高中数学复数练习题.

合集下载

高中数学《复数》练习题(含答案解析)

高中数学《复数》练习题(含答案解析)

高中数学《复数》练习题(含答案解析)一、单选题1.已知()21i 32i z -=+,则z =( ) A .31i 2--B .31i 2-+C .3i 2-+D .3i 2--2.已知a ∈R ,若a –1+(a –2)i (i 为虚数单位)是实数,则a =( ) A .1B .–1C .2D .–23.1545年,意大利数学家卡尔丹在其所著《重要的艺术》一书中提出“将实数10分成两部分,使其积为40”的问题,即“求方程()1040x x -=的根”,卡尔丹求得该方程的根分别为55后这两个根分别记为5和5.若()55z =,则复数z =( )A .1B .1C D 4.已知2i z =-,则()i z z +=( ) A .62i -B .42i -C .62i +D .42i +5.已知 i 为虚数单位, 复数12iiz +=, 则z =( ) A .2i -- B .2i -+C .2i +D .2i -6.复数113i-的虚部是( ) A .310-B .110-C .110D .3107.设(1i)1i x y +=+,其中i 为虚数单位,,x y 是实数,则x yi +=( ) A.1BC D .28.若()()1i 11i z --=+,则z 的虚部为( ) A .1-B .1C .i -D .i9.已知i 是虚数单位,复数z 的共轭复数为z ,下列说法正确的是( ) A .如果12z z +∈R ,则1z ,2z 互为共轭复数B .如果复数1z ,2z 满足1212z z z z +=-,则120z z ⋅=C .如果2z z =,则1z =D .1212z z z z = 10.已知,a b 为实数,且2ii 1ib a +=++(i 为虚数单位),则i a b +=( ) A .34i + B .12i + C .32i --D .32i +二、填空题11.若z C ∈,且25i z =-,则()Re z =________. 12.i 的周期性:当n 是整数时,41i n +=______,42i n +=_______,43i n +=______,4i n =_______.13.复数34i2i+=+___________.14.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________.三、解答题15.已知复数14i1im z +=-(,i m ∈R 是虚数单位). (1)若z 是纯虚数,求实数m 的值;(2)设z 是z 的共轭复数,复数z 在复平面上对应的点在第四象限,求m 的取值范围. 16.在复数范围内分解因式: (1)4269++x x ; (2)4228--x x .17.设虚数z 满足21510z +=. (1)求||z ;(2)若z aa z+是实数,求实数a 的值.18.(1)已知复数z 在复平面内对应的点在第二象限,2z =,且2z z +=-,求z ; (2)已知复数()()2212i 32i 1im z m =-+-+-为纯虚数,求实数m 的值.参考答案与解析:1.B【分析】由已知得32i2iz +=-,根据复数除法运算法则,即可求解. 【详解】()21i 2i 32i z z -=-=+, ()32i i 32i 23i 31i 2i 2i i 22z +⋅+-+====-+--⋅. 故选:B. 2.C【分析】根据复数为实数列式求解即可.【详解】因为(1)(2)a a i -+-为实数,所以202a a -=∴=,, 故选:C【点睛】本题考查复数概念,考查基本分析求解能力,属基础题. 3.C【分析】利用复数除法运算求得z .【详解】由()55z =,得25z ==== 故选:C . 4.C【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C. 5.D【分析】由复数的除法法则求解即可 【详解】()()()12i i 12i 2i i i i z +-+===-⨯-, 故选:D 6.D【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 7.B【分析】先利用复数相等求得x ,y ,再利用复数的模公式求解. 【详解】因为(1i)1i x y +=+,所以1x y x =⎧⎨=⎩,解得11x y =⎧⎨=⎩,所以i x y +== 故选:B. 8.B【分析】根据复数除法的运算法则,结合共轭复数的定义、复数虚部的定义进行求解即可.【详解】因为()()1i 11i z --=+,所以()()()21i 12i 11i 1i 1i 2z ++--===-+,所以1i z =-,所以1i z =+, 所以z 的虚部为1. 故选:B 9.D【分析】对于A ,举反例11i z =+,22i z =-可判断;对于B ,设111i z a b =-,222i z a b =+代入验证可判断;对于C ,举反例0z =可判断;对于D ,设1i z a b =+,2i z c d =+,代入可验证.【详解】对于A ,设11i z =+,22i z =-,123z z +=∈R ,但1z ,2z 不互为共轭复数,故A 错误; 对于B ,设111i z a b =-(1a ,1b ∈R ),222i z a b =+(2a ,2b ∈R ).由1212z z z z +=-,得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-,则12120a a b b +=,而()()()()()12112212121221121221i i i 2i z z a b a b a a bb a b a b a a a b a b ⋅=++=-++=++不一定等于0,故B 错误;对于C ,当0z =时,有2z z =,故C 错误;对于D ,设1i z a b =+,2i z c d =+,则1212z z z z ===,D 正确故选:D 10.A【分析】利用复数的乘除运算化简,再利用复数相等求得,a b ,进而得解. 【详解】()()2i 1i 2i 22i i 22i 1i 2222b b b b b b +-+-+++-===++ 由题意知222=12b a b +⎧=⎪⎪⎨-⎪⎪⎩,解得34a b =⎧⎨=⎩,所以i 34i a b +=+故选:A 11.5【分析】推导出()52z i -=,从而2552z i i=+=-,由此能求出()Re z . 【详解】解:∈z C ∈,且25i z =-, ∈()52z i -=, ∈2225552iz i i i=+=+=-, ∈()5Re z =. 故答案为:5.【点睛】本题考查复数的实部的求法,考查复数的运算法则等基础知识,考查运算求解能力,是基础题.关键是利用复数的运算求出z 的标准形式,并注意准确掌握实部的概念. 12. i 1- i - 1【分析】由2i 1=-及指数幂的运算性质依次对41i n +,42i n +,43i n +,4i n 变形即可得到答案. 【详解】由2i 1=-及指数幂的运算性质得:3i i =-,41i =414i i i ()i n n +==∴,4242()i 1i i n n +==-,4334()i i i i n n +==-,44i (i )1n n ==.故答案为:i ;1-;i -;1. 13.2i +##i+2【分析】依据复数除法规则进行计算即可解决.【详解】()()()()2234i 2i 34i 65i 4i 105i2i 2i 2i 2i 4i 5+-++-+====+++-- 故答案为:2i +14【分析】由已知可得12z z -,进而由()2121212z z z z z z -=--可得12212z z z z +=,从而有22212121221z z z z z z z z +=+++,故而可得答案.【详解】解:因为121z z -=,所以12z z -==又11z =,22z =,所以()212121211221221121222213z z z z z z z z z z z z z z z z z z z z -=--=+--=+--=, 所以12212z z z z +=,所以()2221212122121217z z z z z z z z z z z z +=++=+++=,所以12z z +=15.(1)14(2)1144m -<<【分析】(1)化简复数z ,根据纯虚数的概念可求出m ; (2)求出z ,根据复数的几何意义可求出结果. 【详解】(1)因为14i 1im z +=-(14i)(1i)(1i)(1i)m ++=-+14(14)i2m m -++=是纯虚数, 所以140140m m -=⎧⎨+≠⎩,得14m =.(2)由(1)知,1414i 22m mz -+=+,1414i 22m m z -+=-, 所以z 在复平面内对应的点为1414,22m m -+⎛⎫- ⎪⎝⎭,依题意可得14021402mm -⎧>⎪⎪⎨+⎪-<⎪⎩,解得1144m -<<.16.(1)22((x x(2)(2)(2)+-x x x x【分析】(1)(2)结合复数运算求得正确答案. (1)由于()()23x x x =+,所以()242222693((x x x x x ++=+=.(2)由于()()22x x x =+,所以()()42222824(2)(2)x x x x x x x x --=+-=+-.17.(1)(2)±【分析】(1)设(,,0)z x yi x y R y =+∈≠利用复数的模相等即得;(2)先化简z a a z+又因为是实数,故虚部为零,即得结果.【详解】设(,,0)z x yi x y R y =+∈≠ ,则z x yi =- 1010z x yi +=+- 则2152()15(215)2z x yi x yi +=++=++215z +=1010z x yi +=+-=21510z +=即:2275x y+=即||z == (2)222222()()()a a x yi ax ayi ax ayi x yi x yi x yi x y x y x y --===-++⋅-+++ 22222222()()ax ay ax ay i i x y x y x y z a x yi a x y x y i a z a x yi a a a y a x -=+-+++++==++++++若z aa z+是实数,则22220(01)ay a y x y x y y a a -=⇒-=++22100aa y x y≠∴-=+ 即22275a x y =+=即a =±18.(1)1z =-;(2)2-【分析】(1)根据模长公式以及复数的加法运算,结合对应的象限得出z ; (2)根据复数的四则运算以及纯虚数的定义得出m 的值.【详解】解:(1)设()i ,z a b a b R =+∈,由题意每224,22,a b a ⎧+=⎨=-⎩,解得1a =-,b =∈复数z 在复平面内对应的点在第二象限,∈b =∈1z =-.(2)()()()()()()()2221i 212i 32i 12i 32i 1i 1i 1i m m z m m +=-+-+=-+-+--+ ()()22623i m m m m =--+--,由题意得2260230m m m m ⎧--=⎨--≠⎩,解得2m =-。

高中复数经典练习题(含答案)

高中复数经典练习题(含答案)

