上海市高二下学期数学期末统考试卷
上海市高二数学下学期期末试卷(共3套,含参考答案)
上海市闵行区高二(下)期末数学试卷一、填空题1.在空间中,若直线a与b无公共点,则直线a、b的位置关系是______.2.若点H(﹣2,4)在抛物线y2=2p x的准线上,则实数p的值为______.3.若椭圆上一点P到其焦点F1的距离为6,则P到另一焦点F2的距离为______.4.若经过圆柱的轴的截面面积为2,则圆柱的侧面积为______.5.经过点(﹣2,2)且与双曲线﹣y2=1有公共渐近线的双曲线方程为______.6.已知实数x、y满足约束条件则z=2x+4y的最大值为______.7.一个圆锥的侧面积展开图是一个半径为2的半圆,则此圆锥的体积为______.8.在平面直角坐标系x0y中,直线(t为参数)与圆(θ为参数)相切,切点在第一象限,则实数a的值为______.9.在北纬45°的线圈上有A、B两地,它们的经度差为90°,若地球半径为R,则A、B两地的球面距离为______.10.设α与β是关于x的方程x2+2x+m=0的两个虚数根,若α、β、0在复平面上对应的点构成直角三角形,那么实数m=______.11.如图,正三棱柱ABC﹣A1B1C1的所有棱的长度都为4,则异面直线AB1与BC1所成的角是______(结果用反三角函数值表示).12.已知复数z满足|z|=3,则|z+4|+|z﹣4|的取值范围是______.13.已知x、y、u、v∈R,且x+3y﹣2=0,u+3v+8=0,T=x2+y2+u2+v2﹣2ux﹣2vy,则T的最小值为______.14.已知曲线C的方程为F(x,y)=0,集合T={(x,y)|F(x,y)=0},若对于任意的(x1,y1)∈T,都存在(x2,y2)∈T,使得x1x2+y1y2=0成立,则称曲线C为曲线,下列方程所表示的曲线中,是曲线的有______(写出所有曲线的序号)①2x2+y2=1;②x2﹣y2=1;③y2=2x;④|x|﹣|y|=1;⑤(2x﹣y+1)(|x﹣1|+|y﹣2|)=0.;二、选择题15.“直线l垂直于平面α内的无数条直线”是“l⊥α”的一个()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.曲线Γ:2x2﹣3xy+2y2=1()A.关于x轴对称B.关于原点对称,但不关于直线y=x对称C.关于y轴对称D.关于直线y=x对称,也关于直线y=﹣x对称17.下列命题中,正确的命题是()A.若z1、z2∈C,z1﹣z2>0,则z1>z2B.若z∈R,则z•=|z|2不成立C.z1、z2∈C,z1•z2=0,则z1=0或z2=0D.z1、z2∈C,z12+z22=0,则z1=0且z2=018.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题:①点P在直线BC1上运动,三棱锥A﹣D1PC的体积不变②点P在直线BC1上运动,直线AP与平面ACD1所成角的大小不变③点P在直线BC1上运动,二面角P﹣AD1﹣C的大小不变④点P是平面ABCD上到点D和C1距离相等的动点,则P的轨迹是过点B的直线.其中的真命题是()A.①③B.①③④C.①②④D.③④三、解答题19.如图,设计一个正四棱锥形冷水塔,高是3米,底面的边长是8米:(1)求这个正四棱锥形冷水塔的容积(冷水塔的厚度忽略不计)(2)制造这个冷水塔的侧面需要多少平方米的钢板?;20.设直线 y= x +2 与双曲线﹣ =1 交于 A 、B 两点,O 为坐标原点,求:(1)以线段 AB 为直径的圆的标准方程;(2)若 OA 、OB 所在直线的斜率分别是 k OA 、k OB ,求 k OA •k OB 的值.21.已知复数 α 满足(2﹣i )α=3﹣4i ,β=m ﹣i ,m ∈R . (1)若|α+β|<2| |,求实数 m 的取值范围;(2)若 α+β 是关于 x 的方程 x 2﹣nx +13=0(n ∈R )的一个根,求实数 m 与 n 的值.22.如图,在四棱锥 P ﹣ABCD 中,底面是边长为 2 的正方形,PA ⊥底面 ABCD ,E 为 BC 的中点,PC 与平面 PAD 所成的角为 arctan.(1)求证:CD ⊥PD ;(2)求异面直线 AE 与 PD 所成的角的大小(结果用反三角函数表示)(3)若直线 PE 、PB 与平面 PCD 所成角分别为 α、β,求的值.23.在平面直角坐标系 xOy 中,动点 P 到定点 F (0,﹣1)的距离与 P 到定直线 y=﹣2 的距离的比为 ,动点 P 的轨迹记为 C . (1)求轨迹 C 的方程;(2)若点 M 在轨迹 C 上运动,点 N 在圆 E :x 2+(y ﹣0.5)2=r 2(r >0)上运动,且总有|MN |≥0.5, 求 r 的取值范围;(3)过点 Q (﹣ ,0)的动直线 l 交轨迹 C 于 A 、B 两点,试问:在此坐标平面上是否存在一个定点 T ,使得无论 l 如何转动,以 AB 为直径的圆恒过点 T ?若存在,求出点 T 的坐标.若不存在,请说明理由.上海市闵行区高二(下)期末数学试卷参考答案与试题解析一、填空题1.在空间中,若直线a与b无公共点,则直线a、b的位置关系是平行或异面.【考点】空间中直线与直线之间的位置关系.【分析】根据直线a,b是否共面得出结论.【解答】解;当a,b在同一个平面上时,a,b平行;当a,b不在同一个平面上时,a,b异面.故答案为:平行或异面.2.若点H(﹣2,4)在抛物线y2=2p x的准线上,则实数p的值为4.【考点】抛物线的简单性质.【分析】求出抛物线的准线方程,由题意可得﹣=﹣2,即可解得p的值.【解答】解:抛物线y2=2p x的准线方程为x=﹣,由题意可得﹣=﹣2,解得p=4.故答案为:4.3.若椭圆上一点P到其焦点F1的距离为6,则P到另一焦点F2的距离为14.【考点】椭圆的简单性质.【分析】根据椭圆的定义可得|PF1|+|PF2|=2a=20,结合P到其焦点F1的距离为6,可求P到另一焦点F2的距离.【解答】解:根据椭圆的定义可得|PF1|+|PF2|=2a=20∵P到其焦点F1的距离为6,∴|PF2|=20﹣6=14即P到另一焦点F2的距离为14故答案为:14.4.若经过圆柱的轴的截面面积为2,则圆柱的侧面积为2π.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据轴截面积得出圆柱底面半径与高的关系,代入侧面积公式即可得出答案.【解答】解:设圆柱的底面半径为r,高为h,则圆柱的轴截面面积为2rh=2,∴rh=1.∴圆柱的侧面积S=2πrh=2π.故答案为:2π.5.经过点(﹣2,2)且与双曲线﹣y2=1有公共渐近线的双曲线方程为.【考点】双曲线的简单性质.【分析】根据渐近线相同,利用待定系数法设出双曲线方程进行求解即可.【解答】解:与双曲线﹣y2=1有公共渐近线的双曲线的方程可设为线﹣y2=λ,(λ≠0),∵双曲线过点(﹣2,2),∴λ=,即﹣y2=﹣2,即,故答案为:6.已知实数x、y满足约束条件则z=2x+4y的最大值为8.【考点】简单线性规划.【分析】①画可行域②z为目标函数纵截距四倍③画直线0=2x+4y,平移直线过(0,2)时z有最大值【解答】解:画可行域如图,z为目标函数纵截距四倍,画直线0=2x+4y,平移直线过(0,2)点时z有最大值8故答案为87.一个圆锥的侧面积展开图是一个半径为2的半圆,则此圆锥的体积为.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据圆锥的侧面展开图的弧长为圆锥底面周长得出圆锥底面半径,从而得出圆锥的高,代入体积公式计算即可.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h==.=.∴圆锥的体积V=故答案为:.8.在平面直角坐标系x0y中,直线(t为参数)与圆(θ为参数)相切,切点在第一象限,则实数a的值为+1.【考点】参数方程化成普通方程.【分析】把直线和圆的参数方程都化为普通方程,由直线与圆相切d=r,切点在第一象限,求出a的值.【解答】解:圆的参数方程(θ为参数)化为普通方程是(x﹣1)2+y2=1,直线的参数方程(t为参数)化为普通方程是x+y=a;直线与圆相切,则圆心C(1,0)到直线的距离是d=r,即=1;解得|1﹣a|=,∴a=+1,或a=1﹣;∵切点在第一象限,∴a=+1;故答案为:+1.9.在北纬45°的线圈上有A、B两地,它们的经度差为90°,若地球半径为R,则A、B两地的球面距离为R.【考点】球面距离及相关计算.【分析】求出球心角,然后A、B两点的距离,即可求出两点间的球面距离.【解答】解:地球的半径为R,在北纬45°,而AB=R,所以A、B的球心角为:,所以两点间的球面距离是:;故答案为:.10.设α与β是关于x的方程x2+2x+m=0的两个虚数根,若α、β、0在复平面上对应的点构成直角三角形,那么实数m=2.【考点】复数代数形式的混合运算;复数的代数表示法及其几何意义.【分析】由题意,可设α=a+bi,则由实系数一元二次方程虚根成对定理可得β=a﹣bi,且m与n为实数,b ≠0.由根与系数的关系得到a,b的关系,上α,β,0对应点构成直角三角形,求得到实数m的值【解答】解:设α=a+bi,则由实系数一元二次方程虚根成对定理可得β=a﹣bi,且m与n为实数,n≠0.由根与系数的关系可得α+β=2a=﹣2,α•β=a2+b2=m.∴m>0.∴a=﹣1,m=b2+1,∵复平面上α,β,0对应点构成直角三角形,∴α,β在复平面对应的点分别为A,B,则OA⊥OB,所以b2=1,所以m=1+1=2;,故答案为:211.如图,正三棱柱ABC﹣A1B1C1的所有棱的长度都为4,则异面直线AB1与BC1所成的角是acrcos (结果用反三角函数值表示).【考点】异面直线及其所成的角.【分析】利用两个向量数量积的定义求得,由=()•()求得,求得cos<>=,故异面直线AB1与BC1所成的角是arccos.【解答】解:=4×4cos<>=32cos<>.又=()•()=+++=4×4cos120°+0+0+4×4=8.故有32cos<>=8,∴cos<>=,∴<>=arccos,故异面直线AB1与BC1所成的角是arccos,故答案为arccos.12.