圆心C 的轨迹M 的方程.(2)设点P 的坐标为(x 0,x 208),则y =x 28,y ′=14x ,k l ′=x 04,k PQ =-4x 0,∴直线PQ 的方程为y =-4x 0x +6.又k PQ =x 208-6x 0,∴x 208-6x 0=-4x 0,x 20=16,∵点P 在第一象限,∴x 0=4,点P 的坐标为(4,2),直线PQ 的方程为y =-x +6.联立⎩⎪⎨⎪⎧y =-x +6,x 2=8y ,得x 2+8x -48=0,解得x =-12或4,∴点Q 的坐标为(-12,18). ∴S =12|OA |·|x P -x Q |=48.点评 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.变式训练3 (2015·课标全国Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a(x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.高考题型精练1.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线l ′于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A.y 2=9x B.y 2=6x C.y 2=3x D.y 2=3x 答案 C解析 如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得: |BC |=2a ,由定义得:|BD |=a , 故∠BCD =30°. 在直角三角形ACE 中,∵|AF |=3,∴|AE |=3,|AC |=3+3a , ∴2|AE |=|AC |,∴3+3a =6, 从而得a =1,∵BD ∥FG , ∴1p =23,求得p =32, 因此抛物线方程为y 2=3x ,故选C.2.已知抛物线y 2=2px (p >0)的焦点为F ,P 、Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( ) A.2±3B.2+3C.3±1D.3-1 答案 A解析 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p 2,∴y 21=y 22,∴y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3,故选A.3.设F 为抛物线y 2=8x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|的值是( ) A.6B.8C.9D.12 答案 D解析 由抛物线方程,得F (2,0),准线方程为x =-2. 设A ,B ,C 坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),则由抛物线的定义,知|FA |+|FB |+|FC |=x 1+2+x 2+2+x 3+2=x 1+x 2+x 3+6. 因为FA →+FB →+FC →=0,所以(x 1-2+x 2-2+x 3-2,y 1+y 2+y 3)=(0,0), 则x 1-2+x 2-2+x 3-2=0,即x 1+x 2+x 3=6, 所以|FA →|+|FB →|+|FC →|=|FA |+|FB |+|FC | =x 1+x 2+x 3+6=12,故选D.4.已知抛物线C :y 2=8x 的焦点为F ,点M (-2,2),过点F 且斜率为k 的直线与C 交于A ,B 两点,若∠AMB =90°,则k 等于( )A.2B.22C.12D.2 答案 D解析 抛物线C :y 2=8x 的焦点为F (2,0),由题意可知直线AB 的斜率一定存在,所以设直线方程为y =k (x -2),代入抛物线方程可得 k 2x 2-(4k 2+8)x +4k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k2,x 1·x 2=4, 所以y 1+y 2=8k,y 1·y 2=-16, 因为∠AMB =90°,所以MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=16k 2-16k+4=0, 解得k =2,故选D.5.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12B.23C.34D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k 8y 2-y +2k +3=0(k ≠0),①由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12. 因为切点在第一象限,所以k =12. 