高中复数经典练习题(含答案)一、单选题1.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i --2.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( ) A .一 B .二C .三D .四4.已知复数113i z =+的实部与复数21i z a =--的虚部相等,则实数a 等于( ) A .-3 B .3 C .-1 D .15.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-1 6.若0a <,则a 的三角形式为( ) A .()cos0isin0a + B .()cos isin a ππ+ C .()cos isin a ππ-+ D .()cos isin a ππ-- 7.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( )A .sin 30°+icos 30°B .cos 160°+isin 160°C .cos 30°+isin 30°D .sin 160°+icos 160°8.已知 i 是虚数单位,复数4132⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( ) A .2-B .2C .i -D .1-10.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③11.已知复数324i 1iz +=-,则z =( )AB C .D .12.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限13.已知m 为实数,则“1m =”是“复数()211i z m m =-++为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.复数1ii+(其中i 为虚数单位)在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限15.下列命题正确的是( ) ①若复数z 满足2R z ∈,则R z ∈;②若复数z 满足i R z∈,则z 是纯虚数; ③若复数1z ,2z 满足12=z z ,则12=±z z ;④若复数1z ,2z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .②③16.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+D .11i 22-17.已知复数z 满足()21i 68i z -=+,其中i 为虚数单位,则z =( )A .10B .5 CD.18.已知复数z 满足()43i 5i z +=,则z =( ) A .1BC .15D .519.设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A .1i - B .1i + C .2i + D .2i -20.若复数(32)(1)i ai +-在复平面内对应的点位于第一象限,则实数a 的取值范围为( )A .32,23⎛⎫- ⎪⎝⎭B .3,2⎛⎫-∞- ⎪⎝⎭C .23,32⎛⎫- ⎪⎝⎭D .2,3⎛⎫-∞- ⎪⎝⎭二、填空题21.已知复数z 满足()1i 42i -=+z ,则z =_________.22.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.23.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示). 24.已知复数z 满足211iz -=+,则z 的最小值为___________; 25.复数1i z =+(其中i 为虚数单位)的共轭复数z =______.26.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 27.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 28.已知复数1i z =+,则2z z+=____________ 29.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 30.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________.33.已知复数z 满足()()1i 2i z t t +=∈R,若z =,则t 的值为___________. 34.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________.35.复数1077(cos isin )66ππ+表示成代数形式为________. 36.计算cos 40isin 40cos10isin10________.37.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.38.设复数()21(1)i m m -++为纯虚数,则实数m 的值为________.39.若复数z 满足|z -i|=3,则复数z 对应的点Z 的轨迹所围成的图形的面积为________.40.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________. 三、解答题41.在①z 为虚数,②z 为纯虚数,这两个条件中任选一个作为(1)中的已知条件.已知复数()22284i z m m m =--+-(1)若___________,求满足条件的实数m ;(2)若复数()21i 8z m -++的模为m 的值42.设()22112i z m m m =+++-,()224254i z m m m =++-+,若12z z <,求实数m 的取值范围.43.若复平面内单位圆上三点所对应的复数123,,z z z ,满足22z 13z z =且23i i 0z z +-=,求复数123,,z z z .44.实数k 为何值时,复数()()223456i z k k k k =--+--是:(1)实数? (2)虚数? (3)纯虚数? (4)0?45.(1)在复数集C 中解下列方程:2490x +=; (2)已知()12i 43i z +=+,求z .【参考答案】一、单选题 1.D 2.D3.B 4.C 5.C 6.C 7.B 8.C 9.D 10.B 11.B 12.D 13.C 14.D 15.B 16.C 17.B 18.A 19.A 20.A 二、填空题21.13i +22.()34-,23.13i +##3i+1 241##1-25.1i -##i+1-262728.29.12i -##2i+1- 30.35 3132.1##1+33.2或2- 34.-1+2i##2i -135.-5i##-5i -3612i 3738.1 39.9π 40.9 三、解答题41.(1)若选择①,则 2.m ≠±;若选择②,则4m =. (2) 1.m =± 【解析】 【分析】(1)根据虚数和纯虚数的概念可求出结果; (2)根据复数的模长公式列式可求出结果. (1)若选择①,因为z 为虚数,则240m -≠,解得 2.m ≠±若选择②,因为z 为纯虚数,则2280m m --=且240m -≠,解得4m =. (2)因为()22284i z m m m =--+-,所以2222(1i)828(4)i (1i)824i,z m m m m m m -++=--+--++=--=,解得 1.m =± 42.{}1 【解析】 【分析】根据12z z <可知1z R ∈,2z R ∈,由实数定义可构造方程组求得m . 【详解】12z z <,1z R ∴∈,2z R ∈,2220540m m m m ⎧+-=∴⎨-+=⎩,解得:1m =;当1m =时,12z =,26z =,满足12z z <,m ∴的取值范围为{}1.43.答案见解析. 【解析】 【分析】根据复数的几何意义,结合复数的运算求得3z 和2z ,再结合复数的乘除运算,即可求得1z . 【详解】因为单位圆上三点所对应的复数为123,,z z z ,故可设z 1=cos α+isin α,z 2=cos β+isin β,z 3=cos γ+isin γ, 则由23i i 0z z +-=,可得cos sin 0sin cos 10βγβγ-=⎧⎨+-=⎩,利用cos 2β+sin 2β=1,解得1cos 2sin γγ⎧=⎪⎪⎨⎪=⎪⎩z 3故当z 3时,z 2=-i(z 3-1),z 1=223z z=1;当z 3时,z 2=-i(z 3-1)z 1=223z z ==1.44.(1)6k =或1k =-; (2)6k ≠且1k ≠-; (3)4k =; (4)1k =-. 【解析】 【分析】(1)解方程2560k k --=即得解; (2)解不等式2560k k --≠即得解;(3)解不等式2560k k --≠,且2340k k --=即得解; (4)解方程2560k k --=,且2340k k --=即得解. (1)解:当2560k k --=,即6k =或1k =-时,z 是实数; (2)解:当2560k k --≠,即6k ≠且1k ≠-时,z 是虚数; (3)解:当2560k k --≠,且2340k k --=,z 是纯虚数,即4k =时为纯虚数; (4)解:当2560k k --=,且2340k k --=,即1k =-时,z 是0.45.(1)3i 2x =±;(2)2i z =+. 【解析】 【分析】(1)利用直接开平方法求解即可,(2)先由已知式子求出复数z ,从而可求出其共轭复数 【详解】(1)∵2490x +=, ∴294x =-,3i 2x =±.(2)()()()()243i 12i 43i 43i 8i 6i 105i2i 12i 12i 12i 55z +-++---=====-+-+, ∴2i z =+.。

高中数学复数练习题含答案

高中数学复数练习题含答案

高中数学复数练习题含答案一、单选题1.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( ) A .5B .5C .2D .22.已知复数1i z =-,则2i z z -=( ) A .2B .3C .23D .323.已知 i 是虚数单位,复数41322i ⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .26.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i -- 8.设复数z 满足i 4i 0z ++=,则||z =( )A 17B .4C 7D 59.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( )A .一B .二C .三D .四10.3i3i-+=+( )A .43i 55+ B .43i 55-+C .43i 55D .43i 55--11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1 B .1- C .i D .i - 12.复数2i z =-(i 为虚数单位)的虚部为( )A .2B .1C .iD .1- 13.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( )A .iB .i -C .1D .1-14.设复数53i--的实部与虚部分别为a ,b ,则a b -=( ) A .2- B .1- C .1 D .2 15.复数z 满足:23i 3=+-z z ,则z =( )A .5B C .10D 16.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +17.已知复数z 满足()21i 24i z -=-,其中i 为虚数单位,则复数z 的虚部为( ) A .2 B .1 C .2- D .i18.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i19.设O 为原点,向量OA ,OB 对应的复数分别为2+3i ,-3-2i ,那么向量BA 对应的复数为( )A .-1+iB .1-iC .-5-5iD .5+5i20.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限二、填空题21.若复数2(1i)34iz +=+,则z =__________.22.若复数z 满足i 3i=iz -+,则z =________. 23.已知复数3i (2i)z =⋅-,则z 的虚部为__________.24.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________.25.设m ∈R ,复数z =(2+i )m 2-3(1+i )m -2(1-i ),若z 为非零实数,则m =________.26.写出一个在复平面内对应的点在第二象限的复数z =__________. 27.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.28.若复数()2i m m m -+为纯虚数,则实数m 的值为________.29.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 30.若复数1z ,2z 满足112i z =-,234i z =+(i 是虚数单位),则12z z ⋅的虚部为___________. 31.已知复数2i4i ia b +=-,,R a b ∈,则a b +=______. 32.甲、乙、丙、丁四人对复数z 的陈述如下(i为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________.33.已知复数z 满足()()1i 2i z t t +=∈R,若z =,则t 的值为___________.34.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值为________.35.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.36i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________. 37.计算cos 40isin 40cos10isin10________.38.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 39.设i是虚数单位,复数z =,则z =___________. 40.设复数z 满足()1i 22i z +=-(i 为虚数单位),则z =______. 三、解答题41.已知()122i z x =+-,()()2234i z y x =++-,其中,x y 均为实数,且12z z =,求,x y .42.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ; (2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.43.复数cos isin 33ππ+经过n 次乘方后,所得的幂等于它的共轭复数,求n 的值.44.根据复数的几何意义证明:121212z z z z z z -≤+≤+. 45.设C z ∈,则满足条件34z <<的点Z 的集合是什么图形?【参考答案】一、单选题 1.A 2.D 3.C 4.C 5.C 6.D 7.D 8.A 9.B 10.B 11.B 12.D 13.D 14.A 15.D 16.B 17.B 18.D 19.D20.A 二、填空题 21.825i 625-2223.-224 25.126.1i -+(答案不唯一) 27.9 28.1 29.1 30.-2 31.6 32.2 33.2或2- 34.8335.[)2,+∞36.1-1-3712i 38.③39.40.2 三、解答题 41.21x y =⎧⎨=-⎩或11x y =-⎧⎨=-⎩【解析】 【分析】根据复数相等条件可构造方程组求得结果. 【详解】12z z =,23242y x x +=⎧∴⎨-=-⎩,解得:21x y =⎧⎨=-⎩或11x y =-⎧⎨=-⎩.42.(1)2;(2)21i 3z =-;(3)25m -<<. 【解析】 【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解. 【详解】(1)()()()()242i 42i 12i 4(1i)10i2i 12i 12i 12i 12i 5z +++--=====---+,∴2z =(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+, 化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+,根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得()2256,215m m m m ++--Z ,因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<,故而当25m -<<时,复数Z 对应的点在第四象限. 43.()61Z k k -∈. 【解析】 【分析】用共轭复数的概念,以及复数的三角表示即可. 【详解】由题意:cos isin cos isin cos isin 333333nn n ππππππ⎛⎫+=+=- ⎪⎝⎭,可得cos cos ,sin sin 3333n n ππππ==-, ∴()2Z 33n k k πππ=-∈,()61Z n k k =-∈. 44.证明详见解析 【解析】【分析】结合三角形两边的和大于第三边、两边的差小于第三边来证得不等式成立. 【详解】当12,z z 方向相同时,121212z z z z z z -<+=+;当12,z z 方向相反时,121212z z z z z z -=+<+;当12,z z 不共线时,1212,,z z z z +满足三角形的三边,根据三角形两边的和大于第三边、两边的差小于第三边可知:121212z z z z z z -<+<+.综上所述,不等式121212z z z z z z -≤+≤+成立.45.是圆229x y +=与圆2216x y +=之间的圆环(不包括边界) 【解析】 【分析】根据复数模的几何意义得出结论. 【详解】设()i ,R z x y x y =+∈22223,9z x y x y =+=+=,表示圆心在原点,半径为3的圆, 22224,16z x y x y =+=+=,表示圆心在原点,半径为4的圆,所以满足条件34z <<的点Z 的集合是圆229x y +=与圆2216x y +=之间的圆环(不包括边界),如图所示.。