已知复数z满足|z|=3,则|z+4|+|z﹣4|的取值范围是[8,10].【考点】复数的代数表示法及其几何意义.【分析】复数z满足|z|=3,表示以原点为圆心,以3为半径的圆,则|z+4|+|z﹣4|的表示圆上的点到(﹣4,0)和(4,0)的距离,结合图形可求.【解答】解:复数z满足|z|=3,表示以原点为圆心,以3为半径的圆,则|z+4|+|z﹣4|的表示圆上的点到(﹣4,0)和(4,0)的距离,由图象可知,当点在E,G处最小,最小为:4+4=8,当点在D,F处最大,最大为2=10,则|z+4|+|z﹣4|的取值范围是[8,10],故答案为[8,10]13.已知x、y、u、v∈R,且x+3y﹣2=0,u+3v+8=0,T=x2+y2+u2+v2﹣2ux﹣2vy,则T的最小值为10.【考点】二维形式的柯西不等式.【分析】x+3y﹣2=0,u+3v+8=0,相减,整理可得(x﹣u)+3(y﹣v)=10.设x﹣u=m,y﹣v=n,∴m+3n=10.T=x2+y2+u2+v2﹣2ux﹣2vy=(x﹣u)2+(y﹣v)2=m2+n2,利用柯西不等式,即可得出结论.【解答】解:x+3y﹣2=0,u+3v+8=0,相减,整理可得(x﹣u)+3(y﹣v)=10.设x﹣u=m,y﹣v=n,∴m+3n=10.T=x2+y2+u2+v2﹣2ux﹣2vy=(x﹣u)2+(y﹣v)2=m2+n2,∵(m2+n2)(1+9)≥(m+3n)2,∴m2+n2≥10,∴T的最小值为10.故答案为:10.14.已知曲线C的方程为F(x,y)=0,集合T={(x,y)|F(x,y)=0},若对于任意的(x1,y1)∈T,都存在(x2,y2)∈T,使得x1x2+y1y2=0成立,则称曲线C为曲线,下列方程所表示的曲线中,是曲线的有①③⑤(写出所有曲线的序号)①2x2+y2=1;②x2﹣y2=1;③y2=2x;④|x|﹣|y|=1;⑤(2x﹣y+1)(|x﹣1|+|y﹣2|)=0.【考点】曲线与方程.【分析】由曲线的定义可知,具备曲线的条件是对于任意的P1(x1,y1)∈T,都存在P2(x2,y2)∈T,使得x1x2+y1y2=0成立,即OP1⊥OP2.然后逐个验证即可得到答案.【解答】解:对于任意P1(x1,y1)∈T,存在P2(x2,y2)∈T,使x1x2+y1y2=0成立,即OP1⊥OP2.对于①2x2+y2=1,∵2x2+y2=1的图象关于原点中心对称,∴对于任意P1(x1,y1)∈C,存在P2(x2,y2)∈C,使OP1⊥OP2.故2x2+y2=1为曲线;对于②x2﹣y2=1,当P1(x1,y1)为双曲线的顶点时,双曲线上不存在点P2(x2,y2)∈C,使OP1⊥OP2.故x2﹣y2=1不是曲线;对于③y2=2x,其图象关于y轴对称,OP1的垂线一定与抛物线相交,故y2=2x为曲线;对于④,当P1(x1,y1)为(1,0)时,曲线上不存在点P2(x2,y2)∈C,使OP1⊥OP2.故④不是曲线;对于⑤,由(2x﹣y+1)(|x﹣1|+|y﹣2|)=0可得2x﹣y+1=0或点(1,2),∴对于任意P1(x1,y1)∈C,存在P2(x2,y2)∈C,使OP1⊥OP2.故(2x﹣y+1)(|x﹣1|+|y﹣2|)=0为曲线.故答案为:①③⑤.二、选择题15.“直线l垂直于平面α内的无数条直线”是“l⊥α”的一个()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】直线l垂直于平面α内的无数条直线,若无数条直线是平行线,则l与α不一定平行,如果l⊥α,根据线面垂直的性质可知直线l垂直于平面α内的无数条直线,最后根据“若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件”可得结论.【解答】解:直线l垂直于平面α内的无数条直线,若无数条直线是平行线,则l与α不一定平行,如果l⊥α,根据线面垂直的性质可知直线l垂直于平面α内的无数条直线.故“直线l垂直于平面α内的无数条直线”是“l⊥α”的必要不充分条件.故选:B.16.曲线Γ:2x2﹣3xy+2y2=1()A.关于x轴对称B.关于原点对称,但不关于直线y=x对称C.关于y轴对称D.关于直线y=x对称,也关于直线y=﹣x对称【考点】曲线与方程.【分析】由题意,x,y互换,方程不变;以﹣x代替y,以﹣y代替x,方程不变,即可得出结论.【解答】解:由题意,x,y互换,方程不变;以﹣x代替y,以﹣y代替x,方程不变,∴曲线Γ:2x2﹣3xy+2y2=1关于直线y=x对称,也关于直线y=﹣x对称,故选:D.17.下列命题中,正确的命题是()A.若z1、z2∈C,z1﹣z2>0,则z1>z2B.若z∈R,则z•=|z|2不成立C.z1、z2∈C,z1•z2=0,则z1=0或z2=0D.z1、z2∈C,z12+z22=0,则z1=0且z2=0【考点】复数的基本概念.【分析】由已知条件利用复数的性质及运算法则直接求解.【解答】解:在A中,若z1、z2∈C,z1﹣z2>0,则z1的实数大于z2的实部,z1与z2的虚部相等,z1与z2不能比较大小,故A错误;在B中,若z∈R,当z=0时,z•=|z|2成立,故B错误;在C中,z1、z2∈C,z1•z2=0,则由复数乘积的运算法则得z1=0或z2=0,故C正确;在D中,令Z1=1,Z2=i,则Z12+Z22=0成立,而Z1=0且Z2=0不成立,∴z1、z2∈C,z12+z22=0,则z1=0且z2=0不成立,故D错误.故选:C.18.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题:①点P在直线BC1上运动,三棱锥A﹣D1PC的体积不变②点P在直线BC1上运动,直线AP与平面ACD1所成角的大小不变③点P在直线BC1上运动,二面角P﹣AD1﹣C的大小不变④点P是平面ABCD上到点D和C1距离相等的动点,则P的轨迹是过点B的直线.其中的真命题是()A.①③B.①③④C.①②④D.③④【考点】棱柱的结构特征.【分析】①由正方体的性质可得:BC1∥AD1,于是BC1∥平面AD1C,可得直线BC1上的点到平面AD1C 的距离不变,而△AD1C的面积不变,即可判断出结论.②由①可知:直线BC1上的点到平面AD1C的距离不变,而AP的大小在改变,可得直线AP与平面ACD1所成角的大小改变,即可判断出正误.③由①可知:点P到平面AD1C的距离不变,点P到AD1的距离不变,即可判断出二面角P﹣AD1﹣C的大小是否改变.④如图所示,不妨设正方体的棱长为a,设P(x,y,0),利用|PD|=|PC1|,利用两点之间的距离公式化简即可得出.【解答】解:①由正方体的性质可得:BC1∥AD1,于是BC1∥平面AD1C,因此直线BC1上的点到平面AD1C的距离不变,点P在直线BC1上运动,又△AD1C的面积不变,因此三棱锥A﹣D1PC的体积=不变.②点P在直线BC1上运动,由①可知:直线BC1上的点到平面AD1C的距离不变,而AP的大小在改变,因此直线AP与平面ACD1所成角的大小改变,故不正确.③点P在直线BC1上运动,由①可知:点P到平面AD1C的距离不变,点P到AD1的距离不变,可得二面角P﹣AD1﹣C的大小不变,正确;④如图所示,不妨设正方体的棱长为a,D(0,0,0),C1(0,a,a),设P(x,y,0),∵|PD|=|PC1|,则=,化为y=a,因此P的轨迹是过点B的直线,正确.其中的真命题是①③④.故选:B.; (三、解答题19.如图,设计一个正四棱锥形冷水塔,高是 3 米,底面的边长是 8 米: (1)求这个正四棱锥形冷水塔的容积(冷水塔的厚度忽略不计) (2)制造这个冷水塔的侧面需要多少平方米的钢板?【考点】棱柱、棱锥、棱台的体积. 【分析】 1)求出正四棱锥形的体积即可; (2)求出斜高,在计算侧面积.【解答】解:(1)V= S正方形 ABCDh= =64.∴正四棱锥形冷水塔的容积为 64 立方米.(2)取底面 ABCD 的中心 O ,AD 的中点 M ,连结 PO ,OM ,PM . 则 PO ⊥平面 ABCD ,PM ⊥AD ,∴PO=h=3,OM=,∴PM==5,∴S △PAD == =20.∴S 侧面积=4S △PAD =80.∴制造这个冷水塔的侧面需要 80 平方米的钢板.( (20.设直线 y= x +2 与双曲线﹣ =1 交于 A 、B 两点,O 为坐标原点,求:(1)以线段 AB 为直径的圆的标准方程;(2)若 OA 、OB 所在直线的斜率分别是 k OA 、k OB ,求 k OA •k OB 的值.【考点】双曲线的简单性质. 【分析】 1)联立方程组,消去 y 得关于 x 的一元二次方程,利用中点坐标公式以及两点间的距离公式求 出半径和圆心即可得到结论.(2)求出对应的斜率,结合根与系数之间的关系代入进行求解即可.【解答】解:(1)将直线 y= x +2 代入设 A (x 1,y 1),B (x 2,y 2), 则 x 1+x 2=4,x 1x 2=﹣14,则 AB 的中点 C 的横坐标 x=|AB |=则半径 R=,则圆的标准方程为(x ﹣2)2+(y ﹣3)2=﹣ =1 得 x 2﹣4x ﹣14=0,,纵坐标 y== =.,即圆心 C (2,3),=3 ,(2)若 OA 、OB 所在直线的斜率分别是 k OA 、k OB ,则 k OA = ,k OB =,则 k OA •k OB == = = =﹣.21.已知复数 α 满足(2﹣i )α=3﹣4i ,β=m ﹣i ,m ∈R . (1)若|α+β|<2| |,求实数 m 的取值范围;(2)若 α+β 是关于 x 的方程 x 2﹣nx +13=0(n ∈R )的一个根,求实数 m 与 n 的值. 【考点】复数的代数表示法及其几何意义;复数代数形式的混合运算. 【分析】 1)根据复数的混合运算和复数模的即可求出; (2)根据韦达定理即可求出.;(【解答】解:(1)∵(2﹣i )α=3﹣4i ,∴a==2﹣i ,∴α+β=2+m ﹣2i , ∵|α+β|<2| |,∴(2+m )2+4<4(4+1), 解得﹣6<m <2,∴m 的取值范围为(﹣6,2),(2)α+β 是关于 x 的方程 x 2﹣nx +13=0(n ∈R )的一个根, 则 2+m +2i 也是方程的另一个根,根据韦达定理可得,解的或22.