将k =12代入①中,得y =8,再代入y 2=8x 中得x =8, 所以点B 的坐标为(8,8),所以直线BF 的斜率为86=43. 6.已知A (x 1,y 1)是抛物线y 2=8x 的一个动点,B (x 2,y 2)是圆(x -2)2+y 2=16上的一个动点,定点N (2,0),若AB ∥x 轴,且x 1<x 2,则△NAB 的周长l 的取值范围是( )A.(6,10)B.(10,12)C.(8,12)D.(8,10)解析 抛物线的准线l :x =-2,焦点F (2,0),由抛物线定义可得|AF |=x 1+2,圆(x -2)2+y 2=16的圆心为(2,0),半径为4,又定点N (2,0),∴△NAB 的周长即为△FAB 的周长=|AF |+|AB |+|BF |=x 1+2+(x 2-x 1)+4=6+x 2, 由抛物线y 2=8x 及B (x 2,y 2)在圆(x -2)2+y 2=16上,∴x 2∈(2,6),∴6+x 2∈(8,12),故选C.7.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x -y -10=0上的点N ,经直线反射后又回到点M ,则x 0=________.答案 6解析 由题意得P (2,4),F (2,0)⇒Q (2,-4),因此N (6,-4),因为QN ∥PM ,所以MN ⊥QN ,即x 0=6.8.已知直线l 过点(0,2),且与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2)两点,则1y 1+1y 2=_____.答案 12解析 由题意可得直线的斜率存在且不等于0,设直线l 的方程为y =kx +2,代入抛物线y 2=4x 可得y 2-4k y +8k=0, ∴y 1+y 2=4k ,y 1y 2=8k ,∴1y 1+1y 2=y 1+y 2y 1y 2=12. 9.已知抛物线y 2=4x 与经过该抛物线焦点的直线l 在第一象限的交点为A ,A 在y 轴和准线上的投影分别为点B ,C ,|AB ||BC |=2,则直线l 的斜率为________.解析 设A (x 0,y 0),则|AB |=x 0,|BC |=1,由|AB ||BC |=x 01=2,得x 0=2,y 0=4×2=22, 又焦点F (1,0),所以直线l 的斜率为k =222-1=2 2. 10.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.答案 0或-8解析 因为点M ,N 关于直线y =x +m 对称,所以MN 的垂直平分线为y =x +m ,所以直线MN 的斜率为-1.设线段MN 的中点为P (x 0,x 0+m ),直线MN 的方程为y =-x +b ,则x 0+m =-x 0+b ,所以b =2x 0+m .由⎩⎪⎨⎪⎧ y =-x +b ,x 2-y 23=1得2x 2+2bx -b 2-3=0, 所以x M +x N =-b ,所以x 0=-b 2,所以b =m2, 所以P (-m 4,34m ). 因为MN 的中点在抛物线y 2=18x 上,所以916m 2=-92m ,解得m =0或m =-8. 11.(2016·课标全国丙)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. (1)证明 由题意知,F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a=-b =k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去),设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1).而a +b 2=y , 所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0)满足y 2=x -1.所以,所求轨迹方程为y 2=x -1.12.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)1|AF |+1|BF |为定值; (3)以AB 为直径的圆与抛物线的准线相切.证明 (1)由已知得抛物线焦点坐标为(p 2,0). 由题意可设直线方程为x =my +p 2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2. 因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24. (2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=|AB |-p , 代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值). (3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |.所以以AB 为直径的圆与抛物线的准线相切.。