高中复数经典练习题(含答案)

高中复数经典练习题(含答案)

高中复数经典练习题(含答案)一、单选题1.复数20222i 1iz =+(其中i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知复数1i z =-,则2i z z -=( )A .2B .3C .D .3.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( ) A .sin 30°+icos 30° B .cos 160°+isin 160° C .cos 30°+isin 30° D .sin 160°+icos 160°4.若复数(32)(1)i ai +-在复平面内对应的点位于第一象限,则实数a 的取值范围为( )A .32,23⎛⎫- ⎪⎝⎭B .3,2⎛⎫-∞- ⎪⎝⎭C .23,32⎛⎫- ⎪⎝⎭D .2,3⎛⎫-∞- ⎪⎝⎭5.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .筹四象限7.3i3i-+=+( ) A .43i 55+ B .43i 55-+C .43i 55D .43i 55--8.设i 为虚数单位,则)10i 的展开式中含2x 的项为( )A .6210C x - B .6210C x C .8210C x -D .8210C x 9.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( ) A .一 B .二 C .三D .四10.复数z 满足(1i)23i z -=-,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3πB .23π C .34π D .56π12.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12-B .1i 2C .32-D .3i 2-13.复数2i z =-(i 为虚数单位)的虚部为( ) A .2 B .1C .iD .1-14.设复数53i--的实部与虚部分别为a ,b ,则a b -=( ) A .2-B .1-C .1D .215.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ). A .()3,1- B .()1,3- C .()1,+∞ D .(),3-∞16.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限17.若5i2iz =+,则||z =( )A .2B C .D .318.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-19.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件 20.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i -- B .2i -+C .2i -D .2i +二、填空题21.甲、乙、丙、丁四人对复数z 的陈述如下(i 为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________.22.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________. 23.已知复数ππsin i cos 33z =+,则z =________.24.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 25.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 26.设12z i =-,则z =___________ .27.若复数()2i m m m -+为纯虚数,则实数m 的值为________.28.若()i 1)(,x y x x y R +=-∈,则2x y +的值为__________. 29.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示). 30.已知复数z 满足1z =,则22z i +-的最大值为______. 31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.33.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 34.把复数z 的共轭复数记作z ,已知()12i 43i z +=+(其中i 是虚数单位),则z =______.35.i 是虚数单位,则1i1i+-的值为__________.36.已知z =,则22022z z z ++⋅⋅⋅+=___________. 37.若z 1=2-i ,z 2=-12+2i ,则z 1,z 2在复平面上所对应的点为Z 1,Z 2,这两点之间的距离为________. 38.已知i 为虚数单位,复数21iz =-的虚部为___________. 39.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.40.若复数2(1i)34iz +=+,则z =__________.三、解答题41.已知z 是虚数,求证:4z z+是实数的充要条件是2z =.42.已知复数(2)(3)(2)i()z m m m m =++++∈R . (1)若z 是纯虚数,求z ; (2)若i1,i(,)1z m a b a b z +=-=+∈+R ,求a ,b 的值. 43.已知复数()()211i z m m =-++,m R ∈.(1)若z 对应复平面上的点在第四象限,求m 的范围; (2)若z 是纯虚数,求m 的值.44.已知复数()224124i z m m m =--+-,其中m R ∈. (1)若z 为纯虚数,求m 的值;(2)若z 在复平面内对应的点关于虚轴对称得到的点在第一象限,求m 的取值范围.45.已知1z ,2z ∈C ,12z =,23z =,124z z +=,求12z z .(提示:()1122cos isin z z z z θθ=+或()1122cos isin z zz z θθ=-,θ是1z ,2z 所表示的向量的夹角.)【参考答案】一、单选题 1.B 2.D 3.B 4.A 5.D 6.C 7.B 8.A 9.B 10.A 11.C 12.C 13.D 14.A15.A16.D17.B18.B19.B20.B二、填空题21.222.23.124252627.128.129.13i+##3i+1 30.13132.[)2,+∞33.234.2i+##i2+ 35.136.03738.139.i-40.825i 6 25 -三、解答题41.证明见解析【解析】【分析】设()i ,,0z x y x y R y =+∈≠,由复数运算化简得2222444i x y z x y z x y x y⎛⎫⎛⎫+=++- ⎪ ⎪++⎝⎭⎝⎭;当2z =时,可得42z x R z +=∈,证得充分性;当4z z+是实数时,可得224x y +=,必要性得证;由此可得结论.【详解】设()i ,,0z x y x y R y =+∈≠, 则2222224444i 44i i i i x y x y z x y x y x y zx y x y x y x y ⎛⎫⎛⎫-+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭. 当2z =时,224x y +=,则2240y y x y -=+,2242xx x R x y +=∈+, 42z x R z ∴+=∈,即4z z+是实数,充分性成立; 当4z z+是实数时,2240yy x y-=+,又0y ≠,224x y ∴+=,即2z =,必要性成立;4z z ∴+是实数的充要条件是2z =. 42.(1)i z = (2)42,55a b == 【解析】 【分析】(1)由纯虚数的概念求解 (2)根据复数的运算法则化简 (1)因为(2)(3)(2)i z m m m =++++是纯虚数, 所以(2)(3)0,20,m m m ++=⎧⎨+≠⎩解得3m =-.所以i z =-,则i z =. (2)由1m =-,得2i z =+, 代入ii 1z a b z +=++, 得22i (22i)(3i)42i i 3i (3i)(3i)55a b ++-==+=+++-, 即42,55a b ==.43.(1)(),1m ∈-∞- (2)1m = 【解析】 【分析】(1)由题知21010m m ⎧->⎨+<⎩,再解不等式组即可;(2)由题知21010m m ⎧-=⎨+≠⎩,再解方程即可.(1)解:∵z 对应复平面上的点在第四象限,∴21010m m ⎧->⎨+<⎩,解得1m <-.∴(),1m ∈-∞- (2)解:∵z 是纯虚数,∴21010m m ⎧-=⎨+≠⎩,∴1m =44.(1)6 (2)()2,6 【解析】 【分析】(1)由z 为纯虚数,列方程组,求出m ; (2)由题意列不等式组,即可求出m 的范围. (1)因为复数()224124i z m m m =--+-,其中m R ∈,所以22412040m m m ⎧--=⎨-≠⎩,解得:m =6.(2)因为()224124i z m m m =--+-在复平面内对应的点为()22412,4m m m ---, 所以z 在复平面内对应的点关于虚轴对称得到的点()22412,4m m m -++-.由题意得:22412040m m m ⎧-++>⎨->⎩,解得:26m <<.即m 的取值范围为()2,6.45.16或16【解析】 【分析】算出1z ,2z 所表示的向量的夹角的正、余弦即可. 【详解】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=,则22223431cos 223124OAC +-∠==-=-⨯⨯ 所以1cos 4AOB ∠=,所以15sin AOB ∠=所以122115115346z z ⎛⎫== ⎪ ⎪⎝⎭或121156z z =.。