如图,在四棱锥 P ﹣ABCD 中,底面是边长为 2 的正方形,PA ⊥底面 ABCD ,E 为 BC 的中点,PC 与平面 PAD 所成的角为 arctan.(1)求证:CD ⊥PD ;(2)求异面直线 AE 与 PD 所成的角的大小(结果用反三角函数表示)(3)若直线 PE 、PB 与平面 PCD 所成角分别为 α、β,求的值.【考点】直线与平面所成的角;异面直线及其所成的角. 【分析】 1)由 PA ⊥平面 ABCD 得出 PA ⊥CD ,又 CD ⊥AD 得出 CD ⊥平面 PAD ,故而 CD ⊥PD ;(2)以 A 为坐标原点激励空间直角坐标系,求出 , 的坐标,计算 , 的夹角即可得出答案; (3)求出平面 PCD 的法向量 ,则 sin α=|cos < , >|,sin β=|cos < , >|. 【解答】证明:(1)∵PA ⊥平面 ABCD ,CD ⊂ 平面 ABCD , ∴PA ⊥CD .∵四边形 ABCD 是正方形,∴CD ⊥AD .又 PA ⊂ 平面 P AD ,AD ⊂ 平面 PAD ,PA ∩AD=A , ∴CD ⊥平面 P AD ,∵PD ⊂ 平面 P AD ,∴CD⊥PD.(2)由(1)可知CD⊥平面P AD,∴∠CPD为PC与平面PAD所成的角.∴tan∠CPD=,∴PD=2.∴P A==2.以A为原点,以AB,AD,AP为坐标轴建立如图所示的空间直角坐标系,则A(0,0,0),E(2,1,0),P(0,0,2),D(0,2,0).∴=(2,1,0),=(0,2,﹣2).∴=2,||=,||=2,∴cos<>==.∴异面直线AE与PD所成的角为arccos (3)∵C(2,2,0),B(2,0,0),∴设平面PCD的法向量为=(x,y,z),则∴,令z=1得=(0,1,1)..=(﹣2,0,2),,=(﹣2,﹣1,2),=(﹣2,0,0).∴=1,=2.∴cos<∴sinα=∴=>==,cos<>==.,sinβ=..23.在平面直角坐标系xOy中,动点P到定点F(0,﹣1)的距离与P到定直线y=﹣2的距离的比为动点P的轨迹记为C.5( 过点 Q (﹣ ,0)的动直线 l 的方程为:y=k (x + ),A (x 1,y 1),B (x 2,y 2).与椭圆方程化为: 18+9k 2),化为:x 2+∪(1)求轨迹 C 的方程;(2)若点 M 在轨迹 C 上运动,点 N 在圆 E :x 2+(y ﹣0.5)2=r 2(r >0)上运动,且总有|MN |≥0.5, 求 r 的取值范围;(3)过点 Q (﹣ ,0)的动直线 l 交轨迹 C 于 A 、B 两点,试问:在此坐标平面上是否存在一个定点 T ,使得无论 l 如何转动,以 AB 为直径的圆恒过点 T ?若存在,求出点 T 的坐标.若不存在,请说明理由. 【考点】直线与圆锥曲线的综合问题.【分析】 1)设点 P (x ,y ),由题意可得: = = ,化简即可得出.(2)E (0, ).分类讨论:①r ≥+ ,根据|MN |≥0.5,可得 r ≥ + + .②0<r < + ,设M ,|MN |=|EN |﹣r ,解得 r ≤|EN |﹣ 的最小值,即可得出 r 的取值范围.(3)把 x=﹣ 代入椭圆的方程可得:+ =1,解得 y=± .取点 T (1,0)时满足 =0.下面证明:在此坐标平面上存在一个定点 T (1,0),使得无论 l 如何转动,以 AB 为直径的圆恒过点 T (1,0).设(x 2+6k 2x +k 2﹣18=0,利用根与系数的关系、数量积运算性质可得=(x 1﹣1)(x 2﹣1)+=0.即可证明.【解答】解:(1)设点 P (x ,y ),由题意可得: = ==1.(2)E (0, ).分类讨论:①r ≥+ ,∵总有|MN |≥0.5,∴r ≥+ + = +1.②0<r < + ,设 M,|MN |=|EN |﹣r∴,解得 r ≤|EN |﹣ =.﹣ = ﹣ ,综上可得:r 的取值范围是.(3)把 x=﹣ 代入椭圆的方程可得:+ =1,解得 y=± .取 A ,B .取点 T (1,0)时满足 =0.下面证明:在此坐标平面上存在一个定点 T (1,0),使得无论 l 如何转动,以 AB 为直径的圆恒过点 T .(x 1+x 2)+1+﹣×设过点 Q (﹣ ,0)的动直线 l 的方程为:y=k (x + ),A (x 1,y 1),B (x 2,y 2).联立,化为:(18+9k 2)x 2+6k 2x +k 2﹣18=0,∴x 1+x 2= 则,x 1x 2= .=(x 1﹣1)(x 2﹣1)+y 1y 2=(x 1﹣1)(x 2﹣1)+=(1+k 2)x 1x 2+=(1+k 2)×+1+ =0.∴在此坐标平面上存在一个定点 T (1,0),使得无论 l 如何转动,以 AB 为直径的圆恒过点 T .2015-2016学年上海市浦东新区高二(下)期末数学试卷一、填空题(共12小题,每小题3分,满分36分)1.抛物线x2=﹣8y的准线方程为.2.如果直线ax+y+1=0与直线3x﹣y﹣2=0垂直,则系数a=.3.双曲线9x2﹣4y2=﹣36的渐近线方程是.4.已知复数z=(3+i)2(i为虚数单位),则|z|=.5.已知点A(﹣4,﹣5),B(6,﹣1),则以线段AB为直径的圆的方程为.6.设复数z(2﹣i)=11+7i(i为虚数单位),则z=.7.若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是.8.一动点在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点轨迹方程是.9.若复数z满足|z+3i|=5(i是虚数单位),则|z+4|的最大值=.10.设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°△,则F1PF2的面积是.11.已知抛物线型拱桥的顶点距离水面2米时,测量水的宽为8米,当水面上升米后,水面的宽度是米.12.已知圆x2+y2+2x﹣4y+a=0关于直线y=2x+b成轴对称,则a﹣b的取值范围是.二、选择题(共4小题,每小题3分,满分12分)13.直线倾斜角的范围是()A.(0,]B.[0,]C.[0,π)D.[0,π]14.平面内有两定点A、B及动点P,设命题甲:“|P A|+|PB|是定值”,命题乙:“点P的轨迹是以A、B为焦点的椭圆”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3B.b=﹣2,c=3C.b=﹣2,c=﹣1D.b=2,c=﹣116.对于抛物线C:y2=4x,我们称满足y02<4x0的点M(x0,y0)在抛物线的内部.若点M(x0,y0)在抛物线内部,则直线l:y0y=2(x+x0)与曲线C()A.恰有一个公共点B.恰有2个公共点C.可能有一个公共点,也可能有两个公共点D.没有公共点三、解答题(共5小题,满分52分)17.已知直线l平行于直线3x+4y﹣7=0,并且与两坐标轴围成的三角形的面积为24,求直线l的方程.18.设复数z满足|z|=1,且(3+4i)•z是纯虚数,求.19.已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为,求圆C的方程.20.已知F1,F2为椭圆C:+=1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.(1)证明:b2=ad;(2)若M的坐标为(,1),求椭圆C的方程.21.已知双曲线C1:.(1)求与双曲线C1有相同焦点,且过点P(4,)的双曲线C2的标准方程;(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当=3时,求实数m的值.2015-2016学年上海市浦东新区高二(下)期末数学试卷参考答案与试题解析一、填空题(共12小题,每小题3分,满分36分)1.抛物线x2=﹣8y的准线方程为y=2.【考点】抛物线的简单性质.【分析】由于抛物线x2=﹣2py的准线方程为y=,则抛物线x2=﹣8y的准线方程即可得到.【解答】解:由于抛物线x2=﹣2py的准线方程为y=,则有抛物线x2=﹣8y的准线方程为y=2.故答案为:y=2.2.如果直线ax+y+1=0与直线3x﹣y﹣2=0垂直,则系数a=.【考点】直线的一般式方程与直线的垂直关系.【分析】利用相互垂直的直线的斜率之间关系即可得出.【解答】解:由ax+y+1=0得y=﹣ax﹣1,直线3x﹣y﹣2=0得到y=3x﹣2,又直线ax+y+1=0与直线3x﹣y﹣2=0垂直,∴﹣a3=﹣1,∴a=,故答案为:3.双曲线9x2﹣4y2=﹣36的渐近线方程是y=±x.【考点】双曲线的简单性质.【分析】求出双曲线的标准方程,结合双曲线渐近线的方程进行求解即可.【解答】解:双曲线的标准方程为﹣=1,则双曲线的渐近线方程为y=±x,故答案为:y=±x4.已知复数z=(3+i)2(i为虚数单位),则|z|=10.【考点】复数求模;复数代数形式的乘除运算.【分析】利用复数的模的平方等于复数的模的乘积,直接计算即可.【解答】解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.5.已知点A(﹣4,﹣5),B(6,﹣1),则以线段AB为直径的圆的方程为(x﹣1)2+(y+3)2=29.【考点】圆的标准方程.【分析】由点A和点B的坐标,利用中点坐标公式求出线段AB的中点C的坐标,因为线段AB为所求圆的直径,所以求出的中点C的坐标即为圆心坐标,然后由圆心C的坐标和点A的坐标,利用两点间的距离公式求出|AC|的长即为圆的半径,根据圆心和半径写出圆的标准方程即可.【解答】解:由中点坐标公式得线段AB的中点坐标为C(1,﹣3),即圆心的坐标为C(1,﹣3);,故所求圆的方程为:(x﹣1)2+(y+3)2=29.故答案为:(x﹣1)2+(y+3)2=29.6.设复数z(2﹣i)=11+7i(i为虚数单位),则z=3+5i.【考点】复数代数形式的乘除运算.【分析】等式两边同乘2+i,然后化简,即可求出复数z.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故答案为:3+5i.7.