高三抛物线知识点归纳总结
高三抛物线知识点归纳总结抛物线是数学中的一种曲线,它在高三数学课程中占据着重要的地位。
掌握抛物线的相关知识,对于高三学生来说至关重要。
本文将对高三抛物线的知识点进行归纳总结,以帮助学生更好地理解和应用这一概念。
一、抛物线的基本定义和性质抛物线是一条平面曲线,其定义为到一个定点距离与到一条直线距离相等的点的轨迹。
抛物线具有以下基本性质:1. 对称性:抛物线关于其对称轴对称。
2. 定点和定线:抛物线上的每个点到焦点的距离与到直线(准线)的距离相等。
3. 焦距和准线:焦距是定点到准线的距离,准线是焦点垂直平分切线的直线。
4. 弧长和面积:抛物线的弧长和面积计算可以通过积分得到。
二、抛物线的标准方程和一般方程抛物线的标准方程是 y = ax^2 + bx + c,其中 a、b、c 是常数,a ≠ 0。
通过标准方程我们可以了解抛物线的开口方向、顶点坐标以及对称轴的方程。
一般方程是经过对标准方程的平移、旋转、伸缩等变换得到的,形式为 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0。
通过一般方程可以确定抛物线的具体形状和位置。
三、抛物线的性质和应用1. 高考重点:掌握抛物线的性质对于应对高考数学考试非常重要。
在高考中,抛物线相关的题目通常包括求焦点、顶点、对称轴、切线等问题,也可能涉及到与其他图形的求交点等问题。
2. 物理应用:抛物线在物理学中有广泛的应用,描述了自由落体、抛体运动等过程。
理解抛物线的性质和应用可以帮助我们更好地理解和解决与自由落体和抛体运动相关的物理问题。
3. 工程应用:抛物线的形状具有美学上的优点,因此在建筑和设计中经常被应用。
例如,拱桥的形状和抛物线非常相似,这是因为抛物线形状具有均匀分散应力的特点,是一种力学上最优的形状。
四、抛物线的图像绘制和计算1. 使用计算机软件绘制抛物线的图像可以辅助我们更好地理解抛物线的形式和变化规律。
常用软件如Geogebra、MATLAB等都可以绘制抛物线的图像。
抛物线知识点总结_高三数学知识点总结
抛物线知识点总结_高三数学知识点总结抛物线是一种二次函数,其标准形式为y=ax^2+bx+c,其中a、b、c为实数且a≠0。
在抛物线上,取值较小的一侧为开口向上的抛物线,取值较大的一侧为开口向下的抛物线。
抛物线的性质:1. 平移性质:对于标准形式y=ax^2+bx+c的抛物线,若h、k为实数,则抛物线y=a(x-h)^2+k表示平移了h个单位向右,k个单位向上(k>0)或向下(k<0)后的抛物线。
2. 判别式:若抛物线y=ax^2+bx+c的判别式Δ=b^2-4ac>0,则抛物线与x轴有两个交点,即开口向上的抛物线在x轴上方,开口向下的抛物线在x轴下方。
若Δ=0,则抛物线与x轴只有一个交点,抛物线与x轴相切。
若Δ<0,则抛物线与x轴没有交点,即开口向上的抛物线在x轴下方,开口向下的抛物线在x轴上方。
3. 对称性质:在抛物线y=ax^2+bx+c上,对于任意实数x,都有关于抛物线的对称点(x,-ax^2-bx-c)。
4. 最值性质:对于开口向上的抛物线,其最低点为顶点,对应的坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。
最低点处的纵坐标为抛物线的最小值。
对于开口向下的抛物线,其最高点为顶点,对应的坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。
最高点处的纵坐标为抛物线的最大值。
5. 零点性质:抛物线与x轴的交点称为零点,若抛物线y=ax^2+bx+c有零点,则有两个零点,记为x1和x2(x1≠x2),且x1+x2=-b/a,x1*x2=c/a。
6. 奇偶性质:对于抛物线y=ax^2+bx+c,若a为奇数,则抛物线是奇函数,即f(-x)=-f(x);若a为偶数,则抛物线是偶函数,即f(-x)=f(x)。
7. 渐进线性质:对于开口向上的抛物线y=ax^2+bx+c,当x趋于无穷大时,抛物线趋近于y=x的直线;当x趋于负无穷大时,抛物线趋近于y=x的直线。
高三抛物线知识点大全
高三抛物线知识点大全一、定义和性质抛物线是指平面上一个动点到一个固定点的距离和到一条固定直线的距离之差等于一个常数的轨迹图形。
具体而言,抛物线由一个焦点F和一条直线(直线称为准线,不过关于准线也可以成为直轴)组成。
二、基本方程抛物线的基本方程为:y² = 2px (p≠0)其中p为焦点到准线的距离(也称为焦距),p的绝对值表示抛物线开口的方向和大小。
三、焦点与准线之间的关系1. 焦点在抛物线的顶点上方并且与准线不相交。
2. 焦点与准线的距离等于顶点到准线的距离。
四、顶点的坐标抛物线的顶点坐标为(0,0)。
五、对称轴对称轴是指过抛物线顶点且垂直于准线的直线。
对称轴的方程为x = 0。