高考数学《复数》真题练习含答案

高考数学《复数》真题练习含答案

高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。

高中数学复数练习题附答案

高中数学复数练习题附答案

高中数学复数练习题附答案一、单选题 1.复数1ii+(其中i 为虚数单位)在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.复数(2i 的虚部为( ) A .2 B.C.2-D .03.已知a R ∈,“实系数一元二次方程2904x ax ++=的两根都是虚数”是“存在复数z 同时满足2z =且1z a +=”的( )条件. A .充分非必要 B .必要非充分 C .充分必要D .既非充分又非必要4.向量1OZ ,2OZ ,分别对应非零复数z 1,z 2,若1OZ ⊥2OZ ,则12Z Z 是( )A .负实数B .纯虚数C .正实数D .虚数a +b i(a ,b ∈R ,a ≠0) 5.设||(12i)34i z -=+,则z 的共轭复数对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( ) A .1 B .2 C .3 D .4 7.复数3i(43i )-在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i -- B .2i -+ C .2i - D .2i + 9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( ) A .2- B .2C .i -D .1-10.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.已知复数324i 1iz +=-,则z =( )ABC.D.12.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( ) A .1B .15C .3D .1613.已知复数z 满足()1i 2i z -=(其中i 为虚数单位),则z =( ) ABC .12D .214.复数z 满足:23i 3=+-z z ,则z =( ) A .5BC .10D15.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +16.已知复数z 满足()21i 24i z -=-,其中i 为虚数单位,则复数z 的虚部为( ) A .2 B .1C .2-D .i17.若5i2iz =+,则||z =( ) A .2B.5C .D .318.设向量OP ,PQ ,OQ 对应的复数分别为z 1,z 2,z 3,那么( )A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=0 19.若复数z 对应的点在直线y =2x 上,且|z |z =( )A .1+2iB .-1-2iC .±1±2iD .1+2i 或-1-2i20.复数z 满足(1i)23i z -=-,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限二、填空题21.若复数()2i m m m -+为纯虚数,则实数m 的值为________.22.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12zz=_______. 23.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________. 24.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.25.已知i34i z =+,求|z |=___________26.复数1i z =+(其中i 为虚数单位)的共轭复数z =______. 27.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 28.设i是虚数单位,且12w =-,则21w w ++=______. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________. 30.已知复数z =,则复数z 的虚部为__________. 31.若a ∈R ,且i2ia ++是纯虚数,则a =____. 32.已知复数z 满足1z =,则22z i +-的最大值为______. 33.复数121i,22i z z =+=-,则12_________.z z -=34.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.35i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________. 36.已知4cosisin1212z ππ⎛⎫=+ ⎪⎝⎭,则1z 的辐角主值为________. 37.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 38.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________.39.若复数22(9)(23)i z m m m =-++-是纯虚数,其中m ∈R ,则|z |=________. 40.若复数(1i)+(2+3i)z =-(i 为虚数单位),则z =__________. 三、解答题41.设复数3cos isin z θθ=+.求函数()tan arg 02y z πθθ⎛⎫=-<< ⎪⎝⎭的最大值以及对应的θ值.42.已知复数13i z m =-,212i()z m R =+∈. (1)若12z z 是实数,求m 的值;(2)若复数12z z 在复平面内对应的点在第三象限,且15z ≥,求实数m 的取值范围.43.数列{}n a 满足1112,1n n n a a a a +-==+,试研究数列{}n a 的周期性. 44.复数cos isin 33ππ+经过n 次乘方后,所得的幂等于它的共轭复数,求n 的值.45.已知复平面内正方形的三个顶点所对应的复数分别是12i +,2i -+,12i --,求第四个顶点所对应的复数.【参考答案】一、单选题 1.D 2.C 3.D 4.B 5.D 6.B 7.B 8.B 9.D 10.D 11.B 12.B 13.A 14.D 15.B 16.B 17.B 18.D 19.D 20.A二、填空题 21.122.12i -##2i+1- 23.24.四 25.15##0.2 26.1i -##i+1- 2728.0 2930.31.12-##0.5- 32.1 3334.[]4,635.1-1- 36.2312π37.()0,3 38.③ 39.12 40三、解答题 41.3πθ=时,函数y【解析】 【分析】由3cos isin z θθ=+求得()1arg 3tg z tg θ=,再由两角差的正切建立关于tg θ的函数,()2arg 3y tg z tg tg θθθ=-=+,再由基本不等式法求解.【详解】 解:解:由02πθ<<得0tg θ>.由3cos isin z θθ=+得sin 1(arg )3cos 3tg z tg θθθ==. 故213(arg )113tg tg y tg z tg θθθθ-=-=+23tg tg θθ=+∵3tg tg θθ+≥∴23tg tg θθ≤+当且仅当302tg tg πθθθ⎛⎫=<< ⎪⎝⎭时,即tg θ=时,上式取等号. 所以当3πθ=时,函数y42.(1)32m =- (2)46m ≤< 【解析】 【分析】(1)由复数的除法法则化简后根据复数的定义计算;(2)由对应点所在象限求得参数范围,再由模求得参数范围,两者结合可得. (1)123i (3i)(12i)6(23)i 12i (12i)(12i)5z m m m m z -----+===++-,它是实数,则(23)0m -+=,32m =-; (2)由(1)12z z 对应点坐标为623(,)55m m -+-,它在第三象限, 则6052305m m -⎧<⎪⎪⎨+⎪-<⎪⎩,解得362m -<<,又15z =,4m ≤-或4m ≥, 综上,46m ≤<. 43.周期为4 【解析】 【分析】根据通项公式,写出特征方程为210x +=,由方程根的情况求出数列{}n a 的周期. 【详解】数列{}n a 的递归函数为()11x f x x -=+,其特征方程为210x +=. 因为Δ=01440-⨯=-<,解得:i,i m k ==-()1i 36arg arg arg i 1i 24a mc a kc ππ--⎛⎫⎛⎫==-== ⎪ ⎪-+⎝⎭⎝⎭所以数列{}n a 是周期4T =的周期函数. 44.()61Z k k -∈. 【解析】 【分析】用共轭复数的概念,以及复数的三角表示即可. 【详解】由题意:cos isin cos isin cos isin 333333nn n ππππππ⎛⎫+=+=- ⎪⎝⎭,可得cos cos ,sin sin 3333n n ππππ==-, ∴()2Z 33n k k πππ=-∈,()61Z n k k =-∈. 45.2i - 【解析】 【分析】根据复数的几何意义以及正方形的性质进行求解即可. 【详解】设复数12i +,2i -+,12i --对应的点分别为,,A B C 则(1,2)A ,(2,1)B -,(1,2)C --,所以()()3,1,1,3AB BC =--=-,所以033·AB BC =-+=,所以90ABC ∠=︒ 设第四个点为(,)D x y ,则按照,,,A B C D 的顺序才能构成正方形, 所以AB DC =,即(3-,1)(1x -=--,2)y --即1321x y --=-⎧⎨--=-⎩,解得21x y =⎧⎨=-⎩,则(2,1)D -,对应的复数为2i -, 故答案为:2i -。

(完整word版)高中数学复数专项练习题(含答案)

(完整word版)高中数学复数专项练习题(含答案)