若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是.【考点】椭圆的标准方程;双曲线的简单性质.【分析】先确定双曲线的顶点和焦点坐标,可得椭圆C的焦点和顶点坐标,从而可得椭圆C的方程【解答】解:双曲线的顶点和焦点坐标分别为(±,0)、(±3,0)∵椭圆C的焦点和顶点分别是双曲线∴椭圆C的焦点和顶点坐标分别为(±的顶点和焦点,,0)、(±3,0)∴a=3,c=∴∴椭圆C的方程是故答案为:8.一动点在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点轨迹方程是x2+y2﹣3x+2=0.【考点】轨迹方程;中点坐标公式.【分析】设出中点坐标,利用中点坐标公式求出与之有关的圆上的动点坐标,将圆上的动点坐标代入圆的方程,求出中点轨迹方程.【解答】解:设中点坐标为(x,y),则圆上的动点坐标为(2x﹣3,2y)所以(2x﹣3)2+(2y)2=1即x2+y2﹣3x+2=0故答案为:x2+y2﹣3x+2=09.若复数z满足|z+3i|=5(i是虚数单位),则|z+4|的最大值=10.【考点】复数求模.【分析】由复数模的几何意义可得复数z对应的点在以(0,﹣3)为圆心,以5为半径的圆周上,由此可得|z+4|的最大值是点(0,﹣3)与点(﹣4,0)的距离加上半径5.【解答】解:由|z+3i|=5,所以复数z对应的点在以(0,﹣3)为圆心,以5为半径的圆周上,所以|z+4|的最大值是点(0,﹣3)与点(﹣4,0)的距离加上半径5,点(0,﹣3)与点(﹣4,0)的距离:=5.|z+4|的最大值:5+5=10故答案为:10.10.设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°△,则F1PF2的面积是1.【考点】双曲线的应用;双曲线的简单性质.【分析】设|PF1|=x,|PF2|=y,根据根据双曲线性质可知x﹣y的值,再根据∠F1PF2=90°,求得x2+y2的值,进而根据2xy=x2+y2﹣(x﹣y)2求得xy,进而可求得△F1PF2的面积.【解答】解:设|PF1|=x,|PF2|=y,(x>y)根据双曲线性质可知x﹣y=4,PF2=90°,∵∠F1∴x2+y2=20∴2xy=x2+y2﹣(x﹣y)2=4∴xy=2PF2的面积为xy=1∴△F1故答案为:1.11.已知抛物线型拱桥的顶点距离水面2米时,测量水的宽为8米,当水面上升米后,水面的宽度是4米.【考点】双曲线的标准方程.【分析】以拱顶为坐标原点,拱的对称轴为y轴,水平轴为x轴建立平面直角坐标系,设抛物线方程为:x2=ay,由x=4,y=﹣2,解得a=﹣8,由此能求出当水面上升米后,水面的宽度.【解答】解:以拱顶为坐标原点,拱的对称轴为y轴,水平轴为x轴建立平面直角坐标系,设抛物线方程为:x2=ay,由x=4,y=﹣2,解得a=﹣8,当水面上升米后,y=﹣2+=﹣,x2=(﹣8)•(﹣)=12.解得x=2,或x=﹣2,∴水面宽为4(米).故答案为:4.12.已知圆x2+y2+2x﹣4y+a=0关于直线y=2x+b成轴对称,则a﹣b的取值范围是(﹣∞,1).【考点】直线与圆相交的性质.【分析】求出圆的圆心,由题意圆心在直线上,求出a,b的关系,然后确定a﹣b的范围.【解答】解:圆的方程变为(x+1)2+(y﹣2)2=5﹣a,∴其圆心为(﹣1,2),且5﹣a>0,即a<5.又圆关于直线y=2x+b成轴对称,∴2=﹣2+b,∴b=4.∴a﹣b=a﹣4<1.故答案为:(﹣∞,1)二、选择题(共4小题,每小题3分,满分12分)13.直线倾斜角的范围是()A.(0,]B.[0,]C.[0,π)D.[0,π]【考点】直线的倾斜角.【分析】根据直线倾斜角的定义判断即可.【解答】解:直线倾斜角的范围是:[0,π),故选:C.14.平面内有两定点A、B及动点P,设命题甲:“|P A|+|PB|是定值”,命题乙:“点P的轨迹是以A、B为焦点的椭圆”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】结合椭圆的定义,利用充分条件和必要条件的定义进行判断.【解答】解:若点P的轨迹是以A、B为焦点的椭圆,则根据椭圆的定义可知动点P到两定点A,B的距离之和|P A|+|PB|=2a(a>0,且a为常数)成立是定值.若动点P到两定点A,B的距离之和|P A|+|PB|=2a(a>0,且a为常数),当2a≤|AB|,此时的轨迹不是椭圆.∴甲是乙的必要不充分条件.故选:B.15.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3B.b=﹣2,c=3C.b=﹣2,c=﹣1D.b=2,c=﹣1【考点】复数相等的充要条件.R【分析】由题意,将根代入实系数方程 x 2+bx+c=0 整理后根据得数相等的充要条件得到关于实数 a ,b 的方程组 ,解方程得出 a ,b 的值即可选出正确选项【解答】解:由题意 1+ i 是关于 x 的实系数方程 x 2+bx+c=0 ∴1+2 i ﹣2+b+ bi+c=0∴,解得 b=﹣2,c=3故选 B16.对于抛物线 C :y 2=4x ,我们称满足 y 02<4x 0 的点 M (x 0,y 0)在抛物线的内部.若点 M (x 0,y 0)在 抛物线内部,则直线 l :y 0y=2(x+x 0)与曲线 C ( )A .恰有一个公共点B .恰有 2 个公共点C .可能有一个公共点,也可能有两个公共点D .没有公共点【考点】抛物线的简单性质.【分析】先把直线与抛物线方程联立消去 y ,进而根据 y 02<4x 0 判断出判别式小于 0 进而判定直线与抛物线 无交点.【解答】解:由 y 2=4x 与 y 0y=2(x+x 0)联立,消去 x ,得 y 2﹣2y 0y+4x 0=0, ∴△=4y 02﹣4×4x 0=4(y 02﹣4x 0). ∵y 02<4x 0,∴ <△0,直线和抛物线无公共点. 故选 D三、解答题(共 5 小题,满分 52 分)17.已知直线 l 平行于直线 3x+4y ﹣7=0,并且与两坐标轴围成的三角形的面积为 24,求直线 l 的方程. 【考点】直线的一般式方程与直线的平行关系.【分析】设直线 l 的方程为:3x+4y+m=0,分别令 x=0,解得 y=﹣ ;y=0,x=﹣ .利用 l 与两坐标轴围成的三角形的面积为 24,可得=24,解得 m 即可.【解答】解:设直线 l 的方程为:3x+4y+m=0,分别令 x=0,解得 y=﹣ ;y=0,x=﹣ .∵l 与两坐标轴围成的三角形的面积为 24,∴=24,解得 m=±24.∴直线 l 的方程为 3x+4y ±24=0.18.设复数 z 满足|z|=1,且(3+4i )•z 是纯虚数,求 . 【考点】复数的基本概念;复数求模.【分析】设出复数 z ,|z|=1 可得一个方程,化简(3+4i )•z 是纯虚数,又得到一个方程,求得 z ,然后求 .【解答】解:设 z=a+bi ,(a ,b ∈ ),由|z|=1 得 ;。
上海市高二数学下学期期末试卷(共3套,含答案)
上海市闵行区高二(下)期末数学试卷一、填空题1.在空间中,若直线a与b无公共点,则直线a、b的位置关系是______.2.若点H(﹣2,4)在抛物线y2=2px的准线上,则实数p的值为______.3.若椭圆上一点P到其焦点F1的距离为6,则P到另一焦点F2的距离为______.4.若经过圆柱的轴的截面面积为2,则圆柱的侧面积为______.5.经过点(﹣2,2)且与双曲线﹣y2=1有公共渐近线的双曲线方程为______.6.已知实数x、y满足约束条件则z=2x+4y的最大值为______.7.一个圆锥的侧面积展开图是一个半径为2的半圆,则此圆锥的体积为______.8.在平面直角坐标系x0y中,直线(t为参数)与圆(θ为参数)相切,切点在第一象限,则实数a的值为______.9.在北纬45°的线圈上有A、B两地,它们的经度差为90°,若地球半径为R,则A、B两地的球面距离为______.10.设α与β是关于x的方程x2+2x+m=0的两个虚数根,若α、β、0在复平面上对应的点构成直角三角形,那么实数m=______.11.如图,正三棱柱ABC﹣A1B1C1的所有棱的长度都为4,则异面直线AB1与BC1所成的角是______(结果用反三角函数值表示).12.已知复数z满足|z|=3,则|z+4|+|z﹣4|的取值范围是______.13.已知x、y、u、v∈R,且x+3y﹣2=0,u+3v+8=0,T=x2+y2+u2+v2﹣2ux﹣2vy,则T的最小值为______.14.已知曲线C的方程为F(x,y)=0,集合T={(x,y)|F(x,y)=0},若对于任意的(x1,y1)∈T,都存在(x2,y2)∈T,使得x1x2+y1y2=0成立,则称曲线C为曲线,下列方程所表示的曲线中,是曲线的有______(写出所有曲线的序号)①2x2+y2=1;②x2﹣y2=1;③y2=2x;④|x|﹣|y|=1;⑤(2x﹣y+1)(|x﹣1|+|y﹣2|)=0.二、选择题15.“直线l垂直于平面α内的无数条直线”是“l⊥α”的一个()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件16.曲线Γ:2x2﹣3xy+2y2=1()A.关于x轴对称B.关于原点对称,但不关于直线y=x对称C.关于y轴对称D.关于直线y=x对称,也关于直线y=﹣x对称17.下列命题中,正确的命题是()A.若z1、z2∈C,z1﹣z2>0,则z1>z2B.若z∈R,则z•=|z|2不成立C.z1、z2∈C,z1•z2=0,则z1=0或z2=0D.z1、z2∈C,z12+z22=0,则z1=0且z2=018.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题:①点P在直线BC1上运动,三棱锥A﹣D1PC的体积不变②点P在直线BC1上运动,直线AP与平面ACD1所成角的大小不变③点P在直线BC1上运动,二面角P﹣AD1﹣C的大小不变④点P是平面ABCD上到点D和C1距离相等的动点,则P的轨迹是过点B的直线.其中的真命题是()A.①③B.①③④ C.①②④ D.