六、焦点的坐标焦点的坐标为(p,0)。
七、准线方程准线的方程为y = -p。
八、参数变换抛物线方程y² = 4ax可以通过参数变换的方式转化为y² = 2px 的形式。
其中参数变换公式如下:x = at²y = 2at九、焦距与顶点到准线的距离的关系焦距绝对值的平方等于抛物线顶点到准线的距离。
十、焦点和顶点到准线距离的关系焦点与顶点到准线的距离之比等于1:2。
十一、切线斜率抛物线上一点处的切线斜率等于该点的横坐标除以2p。
十二、离心率离心率是一个用于衡量抛物线形状的指标,定义为焦点到准线的距离与焦距之比,即e = √(1 + (1/p^2))。
十三、焦点和准线的位置关系焦点在准线之上时,抛物线开口朝上;焦点在准线之下时,抛物线开口朝下。
十四、抛物线与直线的关系1. 抛物线与x轴交点:若y = 0时,解方程y² = 2px,可求得两个交点。
2. 抛物线与y轴交点:若x = 0时,解方程y² = 2px,可求得一个交点。
十五、抛物线与直线的切点将直线方程代入抛物线方程,解方程组可以求得抛物线与直线的切点。
十六、抛物线的焦半径焦半径是指从焦点引出一个与抛物线相切的直线段。
数学高三抛物线知识点
数学高三抛物线知识点高中数学的抛物线是一种非常重要的曲线,它在生活中的应用广泛。
在数学高考中,抛物线相关的知识点也是必考内容之一。
本文将详细介绍高三数学中与抛物线相关的重要知识点,帮助高三学生系统地掌握这一部分内容。
一、抛物线的定义及性质抛物线是平面上一点到定直线(称为准线)和定点的距离之比(称为离心率)为常数的轨迹。
它的定义可以用数学方程表示为:y=ax^2+bx+c(a≠0),其中a、b、c为常数,a决定了抛物线的开口方向,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
1. 对称性:抛物线关于准线和对称轴对称。
2. 焦点与准线之间的关系:离心率e=焦距f/准线与焦点之间的距离。
3. 切线和法线:抛物线上任意一点的切线与过该点的准线垂直,且过该点的法线经过焦点。
二、抛物线的方程和图像1. 标准方程:当抛物线的顶点为原点时,抛物线的标准方程为y^2=4ax。
2. 顶点坐标:对于标准方程y^2=4ax,抛物线的顶点为(0,0)。
3. 对称轴和焦点坐标:对于标准方程y^2=4ax,抛物线的对称轴为x轴,焦点坐标为(F,0),其中焦距F=a/2。
三、抛物线的平移和旋转1. 平移:抛物线的平移是指将抛物线上所有点的坐标同时增加或减少一个固定的数值。
设抛物线的标准方程为y^2=4ax,平移后的抛物线的方程为(y-k)^2=4a(x-h),其中(h,k)为平移的距离。
2. 旋转:抛物线的旋转是指将抛物线绕原点或其他点旋转一定角度。
抛物线的旋转方程相对复杂,这里不再展开。
四、抛物线的焦点与准线问题1. 已知抛物线方程求焦点和准线:根据抛物线的标准方程或一般方程,可以求得焦点和准线的坐标。
2. 已知焦点和准线求抛物线方程:通过已知的焦点和准线的坐标,可以推导出抛物线的方程。
五、抛物线的应用抛物线在生活中有着广泛的应用,以下举几个例子:1. 投射问题:抛物线可以用来描述抛体的运动轨迹,比如抛物线的顶点表示抛体的最高点,焦点表示抛体的着地点。
高三数学抛物线
焦准距= p ;
顶准距=焦顶距= p ;
2
p 的点到焦点的最近距= 2
离心率
e 1
5.焦点弦
2 过 y 2 px p 0 的焦点弦AB,A y 2 ) AB x x p 2 p , y1 ),B( x2, ( x1, 1 2 2 2 sin p 2 y1 y2 p ,x1 x2
2 y 例4. 设抛物线 2 px( p 0) 的焦点为F,
经过点F的直线交抛物线于A、B两点,点C在 抛物线的准线上,且 BC // x轴 ,证明直线 AC经过原点O。 [思维点拔]本题的“几何味”特别浓,这就 为本题注入了活力,在涉及解析思想较多的 2 y y p 证法中,关键是得到A B 这个重要结 论,还有些证法充分利用了平面几何知识, 这也提醒广大师生对圆锥曲线几何性质的重 视,也只有这样才能挖掘出丰富多彩的解析 几何的题目。
对称轴 顶点坐标
X轴
Y轴 原点O(0,0)
焦点坐标
准线方程 焦半径
p ,0 2 p x 2
p ,0 2 p x 2
p 0, 2 p y 2
p 0, 2 p y 2
曲线上
p p r y p r y p r x0 r x0 0 0 2 2 2 2
6.标点
2
2
4
抛物线 y 2 px 上的点可标为 x0 , y0 或
y0 2 , y 或 2 p 0 2 pt ,2 pt t R
二、例题:
例1、(1)抛物线 y 4ax 的焦点坐标是 _____________.
2
(2)焦点在直线 x 2 y 4 0上的抛物线的 标准方程是_______________.其对应的准线 方程是_________________.
抛物线(高三一轮复习)
可知当A,P,H三点共线时周长最小,为6+2 2,故选C.