高考复数练习题一、选择题1.设有下面四个命题:p1:若复数z满足1z∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1·z2∈R,则z1=z2−;p4:若复数z∈R,则z−∈R.其中的真命题为()A. p1,p3B. p1,p4C. p2,p3D. p2,p42.若z(1−i)=|1−i|+i(i为虚数单位),则复数z的虚部为()A. √2−12B. √2−1 C. 1 D. √2+123.i为虚数单位,i607的共轭复数为()A. iB. −iC. 1D. −14.在复平面内,复数11−i的共轭复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.若复数(1−i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A. (−∞,1)B. (−∞,−1)C. (1,+∞)D. (−1,+∞)6.复数z=2−i2+i(i为虚数单位)在复平面内对应的点所在象限为().A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.若复数z满足(3−4i)z=|4+3i|,则z的虚部为()A. 45i B. 45C. 4iD. 48.若z=1+2i,则4iz⋅z−−1=()A. 1B. −1C. iD. −i9.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A. −3B. −2C. 2D. 310.已知i是虚数单位,a,,得“a=b=1”是“”的()A. 充分不必要条件B. 必要不充分条件11.若复数z满足2z−z−=3+12i,其中i为虚数单位,z−是z的共轭复数,则复数|z|=()A. 3√5B. 2√5C. 4D. 512.设z=3−i1+2i,则|z|=()A. 2B. √3C. √2D. 113.复数21−i(i为虚数单位)的共轭复数是()A. 1+iB. 1−iC. −1+iD. −1−i14.设z=11+i+i,则|z|=()A. 12B. √22C. √32D. 2二、填空题(本大题共6小题,共30.0分)15.已知a∈R,i为虚数单位,若a−i2+i为实数,则a的值为.16.i是虚数单位,复数z满足(1+i)z=2,则z的实部为.17.已知复数z=(5+2i)2(i为虚数单位),则z的实部为______.18.若z l=a+2i,z2=3−4i,且z1z2为纯虚数,则实数a的值为______.19.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.20.已知复数z满足z+3z=0,则|z|=.三、解答题(本大题共3小题,共36.0分)21.设z1=2x+1+(x2−3x+2)i,z2=x2−2+(x2+x−6)i(x∈R),其中i是虚数单位.(1)若z1是纯虚数,求实数x的取值范围;(2)若z1>z2,求实数x的取值范围.22.当实数a为何值时z=a2−2a+(a2−3a+2)i.(1)为纯虚数;(2)为实数;23.已知复数z=bi(b∈R),z−2是实数,i是虚数单位.1+i(1)求复数z;(2)若复数(m+z)2所表示的点在第一象限,求实数m的取值范围.答案和解析1.【答案】B本题主要考查命题的真假判断,考查了复数的运算,复数的概念,共轭复数,属于基础题.【解答】解:设z=a+bi(a,b∈R),则1z =1a+bi=a−bia2+b2,若复数z满足1z∈R,则b=0,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=−1∈R,但z∉R,故命题p2为假命题;p3:复数z1=i,z2=2i满足z1·z2=−2∈R,但z1≠z2−,故命题p3为假命题;p4:若复数z∈R,则z−=z∈R,故命题p4为真命题.故选B.2【答案】D本题考查复数代数形式的乘除运算,考查了复数的基本概念及模,属于基础题.把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:∵z(1−i)=|1−i|+i=√2+i,∴z=√2+i1−i=(√2+i)(1+i)(1−i)(1+i)=√2−12+√2+12i,则z的虚部为√2+12,故选D.3.【答案】A本题考查复数的基本运算,复数单位的幂运算以及共轭复数的知识,基本知识的考查.【解答】解:i 607=i 604+3=i 3=−i ,它的共轭复数为:i .故选:A .4.【答案】D本题考查复数的四则运算,复数的代数表示及其几何意义,属于基础题. 可得复数11−i 的共轭复数为12−12i ,即可得解.【解答】解:复数11−i =1+i (1−i)(1+i)=12+12i ,则复数11−i 的共轭复数为12−12i ,在复平面内,复数11−i 的共轭复数对应点的坐标为(12,−12),故在复平面内,复数11−i 的共轭复数对应的点位于在第四象限.故选D .5.【答案】B本题考查了复数的运算法则,几何意义,属于基础题.根据条件可得{a +1<01−a >0,解得a 范围即可. 【解答】解:复数(1−i)(a +i)=a +1+(1−a)i 在复平面内对应的点在第二象限, ∴{a +1<01−a >0,解得a <−1. 则实数a 的取值范围是(−∞,−1).故选B .6.【答案】D先将复数z 进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到代数形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限. 判断复数对应的点所在的位置,只要看出实部和虚部与零的关系即可,把所给的式子展开变为复数的代数形式,得到实部和虚部的取值范围,得到结果.解:∵z=2−i2+i =(2−i)2(2+i)(2−i)=35−45i,∴复数在复平面对应的点的坐标是(35,−45),∴它对应的点在第四象限,故选:D.7.【答案】B本题考查复数的运算,考查复数的概念,比较基础.由题意,z=53−4i =35−45i,可得z的虚部.【解答】解:由题意,z=53−4i =35+45i,∴z的虚部为45.故选B.8.【答案】C本题考查复数的代数形式的混合运算,共轭复数的概念,属于基础题.利用复数的四则运算法则化简求解即可.【解答】解:因为z=1+2i,所以z−=1−2i,则4iz·z−−1=4i(1+2i)(1−2i)−1=4i5−1=i,故选C.9.【答案】A本题考查复数的概念及复数的乘法的运算法则,考查计算能力,属于基础题.利用复数的乘法运算法则,根据复数的概念求解即可.【解答】解:(1+2i)(a+i)=a−2+(2a+1)i的实部与虚部相等,可得:a−2=2a+1,解得a=−3.10.【答案】A本题考查的知识点是充分、必要条件的判断,复数的相等,复数的运算,属于简单题.利用复数的运算性质,分别判断“a =b =1”⇒“(a +bi )2=2i ”与“(a +bi )2=2i ”⇒“a =b =1”的真假,进而根据充分条件和必要条件的判断得到结论.【解答】解:当a =b =1时,(a +bi )2=(1+i )2=2i 成立,故“a =b =1”是“(a +bi )2=2i ”的充分条件;当(a +bi )2=a 2−b 2+2abi =2i 时,a =b =1或a =b =−1,故“a =b =1”不是“(a +bi )2=2i ”的必要条件;综上所述,“a =b =1”是“(a +bi )2=2i ”的充分不必要条件.故选A .11.【答案】D【解析】解:复数z =a +bi ,a 、b ∈R ,∵2z −z −=3+12i ,∴2(a +bi)−(a −bi)=3+12i ,即{2a −a =32b +b =12,解得a =3,b =4, ∴z =3+4i ,∴|z|=√32+42=5.故选:D .根据复数的四则运算法则先求出复数z ,再计算它的模长.本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题. 12.【答案】C本题考查复数模的求法,考查数学转化思想方法,是基础题.直接利用复数商的模等于模的商求解.【解答】解:由z=3−i1+2i,得|z|=|3−i1+2i |=|3−i||1+2i|=√10√5=√2.故选C.13.【答案】B本题考查复数的代数形式的运算,涉及共轭复数,属基础题.化简已知复数z,由共轭复数的定义可得.【解答】解:化简可得z=21−i=2(1+i)(1−i)(1+i)=1+i,∴z的共轭复数z−=1−i,故选:B.14.【答案】B【解答】解:z=11+i+i=1−i(1+i)(1−i)+i=12+12i.故|z|=√14+14=√22.故选B.15.【答案】BD本题主要考查随机事件中的互斥与对立事件的判断,属于基础题.根据互斥与对立事件的概念即可得解.【解答】解:将一个骰子抛掷1次,设事件A表示向上的一面出现奇数,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,由题意,事件A与事件B能同时发生,不是互斥事件,故A错误,B正确;事件B与事件C不能同时发生,也不能同时不发生,是对立事件,故C错误,D正确;16.【答案】−2本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题.运用复数的除法法则,结合共轭复数,化简a−i2+i,再由复数为实数的条件:虚部为0,解方程即可得到所求值.【解答】解:a∈R,i为虚数单位,a−i 2+i =(a−i)(2−i)(2+i)(2−i)=2a−1−(2+a)i4+1=2a−15−2+a5i由a−i2+i为实数,可得−2+a5=0,解得a=−2.故答案为−2.17.【答案】1本题考查复数代数形式的乘除运算,考查了复数的基本概念,是中档题.把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得z=21+i =2(1−i)(1+i)(1−i)=2(1−i)2=1−i,∴z的实部为1.故答案为:1.18.【答案】21【解析】解:z=(5+2i)2=25+20i+4i2=25−4+20i=21+20i,故z的实部为21,故答案为:21根据复数的有关概念,即可得到结论.本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.19.【答案】83利用实部等于0,虚部不为0,求出a 即可.本题考查复数代数形式的乘除运算,复数的基本概念,是基础题.【解答】解:z 1z 2=a+2i 3−4i =(a+2i)(3+4i)(3−4i)(3+4i)=3a−8+(4a+6)i 25,它是纯虚数,所以3a −8=0,且4a +6≠0,解得a =83,故答案为:83. 20.【答案】−1本题考查的知识点是复数的运算及其几何意义,属基础题.可由(1+i)(a +i)=a −1+(a +1)i ,则a +1=0,解得答案.【解答】解:因为(1+i)(a +i)=a −1+(a +1)i ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a +1=0,解得a =−1.故答案为−1.21.【答案】√3本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题.设z =a +bi(a,b ∈R),代入z 2=−3,由复数相等的条件列式求得a ,b 的值得答案.【解答】解:由z +3z =0,得z 2=−3,设z =a +bi(a,b ∈R),由z 2=−3,得(a +bi)2=a 2−b 2+2abi =−3,即{a 2−b 2=−32ab =0,解得:{a =0b =±√3. ∴z =±√3i .则|z|=√3.故答案为:√3.⇒{x =−12(x −1)(x −2)≠0⇒{x =−12x ≠1且x ≠2⇒x =−12所以实数x 的取值范围是{x|x =−12};(2)依题意得{x 2−3x +2=0x 2+x −6=0⇒{(x −1)(x −2)=0(x +3)(x −2)=0⇒{x =1或x =2x =−3或x =2 所以x =2,检验:当x =2时,z 1=2×2+1=5,z 2=22−2=2,满足z 1>z 2符合题意. 所以实数x 的取值范围是{x|x =2}.【解析】本题考查复数的基本概念,是基础题.(1)利用复数的实部为0且虚部不为0,列出方程求解即可.(2)利用复数z 1,z 2是实数,虚部都为0求出x 的值,然后判断即可.23.【答案】解:(1)复数z 是纯虚数,则由{a 2−2a =0a 2−3a +2≠0,得{a =0或a =2a ≠1且a ≠2,即a =0.(2)若复数z 是实数,则a 2−3a +2=0,得a =1或a =2.(3)在复平面内对应的点位于对应的点在第一象限,则{a 2−2a >0a 2−3a +2>0, 即{a >2或a <0a <1或a >2,解得a <0或a >2.【解析】(1)复数为纯虚数,则实部为0,虚部不等于0.(2)复数为实数,则虚部等于0.(3)若复平面内对应的点位于第一象限,则实部大于0,虚部大于0.本题主要考查复数的有关概念,建立条件关系是解决本题的关键,比较基础. 24.【答案】解:(1)因为z =bi(b ∈R),所以z−21+i =bi−21+i =(bi−2)(1−i)(1+i)(1−i)=(b−2)+(b+2)i 2=b−22+b+22i. 又因为z−21+i 是实数,所以b+22=0,所以b =−2,即z =−2i .(2)因为z =−2i ,m ∈R ,所以(m +z)2=(m −2i)2=m 2−4mi +4i 2=(m 2−4)−4mi , 又因为复数(m +z)2所表示的点在第一象限,所以{m 2−4>0,−4m >0,解得m <−2, 即m ∈(−∞,−2).。

复数试题及答案高中数学

复数试题及答案高中数学

复数试题及答案高中数学一、选择题1. 复数z = 3 + 4i的模是()A. 5B. √5C. √(3² + 4²)D. 42. 已知z₁ = 2 - i,z₂ = 1 + 3i,求z₁z₂的值是()A. 5 - iB. 5 + iC. 2 + 5iD. 2 - 5i3. 复数z = 1/(1 - i)的共轭复数是()A. -1 - iB. -1 + iC. 1 - iD. 1 + i二、填空题4. 复数3 - 4i的实部是______,虚部是______。

5. 若复数z满足|z| = 5,且z的实部为3,则z的虚部可以是______。

三、解答题6. 求复数z = 2 + 3i的共轭复数,并计算|z|。

7. 已知复数z₁ = 2 + i,z₂ = 1 - 2i,求z₁ + z₂,z₁ - z₂,z₁z₂。

8. 证明:对于任意复数z,都有|z|² = z * z的共轭复数。

答案一、选择题1. C. √(3² + 4²) = 52. A. 5 - i ((2 - i)(1 + 3i) = 2 + 6i - i - 3 = 5 - i)3. D. 1 + i (1/(1 - i) = (1 + i)/2)二、填空题4. 3,-45. ±4 (因为|z|² = 3² + 虚部²,所以虚部² = 25 - 9 = 16,虚部= ±4)三、解答题6. z的共轭复数是2 - 3i,|z| = √(2² + 3²) = √13。

7. z₁ + z₂ = (2 + i) + (1 - 2i) = 3 - iz₁ - z₂ = (2 + i) - (1 - 2i) = 1 + 3iz₁z₂ = (2 + i)(1 - 2i) = 2 - 4i + i - 2i² = 4 - i8. 证明:设z = a + bi,其中a和b是实数,i是虚数单位。

高中复数经典练习题(含答案)

高中复数经典练习题(含答案)