③④三、解答题19.如图,设计一个正四棱锥形冷水塔,高是3米,底面的边长是8米:(1)求这个正四棱锥形冷水塔的容积(冷水塔的厚度忽略不计);(2)制造这个冷水塔的侧面需要多少平方米的钢板?20.设直线y=x+2与双曲线﹣=1交于A、B两点,O为坐标原点,求:(1)以线段AB为直径的圆的标准方程;(2)若OA、OB所在直线的斜率分别是k OA、k OB,求k OA•k OB的值.21.已知复数α满足(2﹣i)α=3﹣4i,β=m﹣i,m∈R.(1)若|α+β|<2||,求实数m的取值范围;(2)若α+β是关于x的方程x2﹣nx+13=0(n∈R)的一个根,求实数m与n的值.22.如图,在四棱锥P﹣ABCD中,底面是边长为2的正方形,PA⊥底面ABCD,E为BC的中点,PC与平面PAD所成的角为arctan.(1)求证:CD⊥PD;(2)求异面直线AE与PD所成的角的大小(结果用反三角函数表示);(3)若直线PE、PB与平面PCD所成角分别为α、β,求的值.23.在平面直角坐标系xOy中,动点P到定点F(0,﹣1)的距离与P到定直线y=﹣2的距离的比为,动点P的轨迹记为C.(1)求轨迹C的方程;(2)若点M在轨迹C上运动,点N在圆E:x2+(y﹣0.5)2=r2(r>0)上运动,且总有|MN|≥0.5,求r的取值范围;(3)过点Q(﹣,0)的动直线l交轨迹C于A、B两点,试问:在此坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标.若不存在,请说明理由.上海市闵行区高二(下)期末数学试卷参考答案与试题解析一、填空题1.在空间中,若直线a与b无公共点,则直线a、b的位置关系是平行或异面.【考点】空间中直线与直线之间的位置关系.【分析】根据直线a,b是否共面得出结论.【解答】解;当a,b在同一个平面上时,a,b平行;当a,b不在同一个平面上时,a,b异面.故答案为:平行或异面.2.若点H(﹣2,4)在抛物线y2=2px的准线上,则实数p的值为4.【考点】抛物线的简单性质.【分析】求出抛物线的准线方程,由题意可得﹣=﹣2,即可解得p的值.【解答】解:抛物线y2=2px的准线方程为x=﹣,由题意可得﹣=﹣2,解得p=4.故答案为:4.3.若椭圆上一点P到其焦点F1的距离为6,则P到另一焦点F2的距离为14.【考点】椭圆的简单性质.【分析】根据椭圆的定义可得|PF1|+|PF2|=2a=20,结合P到其焦点F1的距离为6,可求P到另一焦点F2的距离.【解答】解:根据椭圆的定义可得|PF1|+|PF2|=2a=20∵P到其焦点F1的距离为6,∴|PF2|=20﹣6=14即P到另一焦点F2的距离为14故答案为:14.4.若经过圆柱的轴的截面面积为2,则圆柱的侧面积为2π.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据轴截面积得出圆柱底面半径与高的关系,代入侧面积公式即可得出答案.【解答】解:设圆柱的底面半径为r,高为h,则圆柱的轴截面面积为2rh=2,∴rh=1.∴圆柱的侧面积S=2πrh=2π.故答案为:2π.5.经过点(﹣2,2)且与双曲线﹣y2=1有公共渐近线的双曲线方程为.【考点】双曲线的简单性质.【分析】根据渐近线相同,利用待定系数法设出双曲线方程进行求解即可.【解答】解:与双曲线﹣y2=1有公共渐近线的双曲线的方程可设为线﹣y2=λ,(λ≠0),∵双曲线过点(﹣2,2),∴λ=,即﹣y2=﹣2,即,故答案为:6.已知实数x、y满足约束条件则z=2x+4y的最大值为8.【考点】简单线性规划.【分析】①画可行域②z为目标函数纵截距四倍③画直线0=2x+4y,平移直线过(0,2)时z有最大值【解答】解:画可行域如图,z为目标函数纵截距四倍,画直线0=2x+4y,平移直线过(0,2)点时z有最大值8故答案为87.一个圆锥的侧面积展开图是一个半径为2的半圆,则此圆锥的体积为.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据圆锥的侧面展开图的弧长为圆锥底面周长得出圆锥底面半径,从而得出圆锥的高,代入体积公式计算即可.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h==.∴圆锥的体积V==.故答案为:.8.在平面直角坐标系x0y中,直线(t为参数)与圆(θ为参数)相切,切点在第一象限,则实数a的值为+1.【考点】参数方程化成普通方程.【分析】把直线和圆的参数方程都化为普通方程,由直线与圆相切d=r,切点在第一象限,求出a的值.【解答】解:圆的参数方程(θ为参数)化为普通方程是(x﹣1)2+y2=1,直线的参数方程(t为参数)化为普通方程是x+y=a;直线与圆相切,则圆心C(1,0)到直线的距离是d=r,即=1;解得|1﹣a|=,∴a=+1,或a=1﹣;∵切点在第一象限,∴a=+1;故答案为: +1.9.在北纬45°的线圈上有A、B两地,它们的经度差为90°,若地球半径为R,则A、B两地的球面距离为R.【考点】球面距离及相关计算.【分析】求出球心角,然后A、B两点的距离,即可求出两点间的球面距离.【解答】解:地球的半径为R,在北纬45°,而AB=R,所以A、B的球心角为:,所以两点间的球面距离是:;故答案为:.10.设α与β是关于x的方程x2+2x+m=0的两个虚数根,若α、β、0在复平面上对应的点构成直角三角形,那么实数m=2.【考点】复数代数形式的混合运算;复数的代数表示法及其几何意义.【分析】由题意,可设α=a+bi,则由实系数一元二次方程虚根成对定理可得β=a﹣bi,且m与n为实数,b ≠0.由根与系数的关系得到a,b的关系,上α,β,0对应点构成直角三角形,求得到实数m的值【解答】解:设α=a+bi,则由实系数一元二次方程虚根成对定理可得β=a﹣bi,且m与n为实数,n≠0.由根与系数的关系可得α+β=2a=﹣2,α•β=a2+b2=m.∴m>0.∴a=﹣1,m=b2+1,∵复平面上α,β,0对应点构成直角三角形,∴α,β在复平面对应的点分别为A,B,则OA⊥OB,所以b2=1,所以m=1+1=2;,故答案为:211.如图,正三棱柱ABC﹣A1B1C1的所有棱的长度都为4,则异面直线AB1与BC1所成的角是acrcos (结果用反三角函数值表示).【考点】异面直线及其所成的角.【分析】利用两个向量数量积的定义求得,由=()•()求得,求得cos<>=,故异面直线AB1与BC1所成的角是arccos.【解答】解:=4×4cos<>=32cos<>.又=()•()=+++=4×4cos120°+0+0+4×4=8.故有32cos<>=8,∴cos<>=,∴<>=arccos,故异面直线AB1与BC1所成的角是arccos,故答案为arccos.12.已知复数z满足|z|=3,则|z+4|+|z﹣4|的取值范围是[8,10] .【考点】复数的代数表示法及其几何意义.【分析】复数z满足|z|=3,表示以原点为圆心,以3为半径的圆,则|z+4|+|z﹣4|的表示圆上的点到(﹣4,0)和(4,0)的距离,结合图形可求.【解答】解:复数z满足|z|=3,表示以原点为圆心,以3为半径的圆,则|z+4|+|z﹣4|的表示圆上的点到(﹣4,0)和(4,0)的距离,由图象可知,当点在E,G处最小,最小为:4+4=8,当点在D,F处最大,最大为2=10,则|z+4|+|z﹣4|的取值范围是[8,10],故答案为[8,10]13.已知x、y、u、v∈R,且x+3y﹣2=0,u+3v+8=0,T=x2+y2+u2+v2﹣2ux﹣2vy,则T的最小值为10.【考点】二维形式的柯西不等式.【分析】x+3y﹣2=0,u+3v+8=0,相减,整理可得(x﹣u)+3(y﹣v)=10.设x﹣u=m,y﹣v=n,∴m+3n=10.T=x2+y2+u2+v2﹣2ux﹣2vy=(x﹣u)2+(y﹣v)2=m2+n2,利用柯西不等式,即可得出结论.【解答】解:x+3y﹣2=0,u+3v+8=0,相减,整理可得(x﹣u)+3(y﹣v)=10.设x﹣u=m,y﹣v=n,∴m+3n=10.T=x2+y2+u2+v2﹣2ux﹣2vy=(x﹣u)2+(y﹣v)2=m2+n2,∵(m2+n2)(1+9)≥(m+3n)2,∴m2+n2≥10,∴T的最小值为10.故答案为:10.14.已知曲线C的方程为F(x,y)=0,集合T={(x,y)|F(x,y)=0},若对于任意的(x1,y1)∈T,都存在(x2,y2)∈T,使得x1x2+y1y2=0成立,则称曲线C为曲线,下列方程所表示的曲线中,是曲线的有①③⑤(写出所有曲线的序号)①2x2+y2=1;②x2﹣y2=1;③y2=2x;④|x|﹣|y|=1;⑤(2x﹣y+1)(|x﹣1|+|y﹣2|)=0.【考点】曲线与方程.【分析】由曲线的定义可知,具备曲线的条件是对于任意的P1(x1,y1)∈T,都存在P2(x2,y2)∈T,使得x1x2+y1y2=0成立,即OP1⊥OP2.然后逐个验证即可得到答案.【解答】解:对于任意P1(x1,y1)∈T,存在P2(x2,y2)∈T,使x1x2+y1y2=0成立,即OP1⊥OP2.对于①2x2+y2=1,∵2x2+y2=1的图象关于原点中心对称,∴对于任意P1(x1,y1)∈C,存在P2(x2,y2)∈C,使OP1⊥OP2.故2x2+y2=1为曲线;对于②x2﹣y2=1,当P1(x1,y1)为双曲线的顶点时,双曲线上不存在点P2(x2,y2)∈C,使OP1⊥OP2.故x2﹣y2=1不是曲线;对于③y2=2x,其图象关于y轴对称,OP1的垂线一定与抛物线相交,故y2=2x为曲线;对于④,当P1(x1,y1)为(1,0)时,曲线上不存在点P2(x2,y2)∈C,使OP1⊥OP2.故④不是曲线;对于⑤,由(2x﹣y+1)(|x﹣1|+|y﹣2|)=0可得2x﹣y+1=0或点(1,2),∴对于任意P1(x1,y1)∈C,存在P2(x2,y2)∈C,使OP1⊥OP2.故(2x﹣y+1)(|x﹣1|+|y﹣2|)=0为曲线.故答案为:①③⑤.二、选择题15.