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 抛物线的标准方程
例2 (1)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其
准线于点C,准线与对称轴交于点M,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程
A.y2=4x或y2=16x B.y2=x或y2=8x C.y2=2x或y2=4x D.y2=x或y2=4x
数学 N 必备知识 自主学习 关键能力 互动探究
— 23 —
解析 (1)由抛物线定义,知|BF|等于B到准线的距离,因为|BC|=2|BF|,所以∠
BCM=30°,又|AF|=3,从而A
p2+32,3
数学 N 必备知识 自主学习 关键能力 互动探究
思维点睛► 求抛物线的标准方程的方法
(1)定义法; (2)待定系数法:当焦点位置不确定时,分情况讨论.
— 26 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 27 —
针对训练
1.(2023·张家界质检)若点P到直线y=-1的距离比它到点(0,3)的距离小2,则点
2
3
,A在抛物线上,代入抛物线方程y2=
2px,得247=p2+3p,解得p=32. 故抛物线方程为y2=3x.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)设P为(x0,y0),则M→P =(x0,y0-2), 又Fp2,0,∴M→F =p2,-2. ∵MF⊥PM,∴M→F ·M→P =0,
第八章 平面解析几何
第7讲 抛物线
数学 N 必备知识 自主学习 关键能力 互动探究 课标解读
高三抛物线定理知识点归纳总结
高三抛物线定理知识点归纳总结高三学生在学习数学的过程中,会接触到抛物线这一重要的数学概念。
抛物线是数学中的一个曲线,具有许多特殊的性质和定理。
本文将对高三抛物线定理的相关知识点进行归纳总结,以帮助同学们更好地理解和应用抛物线定理。
一、基本概念1. 抛物线的定义:抛物线是平面上一点到定点和定直线的距离之差等于常数的轨迹。
2. 抛物线的标准方程:y = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。
二、顶点与对称轴1. 顶点的求解:对于标准抛物线方程y = ax^2 + bx + c,顶点坐标为(-b/(2a), f(-b/(2a)))。
2. 对称轴的方程:对于标准抛物线方程y = ax^2 + bx + c,对称轴的方程为x = -b/(2a)。
三、焦点与准线1. 焦点的求解:对于标准抛物线方程y = ax^2 + bx + c,焦点的坐标为(-b/(2a), f(-b/(4a)))。
2. 准线的方程:对于标准抛物线方程y = ax^2 + bx + c,准线的方程为y = (1 - 1/(4a))。
四、判别式与图像开口方向1. 判别式的求解:对于标准抛物线方程y = ax^2 + bx + c,判别式的值Δ = b^2 - 4ac。
a) 当Δ > 0时,抛物线开口向上。
b) 当Δ < 0时,抛物线开口向下。
c) 当Δ = 0时,抛物线开口朝上或朝下,具有最小值或最大值。
五、焦距与准线的关系1. 焦距的求解:对于标准抛物线方程y = ax^2 + bx + c,焦距的值为f = |1/(4a)|。
2. 焦距与准线的关系:焦距的值为准线到焦点的距离,即f = d(P,D)/2,其中P为焦点,D为准线。
六、渐近线1. 抛物线的渐近线:对于标准抛物线方程y = ax^2 + bx + c,纵坐标趋势无限增大时,横坐标趋势无穷大或无穷小,即y趋于∞时,如果a ≠ 0,则直线y = 0为横渐近线;如果a = 0,则不存在横渐近线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线
平面内与一个定点F 和一条定直线l(F ∉l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质
标准方程
y 2
=2px (p>0)
y 2
=-2px(p>0)
x 2
=2py(p>0)
x 2
=-2py(p>0)
p 的几何意义:焦点F 到准线l 的距离
图形
顶点 O(0,0)
对称轴
y =0
x =0 焦点
F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭
⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝
⎛⎭⎪⎫0,-p 2 离心率 e =1
准线方程 x =-p
2
x =p 2 y =-p 2
y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向
向右
向左
向上
向下
题型一 抛物线的定义及应用
例1已知抛物线y 2
=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标.
变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( )
A.17
2
B.3
C.5
D.
9
2
题型二抛物线的标准方程和几何性质
例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程.
变式练习2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
A.y2=±4x
B.y2=±8x
C.y2=4x
D.y2=8x
变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于( )
A.2∶ 5
B.1∶2
C.1∶ 5
D.1∶3
题型三抛物线焦点弦的性质
例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O.