高中复数经典练习题(含答案)一、单选题1.已知12z i =-,则(i)z z -的模长为( ) A .4 B .10 C .2 D .10 2.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--3.已知复数z 满足()2i 32i +=+z 则||z =( ) A .65 B .13 C .3 D .154.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-15.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1-C .1D .26.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)-B .(0,1)C .(,0)-∞D .(1,)-+∞8.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i --9.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( ) A .3-B .2-C .2D .311.已知复数324i 1iz +=-,则z =( )A B C .D .12.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+D .11i 22-13.已知复数z 满足()21i 68i z -=+,其中i 为虚数单位,则z =( )A .10B .5C D .14.若复数z 满足1i 1i 2z +=+,则z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限15.已知复数z 满足()43i 5i z +=,则z =( )A .1BC .15D .516.若5i2iz =+,则||z =( ) A.2 B C .D .3 17.复数z 在复平面内对应点的坐标为(-2,4),则1z +=( )A .3B .4C D 18.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件19.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件20.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )A B .5C D .2二、填空题21.已知复数z 为纯虚数且满足1-3z =|z |+3i ,则z =________ 22.已知复数z 满足24(1i)(12i)z --=-,则||z =________. 23.已知复数z 满足211iz -=+,则z 的最小值为___________; 24.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________.25.若复数z 满足i 2022i z ⋅=-(i 是虚数单位),则z 的虚部是___________.26.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 27.计算:()()12i 34i 2i-+=+_________.28.化简:i 是虚数单位,复数()2021i 34i z =+=_________. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.若复数2(1i)34iz +=+,则z =__________.33.复数121i,22i z z =+=-,则12_________.z z -=34.复数1077(cosisin )66ππ+表示成代数形式为________. 35.i 是虚数单位,则1i1i+-的值为__________. 36.方程()()2223256i 0x x x x --+-+=的实数解x =________.37.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.38.若z 1=2-i ,z 2=-12+2i ,则z 1,z 2在复平面上所对应的点为Z 1,Z 2,这两点之间的距离为________. 39.已知复数2i4i ia b +=-,,R a b ∈,则a b +=______. 40.已知复数1i z =+,则2z z+=____________ 三、解答题41.实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z :(1)位于第三象限; (2)位于第四象限;(3)位于直线x -y -3=0上.42.(1)若复数22(56)(3)i z m m m m =-++-表示实数,求实数m 的值 ;(2)若复数22(56)(3)i z m m m m =-++-表示纯虚数,求实数m 的值. 43.在复平面内,复数()22234i z a a a a =--+--(其中i 为虚数单位,R a ∈).(1)若复数z 为纯虚数,求a 的值; (2)若复数z >0,求a 的值. 44.根据要求完成下列问题:(1)已知复数1z 在复平面内对应的点在第四象限,1||1z =,且111z z +=,求1z ;(2)已知复数225(15i)3(2i)12im z m =-+-+-为纯虚数,求实数m 的值. 45.判断下列命题的真假. (1)任何复数的模都是非负数; (2)x 轴是复平面的实轴,y 轴是虚轴;(3)若1z =,2z =,3z =42i z =-,则这些复数的对应点共圆; (4)cos isin θθ+,最小值为0.【参考答案】一、单选题 1.B 2.D 3.A 4.C 5.B 6.D 7.A 8.D 9.A10.B11.B12.C13.B14.D15.A16.B17.C18.A19.B20.A二、填空题21.i22.2231##1-24.1 25.2022-2627.43i-##3i4-+ 28.-4+3i##3i-42930.931.i-32.825i 6 25 -3334.-5i##-5i-35.136.237.33839.640.三、解答题41.(1)-3<x <2 (2)2<x <5 (3)x =-2 【解析】 【分析】根据复数的几何意义即可求解. (1)当实数x 满足22602150x x x x ⎧+-<⎨--<⎩,即-3<x <2时,点Z 位于第三象限; (2)当实数x 满足22602150x x x x ⎧+->⎨--<⎩,即2<x <5时,点Z 位于第四象限; (3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上;综上,(1)()3,2x ∈- ,(2)()2,5x ∈ ,(3)2x =- . 42.(1)0m =或3;(2)2m = 【解析】 【分析】(1)由虚部为0直接求解即可;(2)由实部为0,虚部不为0直接求解即可. 【详解】(1)由复数22(56)(3)i z m m m m =-++-表示实数,可得230m m -=,解得0m =或3;(2)由复数22(56)(3)i z m m m m =-++-表示纯虚数,可得2256030m m m m ⎧-+=⎨-≠⎩,解得2m =. 43.(1)2a = (2)4a = 【解析】 【分析】(1)根据纯虚数的知识列式,从而求得a 的值. (2)根据复数能比较大小列式,从而求得a 的值.(1)由于z 为纯虚数,所以2220340a a a a ⎧--=⎨--≠⎩,可得2a =.(2)由于z 与0可以比较大小,所以z 为实数,且0z >,所以2220340a a a a ⎧-->⎨--=⎩,可得4a =.44.(1)112z = (2)2m =- 【解析】 【分析】(1)设1i z a b =+,由题设可得关于,a b 的方程组,求出其解后可得1z . (2)根据复数的四则运算可求2z ,根据其为纯虚数可求实数m 的值. (1)设1i z a b =+(a b R ∈、),由题意得22121a b a ⎧+=⎨=⎩,解得12a =,b =∵复数1z 在复平面内对应的点在第四象限,∴b =112z =; (2)()()()()2222515i 32i 6253i 12im z m m m m m =-+-+=--+---,依题意得260m m --=,解得3m =或2m =-, 又∵22530m m --≠,∴3m ≠且12m ≠-, ∴2m =-. 45.(1)真命题; (2)真命题; (3)真命题; (4)假命题; 【解析】 【分析】由复数模长公式判断(1),由复平面的定义判断(2),根据复数的模长判断(3),由模长计算公式求解cos isin θθ+,判断(4). (1)真命题,若()i ,z a b a b R =+∈,则0z =≥,故该命题为真命题; (2)真命题,由复平面的定义可知,x 轴是实轴,y 轴是虚轴,故该命题为真命题; (3)真命题,因为3124z z z z ===(4)假命题,cos isin 1θθ+==为定值,所以其最大最小值均为1,故该命题为假命题.。

高中数学复数试卷专项训练11套含答案

高中数学复数试卷专项训练11套含答案

一、选择题1、若Z,与Z2互为共轴虚数,则满足条件Z-Z1|2-|Z-Z2|2=Z-Z2|2的复数z在平面上表示的图形是(A)双曲线(B)平行于x轴的直线(C)平面于y轴的直线(D)一个点2、设z是纯虚数,则()(A)z2=z2(B)z12=-z2(C),=-z2(D)z2=-z23、已知全集C={复数},Q={有理数},S={无理数},R={实数},P={虚数},那么&U产为()(A)S(B)C(C)R(D)Q4、已知M={1,2,m2-3m-l+(m2-5m-6)i},N={T,3},MClN={3},则实数m为(A)-l或6(B)-l或4(C)-l(D)4翰林5、若(m2-3m-4)+(m2-5tn-6)i是纯虚数,则实数m的值为()(A)-l(B)4(C)T或4(D)不存在6、设集合C={复数},R={实数},畛{纯虚数},其中C为全集,则()(A)MUR=C(B)RU&=C(c)MnR={o}(D)cn2?=m7、在复平面内,与复数z=-l-i的共轴复数对应的点位于()(A)第一象限(B)第二角限(C)第三象限(D)第四象限8、如果用C、R和I分别表示复数集、实数集和纯虚数集,其中C为全集,则(A)&=crn(B)Rni={o}(c)Rni=f(D)C=RUT19、复数(i-1)3的虚部是(A)-8(B)-8i(C)8(D)010、设z为复数,且(z-l)2=|z-H2那么z是()(A)纯虚数(B)实数(C)虚数(D)l11、在复平面内,复数z满足l<|z|<2,则z所对应的点P的集合构成的图形是(A)圆(B)直线(C)线段(D)圆环12、下列命题中正确的是()(A)每个复数都有唯一的模和唯一的辐角主值(B)复数与复平面内的点是一一对应的(C)共轴虚数的n次方仍是共轴复数(D)任何两个复数都不能比较大小113>设复数z=sin50°-icos50°则arg i等于(A)10°(B)80°(C)260°(D)350°14、已知7r<e<2,复数Z=|cos0|+i IsinO|的辐角主值是()(A)n-0(B)n+。

高中复数经典练习题(含答案)

高中复数经典练习题(含答案)