“直线l垂直于平面α内的无数条直线”是“l⊥α”的一个()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】直线l垂直于平面α内的无数条直线,若无数条直线是平行线,则l与α不一定平行,如果l⊥α,根据线面垂直的性质可知直线l垂直于平面α内的无数条直线,最后根据“若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件”可得结论.【解答】解:直线l垂直于平面α内的无数条直线,若无数条直线是平行线,则l与α不一定平行,如果l⊥α,根据线面垂直的性质可知直线l垂直于平面α内的无数条直线.故“直线l垂直于平面α内的无数条直线”是“l⊥α”的必要不充分条件.故选:B.16.曲线Γ:2x2﹣3xy+2y2=1()A.关于x轴对称B.关于原点对称,但不关于直线y=x对称C.关于y轴对称D.关于直线y=x对称,也关于直线y=﹣x对称【考点】曲线与方程.【分析】由题意,x,y互换,方程不变;以﹣x代替y,以﹣y代替x,方程不变,即可得出结论.【解答】解:由题意,x,y互换,方程不变;以﹣x代替y,以﹣y代替x,方程不变,∴曲线Γ:2x2﹣3xy+2y2=1关于直线y=x对称,也关于直线y=﹣x对称,故选:D.17.下列命题中,正确的命题是()A.若z1、z2∈C,z1﹣z2>0,则z1>z2B.若z∈R,则z•=|z|2不成立C.z1、z2∈C,z1•z2=0,则z1=0或z2=0D.z1、z2∈C,z12+z22=0,则z1=0且z2=0【考点】复数的基本概念.【分析】由已知条件利用复数的性质及运算法则直接求解.【解答】解:在A中,若z1、z2∈C,z1﹣z2>0,则z1的实数大于z2的实部,z1与z2的虚部相等,z1与z2不能比较大小,故A错误;在B中,若z∈R,当z=0时,z•=|z|2成立,故B错误;在C中,z1、z2∈C,z1•z2=0,则由复数乘积的运算法则得z1=0或z2=0,故C正确;在D中,令Z1=1,Z2=i,则Z12+Z22=0成立,而Z1=0且Z2=0不成立,∴z1、z2∈C,z12+z22=0,则z1=0且z2=0不成立,故D错误.故选:C.18.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题:①点P在直线BC1上运动,三棱锥A﹣D1PC的体积不变②点P在直线BC1上运动,直线AP与平面ACD1所成角的大小不变③点P在直线BC1上运动,二面角P﹣AD1﹣C的大小不变④点P是平面ABCD上到点D和C1距离相等的动点,则P的轨迹是过点B的直线.其中的真命题是()A.①③B.①③④ C.①②④ D.③④【考点】棱柱的结构特征.【分析】①由正方体的性质可得:BC1∥AD1,于是BC1∥平面AD1C,可得直线BC1上的点到平面AD1C 的距离不变,而△AD1C的面积不变,即可判断出结论.②由①可知:直线BC1上的点到平面AD1C的距离不变,而AP的大小在改变,可得直线AP与平面ACD1所成角的大小改变,即可判断出正误.③由①可知:点P到平面AD1C的距离不变,点P到AD1的距离不变,即可判断出二面角P﹣AD1﹣C的大小是否改变.④如图所示,不妨设正方体的棱长为a,设P(x,y,0),利用|PD|=|PC1|,利用两点之间的距离公式化简即可得出.【解答】解:①由正方体的性质可得:BC1∥AD1,于是BC1∥平面AD1C,因此直线BC1上的点到平面AD1C的距离不变,点P在直线BC1上运动,又△AD1C的面积不变,因此三棱锥A﹣D1PC的体积=不变.②点P在直线BC1上运动,由①可知:直线BC1上的点到平面AD1C的距离不变,而AP的大小在改变,因此直线AP与平面ACD1所成角的大小改变,故不正确.③点P在直线BC1上运动,由①可知:点P到平面AD1C的距离不变,点P到AD1的距离不变,可得二面角P﹣AD1﹣C的大小不变,正确;④如图所示,不妨设正方体的棱长为a,D(0,0,0),C1(0,a,a),设P(x,y,0),∵|PD|=|PC1|,则=,化为y=a,因此P的轨迹是过点B的直线,正确.其中的真命题是①③④.故选:B.三、解答题19.如图,设计一个正四棱锥形冷水塔,高是3米,底面的边长是8米:(1)求这个正四棱锥形冷水塔的容积(冷水塔的厚度忽略不计);(2)制造这个冷水塔的侧面需要多少平方米的钢板?【考点】棱柱、棱锥、棱台的体积.【分析】(1)求出正四棱锥形的体积即可;(2)求出斜高,在计算侧面积.【解答】解:(1)V=S 正方形ABCD •h==64.∴正四棱锥形冷水塔的容积为64立方米.(2)取底面ABCD 的中心O ,AD 的中点M ,连结PO ,OM ,PM .则PO ⊥平面ABCD ,PM ⊥AD ,∴PO=h=3,OM=,∴PM==5, ∴S △PAD ===20. ∴S 侧面积=4S △PAD =80.∴制造这个冷水塔的侧面需要80平方米的钢板.20.设直线y=x+2与双曲线﹣=1交于A、B两点,O为坐标原点,求:(1)以线段AB为直径的圆的标准方程;(2)若OA、OB所在直线的斜率分别是k OA、k OB,求k OA•k OB的值.【考点】双曲线的简单性质.【分析】(1)联立方程组,消去y得关于x的一元二次方程,利用中点坐标公式以及两点间的距离公式求出半径和圆心即可得到结论.(2)求出对应的斜率,结合根与系数之间的关系代入进行求解即可.【解答】解:(1)将直线y=x+2代入﹣=1得x2﹣4x﹣14=0,设A(x1,y1),B(x2,y2),则x1+x2=4,x1x2=﹣14,则AB的中点C的横坐标x=,纵坐标y=,即圆心C(2,3),|AB|====3,则半径R=,则圆的标准方程为(x﹣2)2+(y﹣3)2=.(2)若OA、OB所在直线的斜率分别是k OA、k OB,则k OA=,k OB=,则k OA•k OB=====﹣.21.已知复数α满足(2﹣i)α=3﹣4i,β=m﹣i,m∈R.(1)若|α+β|<2||,求实数m的取值范围;(2)若α+β是关于x的方程x2﹣nx+13=0(n∈R)的一个根,求实数m与n的值.【考点】复数的代数表示法及其几何意义;复数代数形式的混合运算.【分析】(1)根据复数的混合运算和复数模的即可求出;(2)根据韦达定理即可求出.【解答】解:(1)∵(2﹣i)α=3﹣4i,∴a==2﹣i,∴α+β=2+m﹣2i,∵|α+β|<2||,∴(2+m)2+4<4(4+1),解得﹣6<m<2,∴m的取值范围为(﹣6,2),(2)α+β是关于x的方程x2﹣nx+13=0(n∈R)的一个根,则2+m+2i也是方程的另一个根,根据韦达定理可得,解的或22.如图,在四棱锥P﹣ABCD中,底面是边长为2的正方形,PA⊥底面ABCD,E为BC的中点,PC与平面PAD所成的角为arctan.(1)求证:CD⊥PD;(2)求异面直线AE与PD所成的角的大小(结果用反三角函数表示);(3)若直线PE、PB与平面PCD所成角分别为α、β,求的值.【考点】直线与平面所成的角;异面直线及其所成的角.【分析】(1)由PA⊥平面ABCD得出PA⊥CD,又CD⊥AD得出CD⊥平面PAD,故而CD⊥PD;(2)以A为坐标原点激励空间直角坐标系,求出,的坐标,计算,的夹角即可得出答案;(3)求出平面PCD的法向量,则sinα=|cos<,>|,sinβ=|cos<,>|.【解答】证明:(1)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵四边形ABCD是正方形,∴CD⊥AD.又PA⊂平面PAD,AD⊂平面PAD,PA∩AD=A,∴CD⊥平面PAD,∵PD⊂平面PAD,∴CD⊥PD.(2)由(1)可知CD⊥平面PAD,∴∠CPD为PC与平面PAD所成的角.∴tan∠CPD=,∴PD=2.∴PA==2.以A为原点,以AB,AD,AP为坐标轴建立如图所示的空间直角坐标系,则A(0,0,0),E(2,1,0),P(0,0,2),D(0,2,0).∴=(2,1,0),=(0,2,﹣2).∴=2,||=,||=2,∴cos<>==.∴异面直线AE与PD所成的角为arccos.(3)∵C(2,2,0),B(2,0,0),∴=(﹣2,0,2),=(﹣2,﹣1,2),=(﹣2,0,0).设平面PCD的法向量为=(x,y,z),则,∴,令z=1得=(0,1,1).∴=1,=2.∴cos<>==,cos<>==.∴sinα=,sinβ=.∴=.23.在平面直角坐标系xOy中,动点P到定点F(0,﹣1)的距离与P到定直线y=﹣2的距离的比为,动点P的轨迹记为C.(1)求轨迹C的方程;(2)若点M在轨迹C上运动,点N在圆E:x2+(y﹣0.5)2=r2(r>0)上运动,且总有|MN|≥0.5,求r的取值范围;(3)过点Q(﹣,0)的动直线l交轨迹C于A、B两点,试问:在此坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标.若不存在,请说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(1)设点P(x,y),由题意可得:==,化简即可得出.(2)E(0,).分类讨论:①r≥+,根据|MN|≥0.5,可得r≥++.②0<r<+,设M,|MN|=|EN|﹣r,解得r≤|EN|﹣的最小值,即可得出r的取值范围.(3)把x=﹣代入椭圆的方程可得: +=1,解得y=±.取点T(1,0)时满足=0.下面证明:在此坐标平面上存在一个定点T(1,0),使得无论l如何转动,以AB为直径的圆恒过点T(1,0).设过点Q(﹣,0)的动直线l的方程为:y=k(x+),A(x1,y1),B(x2,y2).与椭圆方程化为:(18+9k2)x2+6k2x+k2﹣18=0,利用根与系数的关系、数量积运算性质可得=(x1﹣1)(x2﹣1)+ =0.即可证明.【解答】解:(1)设点P(x,y),由题意可得:==,化为:x2+=1.(2)E(0,).分类讨论:①r≥+,∵总有|MN|≥0.5,∴r≥++=+1.②0<r<+,设M,|MN|=|EN|﹣r,解得r≤|EN|﹣=﹣=﹣,∴.综上可得:r的取值范围是∪.(3)把x=﹣代入椭圆的方程可得: +=1,解得y=±.取A,B.取点T(1,0)时满足=0.下面证明:在此坐标平面上存在一个定点T(1,0),使得无论l如何转动,以AB为直径的圆恒过点T.设过点Q(﹣,0)的动直线l的方程为:y=k(x+),A(x1,y1),B(x2,y2).