变式练习4.已知抛物线y 2
=2px(p>0)的焦点为F ,A(x 1,y 1)、B(x 2,y 2)是过F 的直线与抛物线的两个交点,求证:
(1)y 1y 2=-p 2
,x 1x 2=p
2
4
;
(2)1|AF|+1|BF|
为定值; (3)以AB 为直径的圆与抛物线的准线相切.
题型四 直线与抛物线的位置关系
例4已知抛物线C :y =mx 2
(m>0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q. (1)求抛物线C 的焦点坐标.
(2)若抛物线C 上有一点R(x R,2)到焦点F 的距离为3,求此时m 的值.
(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,说明理由.
变式练习5.已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;
(2)是否存在正数m ,对于过点M(m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA →·FB →
<0?若存在,求出m 的取值范围;若不存在,请说明理由.
例5设抛物线C :y 2
=2px(p>0)的焦点为F ,直线l 过F 且与抛物线C 交于M ,N 两 点,已知当直线l 与x 轴垂直时,△OMN 的面积为2(O 为坐标原点). (1)求抛物线C 的方程;
(2)是否存在直线l ,使得以MN 为对角线的正方形的第三个顶点恰好在y 轴上,若存在,求直线l 的方程;若不存在,请说明理由.
方法与技巧小结
1.认真区分四种形式的标准方程
(1)区分y =ax 2
与y 2
=2px (p>0),前者不是抛物线的标准方程.
(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2
=mx 或x 2
=my(m ≠0). 2.抛物线的焦点弦:设过抛物线y 2
=2px (p>0)的焦点的直线与抛物线交于A(x 1,y 1),B(x 2,y 2),则: (1)y 1y 2=-p 2
,x 1x 2=p
2
4
;
(2)若直线AB 的倾斜角为θ,则|AB|=2p
sin 2θ;
(3)若F 为抛物线焦点,则有1|AF|+1|BF|=2p
. 第三部分 巩固练习
A 组 专项基础训练
一、选择题
1.抛物线y =-12x 2
的焦点坐标是( )
A.(0,18)
B.(-18,0)
C.(0,-12)
D.(-1
2
,0)
2.抛物线y 2
=4x 的焦点到双曲线x 2
-y
2
3
=1的渐近线的距离是( )
A.12
B.3
2
C.1
D. 3 3.已知抛物线y 2
=2px(p>0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A.x =1B.x =-1C.x =2D.x =-2
4.已知抛物线y 2
=2px(p>0)的焦点弦AB 的两端点坐标分别为A(x 1,y 1),B(x 2,y 2),则y 1y 2x 1x 2
的值一定等于( )
A.-4
B.4
C.p 2
D.-p 2
5.如图,抛物线C 1:y 2
=2px 和圆C 2:(x -p 2)2+y 2
=p 2
4
,其中p>0,直线l 经过C 1的焦点,依次交C 1,C 2
于A ,B ,C ,D 四点,则AB →·CD →
的值为( ) A.p 2
B.p 2
4C.p 2
2 D.p 2
3
二、填空题
6.若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是
__________.
7.已知过抛物线y 2
=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF|=2,则|BF|=________.
8.已知抛物线C :y 2
=2px(p >0)的准线为l ,过M(1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若A M →=M B →
,则p =________.
三、解答题
9.如图,已知抛物线y 2
=2px (p>0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.
10.如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A.点C 在抛物线E 上,以C 为圆心,|CO|为半径作圆,设圆C 与准线l 交于不同的两点M ,N. (1)若点C 的纵坐标为2,求|MN|; (2)若|AF|2
=|AM|·|AN|,求圆C 的半径.
B 组 专项能力提升
1.设F 为抛物线y 2
=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →
=0,则
|FA →|+|FB →|+|FC →
|等于( ) A.9B.6C.4D.3
2.已知抛物线C:y2=4x的焦点为F,准线为l,过抛物线C上的点A作准线l的垂线,垂足为M,若△AMF
与△AOF(其中O为坐标原点)的面积之比为3∶1,则点A的坐标为( )
A.(2,22)
B.(2,-22)
C.(2,±2)
D.(2,±22)
3.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为
( )
A.
2
2
B.2
C.
32
2
D.2 2
4.已知直线l1:4x-3y+11=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之
和的最小值是________.
5.如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若BC=2BF,且
AF=3,则此抛物线的方程为________.。