高中复数经典练习题(含答案)一、单选题1.复数z 满足(1i)23i z -=-,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知复数z 满足()2i 32i +=+z 则||z =( )AB C D 3.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC4.已知a R ∈,“实系数一元二次方程2904x ax ++=的两根都是虚数”是“存在复数z 同时满足2z =且1z a +=”的( )条件. A .充分非必要 B .必要非充分 C .充分必要 D .既非充分又非必要 5.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( )A .sin 30°+icos 30°B .cos 160°+isin 160°C .cos 30°+isin 30°D .sin 160°+icos 160° 6.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.复数z 满足()12i z =,i 为虚数单位,则复数z 的虚部为( )A .BC .D 8.下列命题:①若i 0a b +=,则0a b ;②i 22i 2x y x y +=+⇔==;③若y R ∈,且()()211i 0y y ---=,则1y =.其中正确命题的个数为( )A .0个B .1个C .2个D .3个9.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( )A .32-B .32C .6-D .610.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i --B .2i -+C .2i -D .2i +11.设O 为原点,向量OA ,OB 对应的复数分别为2+3i ,-3-2i ,那么向量BA 对应的复数为( )A .-1+iB .1-iC .-5-5iD .5+5i 12.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )AB .5CD .213.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( )A .22i --B .22i +C .22i -+D .22i +或22i -+ 14.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( ) A .i B .i - C .1 D .1- 15.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( )A .3-B .2-C .2D .316.已知复数z 满足()21i 24i z -=-,其中i 为虚数单位,则复数z 的虚部为( ) A .2 B .1C .2-D .i17.若5i2iz =+,则||z =( )A.2 B C .D .318.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 19.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .920.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限二、填空题21.已知复数z 满足294i z z +=+,则z =___________. 22.已知复数z 满足24(1i)(12i)z --=-,则||z =________.23.设复数1z ,2z 是共轭复数,且12229i,-=-+z z ,则1z =___________. 24.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.25.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________. 26.复数2ii 1+-的共轭复数是_______. 27.已知复数3i (2i)z =⋅-,则z 的虚部为__________.28.若复数()2(2)9i()z m m m R =++-∈是正实数,则实数m 的值为________.29.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12zz=_______. 30.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________.31.设i 为虚数单位,则复数2(1i)1i+-=____.32.设z C ∈,且1i 0z z +--=,则i z +的最小值为________. 33.已知复数z =(,a b ∈R 且0,0a b ≠≠)的模等于1,则12b a b++的最小值为______.34.已知复数z 满足()1i 42i -=+z ,则z =_________.35.设复数()21(1)i m m -++为纯虚数,则实数m 的值为________.36.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 37.i 是虚数单位,则1i1i+-的值为__________. 38.若z 1=2-i ,z 2=-12+2i ,则z 1,z 2在复平面上所对应的点为Z 1,Z 2,这两点之间的距离为________. 39.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________. 40.若复数2iiz -=-,则z =_______. 三、解答题41.定义运算ab ad bc c d=-,如果()()32i 3i 1x y x y x y++++=-,求实数x ,y 的值.42.已知复数()2i z a =+,i 43w =-其中a 是实数,(1)若在复平面内表示复数z 的点位于第一象限,求a 的范围; (2)若zw是纯虚数,a 是正实数, ①求a ,②求232023z z z z w w w w ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43.已知向量OZ 与实轴正向的夹角为45,向量OZ 对应的复数z 的模为1,求z .44.已知复数()()2224i z m m m =--+-(其中,m R ∈,i 为虚数单位)在①0z >;②z 为纯虚数;③z 的实部与虚部相等.这三个条件中任选一个,补充在下面问题中,并解答问题. (1)若______,求实数m 的值;(2)若复数2(1i)1z m -++的模为5,求实数m 的值.45.设222215(6)i 4a a z a a a +-=--+-(R a ∈),试判断复数z 能否为纯虚数?并说明理由.【参考答案】一、单选题 1.A 2.A 3.D 4.D 5.B 6.C 7.D 8.B 9.A 10.B 11.D12.A13.D14.D15.B16.B17.B18.A19.C20.A二、填空题21.522.2232425.126.13i-+22 27.-228.329.12i-##2i+1-3031.1i-+32. 33.734.13i+35.10,3 36.() 37.13839.2i-+ 40.12i-三、解答题41.1x =-,2y = 【解析】 【分析】根据题意得到()()()3i 32i x y x x y y +++=++,列出方程组求解即可. 【详解】 由定义运算ab ad bc c d=-,得32i 32i 1x y x y y y+=++-,所以()()()3i 32i x y x x y y +++=++ 因为x ,y 为实数,所以有323x y x yx y+=+⎧⎨+=⎩,解得1x =-,2y =.42.(1)1a > (2)①2; ②1-. 【解析】 【分析】(1)化简复数212i z a a =-+,根据复数z 在第一象限,列出不等式组,即可求解;(2)化简复数()()22464383i25a a a a zω--++-=,由zw是纯虚数,求得2a =,化简得到i zω=,结合虚数单位的性质,即可求解.(1)解:由题意,复数()22i 12i z a a a =+=-+,因为复数z 在第一象限,可得21020a a ⎧->⎨>⎩,解得1a >.(2)解:由题意,复数()()()()()()()()2222222i i 43i i i 43i 43i43i 43i 43i a a a a zω++++++===--+- ()()()2222223464383i 48i 4i 3i 6i 3i 16925a a a a a a a a --++-+++++==--,因为zw 是纯虚数,则2246403830a a a a ⎧--=⎨+-≠⎩,解得2a =或12a =-,又因为a 是正实数,则2a =,当2a =时,复数224648i 3i 3i 16i 12i 3ii 2525za a a a ω--++-+-===, 因为41i i n +=,42i 1n +=-,43i i n +=-,4i 1n =,n N ∈,所2320232334202i i i i i zz z z ωωωω⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=++++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()4678202122352023022i i i i i i i i i i i =++++++++⋅⋅⋅+++()00i i 11=+++--=-.43.z =或z = 【解析】 【分析】由题,OZ 与实轴正向的夹角为45,故OZ 可能在第一象限或第四象限,设出Z 的坐标,结合OZ 对应的复数z 的模为1列式,即可求解. 【详解】由题,向量OZ 与实轴正向的夹角为45,故OZ 在第一象限或第四象限,设点Z 的坐标为(,)a b ,则0a >,b a =,又1z =,故可解得a b ==b =,所以z =+或z =. 44.(1)选①, 2m =-; 选②, 1m =-; 选③, 2m =; (2)2m =或4m =-. 【解析】 【分析】(1)选①根据题意知复数为正实数,由实部大于0,虚部等于0列出式子求解,选②根据纯虚数知实部为0,虚部不为0求解,选③由实部虚部相等列方程求解;(2)化简复数,根据复数的模列出方程求解. (1)若选①,因为0z >,则222040m m m ⎧-->⎨-=⎩,解得2m =-;若选②,因为z 为纯虚数,则222040m m m ⎧--=⎨-≠⎩,解得1m =-;若选③,因为z 的实部与虚部相等,则2224m m m --=-,解得2m =. (2)因为()()22222(1i)124i i+1=(1)4i z m m m m m m m -++=--+------,5=, 解得2m =或4m =-.45.不存在a 使复数z 为纯虚数,理由见解析 【解析】 【分析】先假设复数z能为纯虚数,则可得260a a--=且222154a aa+-≠-,然后求解,若a存在,则复数z能为纯虚数,否则不能【详解】假设复数z能为纯虚数,则222260215440a aa aaa⎧--=⎪+-⎪≠⎨-⎪-≠⎪⎩,所以325,3,2,2a aa a a a==-⎧⎨≠-≠≠≠-⎩或且且且,解得a∈∅,所以不存在a使复数z为纯虚数.。

高中数学复数练习题含答案

高中数学复数练习题含答案

高中数学复数练习题含答案一、单选题1.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( ) A .i B .i - C .1 D .1- 2.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( ) A .一 B .二 C .三 D .四 3.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--4.已知复数z 满足()2i 32i +=+z 则||z =( ) A .655B .13C .3D .155.复数3i(43i )-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i --7.已知复数z 满足(1i)32i +=+z ,则z 的虚部为( ) A .12 B .1i 2-C .12-D .1i 28.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( ) A .-2 B .-1 C .1 D .29.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( ) A .32-B .32C .6-D .610.复数2i z =-(i 为虚数单位)的虚部为( ) A .2B .1C .iD .1-11.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i 12.复数z 满足(2)i z z =+,则z =( ) A .1i + B .1i -C .1i -+D .1i --13.若复数z 满足()12i 10z -=,则( )A .24i z =+B .2z +是纯虚数C .复数z 在复平面内对应的点在第三象限D .若复数z 在复平面内对应的点在角α的终边上,则sin α=14.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+D .11i 22-15.设i 12z =+,则在复平面内z 的共轭复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限16.若复数z 满足1i 1i 2z +=+,则z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限17.已知复数z 满足()43i 5i z +=,则z =( )A .1B C .15D .518.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件19.复数z 在复平面内对应点的坐标为(-2,4),则1z +=( )A .3B .4CD 20.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( )A .22i --B .22i +C .22i -+D .22i +或22i -+二、填空题21.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________.22.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.23.已知复数z 满足211iz -=+,则z 的最小值为___________; 24.若复数z 满足i 2022i z ⋅=-(i 是虚数单位),则z 的虚部是___________. 25.已知i34i z =+,求|z |=___________26.已知复数ππsin i cos 33z =+,则z =________. 27.复数2ii 1+-的共轭复数是_______. 28.复数1i z =+(其中i 为虚数单位)的共轭复数z =______.29.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.30.若复数()2(2)9i()z m m m R =++-∈是正实数,则实数m 的值为________.31.若z 1=2-i ,z 2=-12+2i ,则z 1,z 2在复平面上所对应的点为Z 1,Z 2,这两点之间的距离为________.32.已知复数1i z =+,则2z z+=____________33.若复数()2i m m m -+为纯虚数,则实数m 的值为________.34.已知复数z 满足1z =,则22z i +-的最大值为______.35.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.36.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值为________.37.若2z =,arg 3z π=,则复数z =________.38.复数1077(cosisin )66ππ+表示成代数形式为________. 39i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.40.已知复数3i (2i)z =⋅-,则z 的虚部为__________. 三、解答题41.已知z 是虚数,求证:4z z+是实数的充要条件是2z =.42.实数k 为何值时,复数()()223456i z k k k k =--+--是:(1)实数? (2)虚数? (3)纯虚数?43.在复数集C 内方程610x -=有六个根分别为123456ωωωωωω,,,,, (1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A ,B ,C ,D ,E ,F ;求多边形ABCDEF 的面积 .44.(1)已知设方程α,β是方程220x x a ++=的两根,其中a R ∈,则||||αβ+的值;(2)关于x 的方程243i 0x ax +++=有实根,其中a C ∈,求||a 的最小值,并求取得最小值时方程的根.45.下列复数是不是三角形式?如果不是,把它们表示成三角形式. (1)1ππcos isin 244⎛⎫- ⎪⎝⎭; (2)1ππcos isin 233⎛⎫-+ ⎪⎝⎭; (3)13π3πsin isin 244⎛⎫+ ⎪⎝⎭; (4)7π7πcos isin 55+.【参考答案】一、单选题 1.D 2.B 3.D 4.A 5.B 6.D 7.A 8.A 9.A 10.D 11.D 12.C14.C 15.D 16.D 17.A 18.A 19.C 20.D 二、填空题21 22231##1-24.2022- 25.15##0.2 26.1 27.13i 22-+ 28.1i -##i+1-29.()34-,30.331 32.33.1 34.1 35.[]4,6 36.8337.11+ 38.-5i##-5i -39.1-1-40.-2 三、解答题41.证明见解析 【解析】 【分析】设()i ,,0z x y x y R y =+∈≠,由复数运算化简得2222444i xyz x y z x y x y⎛⎫⎛⎫+=++- ⎪ ⎪++⎝⎭⎝⎭;当2z =时,可得42z x R z +=∈,证得充分性;当4z z+是实数时,可得224x y +=,必要性得证;由此可得结论.【详解】设()i ,,0z x y x y R y =+∈≠, 则2222224444i 44i i i i x y x y z x y x y x y zx y x y x y x y ⎛⎫⎛⎫-+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭. 当2z =时,224x y +=,则2240y y x y -=+,2242xx x R x y +=∈+, 42z x R z ∴+=∈,即4z z +是实数,充分性成立; 当4z z+是实数时,2240yy x y-=+,又0y ≠,224x y ∴+=,即2z =,必要性成立;4z z∴+是实数的充要条件是2z =. 42.(1)6k =或1k =-; (2)6k ≠且1k ≠-; (3)4k =; (4)1k =-. 【解析】 【分析】(1)解方程2560k k --=即得解; (2)解不等式2560k k --≠即得解;(3)解不等式2560k k --≠,且2340k k --=即得解; (4)解方程2560k k --=,且2340k k --=即得解. (1)解:当2560k k --=,即6k =或1k =-时,z 是实数; (2)解:当2560k k --≠,即6k ≠且1k ≠-时,z 是虚数; (3)解:当2560k k --≠,且2340k k --=,z 是纯虚数,即4k =时为纯虚数;(4)解:当2560k k --=,且2340k k --=,即1k =-时,z 是0.43.(1)12345611111,1,2222ωωωωωω==-=-=-=+=-【解析】 【分析】(1)原式可因式分解为22(1)(1)(1)(1)0x x x x x x -+++-+=,令21=0x x ++,设i,,x a b a b R =+∈可求解出21=0x x ++的两个虚根,同理可求解21=0x x -+的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可 (1)由题意,610x -=22(1)(1)(1)(1)0x x x x x x ∴-+++-+=当21=0x x ++时,设i,,x a b a b R =+∈故222(i)i 1=+1(2)i=0a b a b a b a ab b ++++-+++, 所以22+1=2=0a b a ab b -++解得:1,2a b =-=12x =- 当21=0x x -+时,设i,,x c d c d R =+∈ 故222(i)i 1=1(2)i=0c d c d c d c cd d +--+--++- 所以221=2=0c d c cd d --+-解得:1,2c d ==,即12x =±故:12345611111,1,2222ωωωωωω==-=-+=--=+=- (2)六个根对应的点分别为A ,B ,C ,D ,E ,F ,其中1111(1,0),(1,0),((,((,2222A B C D E F --- 在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1 故233361S ==44.(1)()()()2102021a a a a a a αβ⎧-<⎪+=≤≤⎨⎪>⎩;(2)min ||32a =53i)+或53i)+.【解析】 【分析】(1)求出判别式4(1)a ∆=-,对a 分类讨论:当01a 时,当0a <时,当1a >时三种情况,分别求出||||αβ+;(2)设0x 为方程的实根,代入原方程,表示出a ,利用基本不等式求出||a 的最小值,并求取得最小值时方程的根. 【详解】(1)判别式444(1)a a ∆=-=-, ①若0∆,即1a ,则α,β是实根,则2αβ+=-,a αβ=,则2222(||||)2||()22||422||a a αβαβαβαβαβαβ+=++=+-+=-+, 故||||422||a a αβ+-+,当01a 时,||||2αβ+=, 当0a <时,||||1a αβ+=-②若∆<0,即1a >,则α,β是虚根,11i a α=--,11i a β=--,故||||2112a aαβ+=+-=综上:()()()0201a a a a αβ⎧<⎪+=≤≤⎨⎪>⎩.(2)设0x 为方程的实根,则20043i 0x ax +++=, 所以00043i a x x x =---, 则20020004325||2()2()2818a x x xx x =++=++, 当202025x x =即0x =||min a =当0x =3i)+,当0x =3i)+. 45.(1)不是三角形式,化为三角形式为17π7πcos isin244⎛⎫+ ⎪⎝⎭; (2)不是三角形式,化为三角形式为14π4πcos isin233⎛⎫+ ⎪⎝⎭; (3)不是三角形式,化为三角形式为1ππcos isin 244⎛⎫+ ⎪⎝⎭;(4)是三角形式. 【解析】 【分析】直接利用复数的三角形式求解即可. (1)1ππcos isin 244⎛⎫- ⎪⎝⎭不是三角形式, 1ππcos isin 244⎛⎫- ⎪⎝⎭12⎫=⎪⎪⎝⎭=,其中12r ==,故三角形式为12⎫⎪⎪⎝⎭17π7πcos isin 244⎛⎫=+ ⎪⎝⎭; (2)1ππcos isin 233⎛⎫-+ ⎪⎝⎭不是三角形式, 1ππcos isin 233⎛⎫-+ ⎪⎝⎭1122⎛⎫=- ⎪ ⎪⎝⎭14=-,其中12r ==,故三角形式为1122⎛⎫- ⎪ ⎪⎝⎭14π4πcos isin 233⎛⎫=+ ⎪⎝⎭; (3)13π3πsinisin 244⎛⎫+ ⎪⎝⎭不是三角形式,13π3πsin isin 244⎛⎫+ ⎪⎝⎭12⎫=⎪⎪⎝⎭,12r ==,故三角形式为12⎫⎪⎪⎝⎭1ππcos isin 244⎛⎫=+ ⎪⎝⎭; (4)7π7πcosisin 55+是三角形式.。