联立,化为:(18+9k2)x2+6k2x+k2﹣18=0,∴x1+x2=,x1x2=.则=(x1﹣1)(x2﹣1)+y1y2=(x1﹣1)(x2﹣1)+=(1+k2)x1x2+(x1+x2)+1+=(1+k2)×﹣×+1+=0.∴在此坐标平面上存在一个定点T(1,0),使得无论l如何转动,以AB为直径的圆恒过点T.2015-2016学年上海市浦东新区高二(下)期末数学试卷一、填空题(共12小题,每小题3分,满分36分)1.抛物线x2=﹣8y的准线方程为.2.如果直线ax+y+1=0与直线3x﹣y﹣2=0垂直,则系数a=.3.双曲线9x2﹣4y2=﹣36的渐近线方程是.4.已知复数z=(3+i)2(i为虚数单位),则|z|=.5.已知点A(﹣4,﹣5),B(6,﹣1),则以线段AB为直径的圆的方程为.6.设复数z(2﹣i)=11+7i(i为虚数单位),则z=.7.若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是.8.一动点在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点轨迹方程是.9.若复数z满足|z+3i|=5(i是虚数单位),则|z+4|的最大值=.10.设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是.11.已知抛物线型拱桥的顶点距离水面2米时,测量水的宽为8米,当水面上升米后,水面的宽度是米.12.已知圆x2+y2+2x﹣4y+a=0关于直线y=2x+b成轴对称,则a﹣b的取值范围是.二、选择题(共4小题,每小题3分,满分12分)13.直线倾斜角的范围是()A.(0,]B.[0,]C.[0,π)D.[0,π]14.平面内有两定点A、B及动点P,设命题甲:“|PA|+|PB|是定值”,命题乙:“点P的轨迹是以A、B为焦点的椭圆”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣116.对于抛物线C:y2=4x,我们称满足y02<4x0的点M(x0,y0)在抛物线的内部.若点M(x0,y0)在抛物线内部,则直线l:y0y=2(x+x0)与曲线C ()A.恰有一个公共点B.恰有2个公共点C.可能有一个公共点,也可能有两个公共点D.没有公共点三、解答题(共5小题,满分52分)17.已知直线l平行于直线3x+4y﹣7=0,并且与两坐标轴围成的三角形的面积为24,求直线l的方程.18.设复数z满足|z|=1,且(3+4i)•z是纯虚数,求.19.已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为,求圆C的方程.20.已知F1,F2为椭圆C:+=1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.(1)证明:b2=ad;(2)若M的坐标为(,1),求椭圆C的方程.21.已知双曲线C1:.(1)求与双曲线C1有相同焦点,且过点P(4,)的双曲线C2的标准方程;(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当•=3时,求实数m的值.2015-2016学年上海市浦东新区高二(下)期末数学试卷参考答案与试题解析一、填空题(共12小题,每小题3分,满分36分)1.抛物线x2=﹣8y的准线方程为y=2.【考点】抛物线的简单性质.【分析】由于抛物线x2=﹣2py的准线方程为y=,则抛物线x2=﹣8y的准线方程即可得到.【解答】解:由于抛物线x2=﹣2py的准线方程为y=,则有抛物线x2=﹣8y的准线方程为y=2.故答案为:y=2.2.如果直线ax+y+1=0与直线3x﹣y﹣2=0垂直,则系数a=.【考点】直线的一般式方程与直线的垂直关系.【分析】利用相互垂直的直线的斜率之间关系即可得出.【解答】解:由ax+y+1=0得y=﹣ax﹣1,直线3x﹣y﹣2=0得到y=3x﹣2,又直线ax+y+1=0与直线3x﹣y﹣2=0垂直,∴﹣a•3=﹣1,∴a=,故答案为:3.双曲线9x2﹣4y2=﹣36的渐近线方程是y=±x.【考点】双曲线的简单性质.【分析】求出双曲线的标准方程,结合双曲线渐近线的方程进行求解即可.【解答】解:双曲线的标准方程为﹣=1,则双曲线的渐近线方程为y=±x,故答案为:y=±x4.已知复数z=(3+i)2(i为虚数单位),则|z|=10.【考点】复数求模;复数代数形式的乘除运算.【分析】利用复数的模的平方等于复数的模的乘积,直接计算即可.【解答】解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.5.已知点A(﹣4,﹣5),B(6,﹣1),则以线段AB为直径的圆的方程为(x﹣1)2+(y+3)2=29.【考点】圆的标准方程.【分析】由点A和点B的坐标,利用中点坐标公式求出线段AB的中点C的坐标,因为线段AB为所求圆的直径,所以求出的中点C的坐标即为圆心坐标,然后由圆心C的坐标和点A的坐标,利用两点间的距离公式求出|AC|的长即为圆的半径,根据圆心和半径写出圆的标准方程即可.【解答】解:由中点坐标公式得线段AB的中点坐标为C(1,﹣3),即圆心的坐标为C(1,﹣3);,故所求圆的方程为:(x﹣1)2+(y+3)2=29.故答案为:(x﹣1)2+(y+3)2=29.6.设复数z(2﹣i)=11+7i(i为虚数单位),则z=3+5i.【考点】复数代数形式的乘除运算.【分析】等式两边同乘2+i,然后化简,即可求出复数z.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故答案为:3+5i.7.若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是.【考点】椭圆的标准方程;双曲线的简单性质.【分析】先确定双曲线的顶点和焦点坐标,可得椭圆C的焦点和顶点坐标,从而可得椭圆C的方程【解答】解:双曲线的顶点和焦点坐标分别为(±,0)、(±3,0)∵椭圆C的焦点和顶点分别是双曲线的顶点和焦点,∴椭圆C的焦点和顶点坐标分别为(±,0)、(±3,0)∴a=3,c=∴∴椭圆C的方程是故答案为:8.一动点在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点轨迹方程是x2+y2﹣3x+2=0.【考点】轨迹方程;中点坐标公式.【分析】设出中点坐标,利用中点坐标公式求出与之有关的圆上的动点坐标,将圆上的动点坐标代入圆的方程,求出中点轨迹方程.【解答】解:设中点坐标为(x,y),则圆上的动点坐标为(2x﹣3,2y)所以(2x﹣3)2+(2y)2=1即x2+y2﹣3x+2=0故答案为:x2+y2﹣3x+2=09.若复数z满足|z+3i|=5(i是虚数单位),则|z+4|的最大值=10.【考点】复数求模.【分析】由复数模的几何意义可得复数z对应的点在以(0,﹣3)为圆心,以5为半径的圆周上,由此可得|z+4|的最大值是点(0,﹣3)与点(﹣4,0)的距离加上半径5.【解答】解:由|z+3i|=5,所以复数z对应的点在以(0,﹣3)为圆心,以5为半径的圆周上,所以|z+4|的最大值是点(0,﹣3)与点(﹣4,0)的距离加上半径5,点(0,﹣3)与点(﹣4,0)的距离:=5.|z+4|的最大值:5+5=10故答案为:10.10.设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是1.【考点】双曲线的应用;双曲线的简单性质.【分析】设|PF1|=x,|PF2|=y,根据根据双曲线性质可知x﹣y的值,再根据∠F1PF2=90°,求得x2+y2的值,进而根据2xy=x2+y2﹣(x﹣y)2求得xy,进而可求得△F1PF2的面积.【解答】解:设|PF1|=x,|PF2|=y,(x>y)根据双曲线性质可知x﹣y=4,∵∠F1PF2=90°,∴x2+y2=20∴2xy=x2+y2﹣(x﹣y)2=4∴xy=2∴△F1PF2的面积为xy=1故答案为:1.11.已知抛物线型拱桥的顶点距离水面2米时,测量水的宽为8米,当水面上升米后,水面的宽度是4米.【考点】双曲线的标准方程.【分析】以拱顶为坐标原点,拱的对称轴为y轴,水平轴为x轴建立平面直角坐标系,设抛物线方程为:x2=ay,由x=4,y=﹣2,解得a=﹣8,由此能求出当水面上升米后,水面的宽度.【解答】解:以拱顶为坐标原点,拱的对称轴为y轴,水平轴为x轴建立平面直角坐标系,设抛物线方程为:x2=ay,由x=4,y=﹣2,解得a=﹣8,当水面上升米后,y=﹣2+=﹣,x2=(﹣8)•(﹣)=12.解得x=2,或x=﹣2,∴水面宽为4(米).故答案为:4.12.已知圆x2+y2+2x﹣4y+a=0关于直线y=2x+b成轴对称,则a﹣b的取值范围是(﹣∞,1).【考点】直线与圆相交的性质.【分析】求出圆的圆心,由题意圆心在直线上,求出a,b的关系,然后确定a﹣b的范围.【解答】解:圆的方程变为(x+1)2+(y﹣2)2=5﹣a,∴其圆心为(﹣1,2),且5﹣a>0,即a<5.又圆关于直线y=2x+b成轴对称,∴2=﹣2+b,∴b=4.∴a﹣b=a﹣4<1.故答案为:(﹣∞,1)二、选择题(共4小题,每小题3分,满分12分)13.直线倾斜角的范围是()A.(0,]B.[0,]C.[0,π)D.[0,π]【考点】直线的倾斜角.【分析】根据直线倾斜角的定义判断即可.【解答】解:直线倾斜角的范围是:[0,π),故选:C.14.平面内有两定点A、B及动点P,设命题甲:“|PA|+|PB|是定值”,命题乙:“点P的轨迹是以A、B为焦点的椭圆”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】结合椭圆的定义,利用充分条件和必要条件的定义进行判断.【解答】解:若点P的轨迹是以A、B为焦点的椭圆,则根据椭圆的定义可知动点P到两定点A,B的距离之和|PA|+|PB|=2a (a>0,且a为常数)成立是定值.若动点P到两定点A,B的距离之和|PA|+|PB|=2a (a>0,且a为常数),当2a≤|AB|,此时的轨迹不是椭圆.∴甲是乙的必要不充分条件.故选:B.15.