高中复数测试题及答案

高中复数测试题及答案

高中复数测试题及答案一、选择题(每题2分,共20分)1. 复数 \( z = 3 + 4i \) 的共轭复数是:A. \( 3 - 4i \)B. \( 4 + 3i \)C. \( -3 + 4i \)D. \( -3 - 4i \)2. 如果 \( z_1 = 2 - i \) 和 \( z_2 = 3 + 2i \),那么 \( z_1 \cdot z_2 \) 等于:A. 5 - 4iB. 8 - 5iC. 5 + 4iD. 8 + 5i3. 复数 \( z = a + bi \) 在复平面上的对应点位于:A. 右半平面B. 左半平面C. 上半平面D. 下半平面4. 复数 \( z = 1 - i \) 的模长是:A. \( \sqrt{2} \)B. 2C. 1D. \( \sqrt{1} \)5. 如果 \( z_1 = 2 - i \) 和 \( z_2 = 1 + 3i \),那么 \( z_1+ z_2 \) 等于:A. 3 + 2iB. 3 - 2iC. 2 + 2iD. 2 - 2i6. 复数 \( z = x + yi \) 的虚部是:A. \( x \)B. \( y \)C. \( x - y \)D. \( x + y \)7. 复数 \( z = 3 + 4i \) 的实部是:A. 3B. 4C. \( 3i \)D. \( 4i \)8. 复数 \( z = -2 - 2i \) 的共轭复数与 \( z \) 的模长之积等于:A. 8B. 4C. 16D. 329. 复数 \( z = 1 + i \) 的模长是:A. \( \sqrt{2} \)B. 2C. 1D. \( \sqrt{1} \)10. 复数 \( z = 2 - 3i \) 的共轭复数与 \( z \) 的模长之积等于:A. 13B. 10C. 5D. 13二、填空题(每题2分,共10分)11. 复数 \( z = 5 + 12i \) 的模长是 \( \sqrt{5^2 + 12^2} = \) __________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《复数》练习题
一.基本知识:复数的基本概念
(1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部
实数:当b = 0时复数a + b i 为实数
虚数:当0≠b 时的复数a + b i 为虚数;
纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数
(2)两个复数相等的定义:
00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且
(3)共轭复数:z a bi =+的共轭记作z a bi =-;
(4)复平面: z a bi =+,对应点坐标为(),p a b ;(象限的复习)
(5)复数的模:对于复数z a bi =+,把z =z 的模;
二.复数的基本运算:设111z a b i =+,222z a b i =+
(1) 加法:()()121212z z a a b b i +=+++;
(2) 减法:()()121212z z a a b b i -=-+-;
(3) 乘法:()()1212122112z z a a b b a b a b i ⋅=-++ 特别22z z a b ⋅=+。

(4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-⋅⋅⋅⋅⋅⋅
三.复数的化简
c di z a bi
+=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22
ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+ 四.例题分析
【例1】已知()14z a b i =++-,求
(1)当,a b 为何值时z 为实数(2)当,a b 为何值时z 为纯虚数
(3)当,a b 为何值时z 为虚数(4)当,a b 满足什么条件时z 对应的点在复平面内的第二象限。

【变式1】若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为
A .1-
B .0
C 1
D .1-或1
【例2】已知134z i =+;()()234z a b i =-+-,求当,a b 为何值时12=z z
【例3】已知1z i =-,求z ,z z ⋅;
【变式1】复数z 满足21i z i
-=-,则求z 的共轭z
【变式2】已知复数
z =
z z •= A. 14 B.12
C.1
D.2 【例4】已知12z i =-,232z i =-+
(1)求12z z +的值;(2)求12z z ⋅的值;(3)求12z z ⋅.
【变式1】已知复数z 满足()21z i i -=+,求z 的模.
【变式2】若复数()21ai +是纯虚数,求复数1ai +的模.
【例5】若复数()312a i z a R i
+=
∈-(i 为虚数单位), (1) 若z 为实数,求a 的值
(2) 当z 为纯虚,求a 的值.
【变式1】设a 是实数,且112
a i i -++是实数,求a 的值.. 【变式2】若()3,1y i z x y R xi
+=∈+是实数,则实数xy 的值是 . 【变式3】i 是虚数单位,41i ()1-i +等于 ( ) A .i
B .-i
C .1
D .-1 【变式4】已知1i Z +=2+i,则复数z=()
(A )-1+3i (B)1-3i (C)3+i (D)3-i
【变式5】i 是虚数单位,若
17(,)2i a bi a b R i
+=+∈-,则乘积ab 的值是(A )-15 (B )-3 (C )3 (D )15【例6】复数73i z i
-=+= ( ) (A )2i + (B)2i - (C)2i -+ (D)2i -- 【变式1】已知i 是虚数单位,3
2i 1i
=- ( ) A1i + B1i -+ C1i - D.1i --
【变式2】.已知i 是虚数单位,复数131i i
--= ( ) A 2i + B 2i - C 12i -+ D 12i --
【变式3】已知i 是虚数单位,复数1312i i
-+=+( ) (A)1+i (B)5+5i (C)-5-5i (D)-1-i
【变式4】.已知i 是虚数单位,则()=-+1
13i i i ( ) (A)1- (B)1 (C)i - (D)i
练习题
1.设复数),(R b a bi a z ∈+=,则z 为纯虚数的必要不充分条件是____________。

2.已知复数)()65(1
67222R a i a a a a a z ∈--+-+-=,那么当a=_______时,z 是实数;
当a ∈__________________时,z 是虚数;当a=___________时,z 是纯虚数。

3.已知0)2(622=-++-+i y x y x ,则实数.___________,__________==y x
4.若复数a 满足i ai a 4421+-=+-,则复数a=___________。

5.已知R a ∈,则复数i a a a a z )106()22(22--++-=必位于复平面的第_____象限。

6.复数2i i z +=在复平面对应的点在第_______象限。

7.设i 是虚数单位,计算=+++432i i i i ________.
8.复数i
i z 213--=的共轭复数是__________。

9. 如果复数2()(1)m i mi ++是实数,则实数m =____________.
10. 设,x y 为实数,且511213x y i i i
+=---,则x y += 。

11.已知复数i z +=1,求实数b a 、使2)2(2z a z b az +=+
答案:1. a=0 2. ∅∈+∞---∞∈=a a a ),6()6,1()1,1()1,(6 3. ⎪⎩⎪⎨⎧--=-=⎪⎩⎪⎨⎧+-=+=2
1212121y x y x 或 4.1+2i 5. 第四 6. 第二 7.0 8. i -1 9.1+m 3=0,m=-1 10. x +y =4。

11. 【答案】⎩⎨⎧=-=⎩⎨⎧-=-=2412b a b a 或。

相关文档
最新文档