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣1【考点】复数相等的充要条件.【分析】由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项【解答】解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0∴,解得b=﹣2,c=3故选B16.对于抛物线C:y2=4x,我们称满足y02<4x0的点M(x0,y0)在抛物线的内部.若点M(x0,y0)在抛物线内部,则直线l:y0y=2(x+x0)与曲线C ()A.恰有一个公共点B.恰有2个公共点C.可能有一个公共点,也可能有两个公共点D.没有公共点【考点】抛物线的简单性质.【分析】先把直线与抛物线方程联立消去y,进而根据y02<4x0判断出判别式小于0进而判定直线与抛物线无交点.【解答】解:由y2=4x与y0y=2(x+x0)联立,消去x,得y2﹣2y0y+4x0=0,∴△=4y02﹣4×4x0=4(y02﹣4x0).∵y02<4x0,∴△<0,直线和抛物线无公共点.故选D三、解答题(共5小题,满分52分)17.已知直线l平行于直线3x+4y﹣7=0,并且与两坐标轴围成的三角形的面积为24,求直线l的方程.【考点】直线的一般式方程与直线的平行关系.【分析】设直线l的方程为:3x+4y+m=0,分别令x=0,解得y=﹣;y=0,x=﹣.利用l与两坐标轴围成的三角形的面积为24,可得=24,解得m即可.【解答】解:设直线l的方程为:3x+4y+m=0,分别令x=0,解得y=﹣;y=0,x=﹣.∵l与两坐标轴围成的三角形的面积为24,∴=24,解得m=±24.∴直线l的方程为3x+4y±24=0.18.设复数z满足|z|=1,且(3+4i)•z是纯虚数,求.【考点】复数的基本概念;复数求模.【分析】设出复数z,|z|=1可得一个方程,化简(3+4i)•z是纯虚数,又得到一个方程,求得z,然后求.【解答】解:设z=a+bi,(a,b∈R),由|z|=1得;。
2023-2024学年上海市浦东新区高二(下)期末数学试卷(含答案)
2023-2024学年上海市浦东新区高二(下)期末数学试卷一、单选题:本题共4小题,每小题3分,共12分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列说法正确的是( )A. 函数在某区间上的极大值不会小于它的极小值B. 函数在某区间上的最大值不会小于它的最小值C. 函数在某区间上的极大值就是它在该区间上的最大值D. 函数在某区间上的最大值就是它在该区间上的极大值2.已知{a n }是等差数列,则下列数列必为等比数列的是( )A. {a 2n }B. {a n ⋅a n +1}C. {log 2a n }D. {2a n }3.函数y =f(x)的图象如图所示,y =f′(x)为函数y =f(x)的导函数,则不等式f′(x)x<0的解集为( )A. (−3,−1)B. (0,1)C. (−3,−1)∪(0,1)D. (−∞,−3)∪(1,+∞)4.数列{a n }满足a 1a 2…a n =n 2.给出如下两个结论:①a 5=2516;②S 5=1525144.则下面判断正确的为( )A. ①对②错B. ①错②对C. ①②都对D. ①②都错二、填空题:本题共12小题,每小题3分,共36分。
5.2与8的等比中项是______.6.若f(x)=2x 3,则f′(2)= ______.7.等差数列{a n }中a 3=2,a 9=−10,则a 4= ______.8.f(x)=x 2sinx ,则f′(x)= ______.9.已知等差数列{a n }中,a 1=50,a 8=15,则S 8= ______.10.函数f(x)=13x 3−x−2的驻点是______.11.已知数列{a n }的前n 项和S n =n 2+n ,则a n =______.12.函数y =x−1x 的极值点的个数是______.13.已知数列{a n }满足a n +1=2a n ,a 2=4,则数列{a n }的前4项和等于______.14.函数y=−x3+12x−1,x∈[0,3]的值域是______.15.在数列1、x、y、15中,若1、x、y成等比数列,且x、y、15成等差数列,则x、y的值分别是______.16.已知函数f(x)=a2x2+lnx,若对任意两个不等的正数x1,x2,都有f(x1)−f(x2)x1−x2≥4恒成立,则a的取值范围为______.三、解答题:本题共5小题,共52分。
2023-2024学年上海杨浦区高二下学期数学期末区统考试卷及答案(2024.05)
1杨浦区2023-2024学年第二学期高二年级数学期末统考2024.06一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.抛物线24y x =的焦点坐标是________. 2.直接y x =的倾斜角大小是________.3.已知圆C 的方程是22240x y x y +−+=,则圆心C 的坐标是________. 4.平行直线3450x y +−=及3450x y ++=之间的距离是________. 5.某射击运动员平时训练成绩的统计结果如下: 命中环数 6 7 8 9 10 频率0.10.150.250.30.2如果这名运动员只射击一次,命中的环数大于8环的概率是________. 6.如图,一个圆锥形杯子,杯口半径和杯子深度都是4厘米,如果将该杯子装满饮料,则可以装________立方厘米. 7.已知()1,2,3a =−,()2,,b m n = ,若∥a b,则m n +=________. 8.同时掷两颗骰子,所得点数相同的概率是________.9.学校开展国防知识竞赛,对100名学生的竞赛成绩进行统计,发现这100名同学的成绩都在[]50,100的范围内,可得到如图所示的频率分布直方图,其中分组的区间为[)50,60的范围内,可得到如图所示的频率分布直方图,其中分组的区间为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,图中=x ________.210.在平行六面体1111ABCD A B C D −中,点,E F 分别在线段1BB 和1DD 上,且113BE BB =,123DF DD =,若1EF x AB y AD z AA =++ ,则x y z ++的值是________. 11.已知数列{}n a 是首项是1,公比为()0>q q 的等比数列,数列{}n b是通项公式是nb =.设双曲线22221n n x y a b −=的离心率为n e且2e =,则当n =_______时,n e 最大. 12.早在公元5世纪,我国数学家祖暅就提出:“幂势既同,则积不容异”.如图,抛物线C 的方程为2y x =,过点()1,0抛物线C 的切线l (l 的斜率不为0),将抛物线C 、直线l 及x 轴围成的阴影部分绕y 轴旋转一周,所得的几何体记作Ω,利用祖暅原理,可得出几何体Ω的体积为________.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分) 13.“1m =−”是“直线1:20l x my +−=与直线()2:2320l m x my m −++=互相垂直”的( ).A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.设,a b 是两条不同的直线,α是一个平面,若∥a α且∥b α,则,a b 的位置关系是( ). A .相交 B .平行 C .异面 D .不能确定 15.已知事件A 与B 互斥,它们都不发生的概率为25,且()()2=P A P B ,则()=P A ( ). A .15 B .25 C .35 D .4516.如图,已知正方体1111ABCD A B C D −的棱长为1,点M 为棱AB 的中点,点P 在正方形11BCC B 内部(不含边界)运动,给出以下三个结论中,正确的个数是( ).①存在点P 满足11PD MB ⊥;3②存在点P 满足1PD 与平面11A D M 所成角的大小为60°; ③存在点P 满足1125MD MP +=. A .0 B .1 C .2 D .3三、解答题17.(本题满分14分,第1小题满分6分,第2小题满分8分) 设数列{}n a 为等差数列,其公差为d ,前n 项和为n S . (1)已知221a =,776a =,求1a 及d ; (2)已知610a =,55S =,求8S .18.(本题满分14分,第1小题满分7分,第2小题满分7分)如图,三棱柱111OAB O A B −中,11OA OB OO ===,90AOB ∠=°,1OO 垂直于平面OAB . (1)求异面直线1AO 与1OB 所成角的大小; (2)求点O 到平面1AO B 的距离.某篮球特色学校调查学生投篮技能情况,请每个学生投篮5次并记录进球数,随机抽取高一年级和高二年级各100名学生的进球数作为样本,如果统计如下(其中∈b );a ,∈进球数0 1 2 3 4 5高一人数 4 2 a b42 12高二人数 3 1 12 44 33 7 (1)请写出高二年级样本的中位数;(2)若高一年级样本的平均数3.2,求a的值;(3)在这200名学生中,高一高二年级各选取1人,若“至少有一个人的进球数为2”的概率是40.16%,求a的值;4端午节吃粽子,用箬竹叶包裹而成的三角粽是上海地区常见的一种粽子,假设其形状态是一个正四面体,如图记作正四面体A BCD−,设棱长为a.(1)求证:BC AD⊥;(2)求箬竹叶折出的二面角A BC D−−的大小;(3)用绳子捆扎三角粽,要求绳子经过正四面体的每一个面、不经过顶点,并且绳子的起点和终点重合.请设计一种捆扎三角粽的方案,使绳子长度最短(不计打结用的绳子),请在图中作出绳子捆扎的路径,并说明理由.5621.(本题满分18分,第1小题满分2分,第2小题满分8分,第3小题满分) 如图,已知椭圆C 的方程为2214x y +=,点,A B 分别是椭圆C 的左、右顶点,点E 的坐标是()4,0,过点E 的动直线l 交椭圆C 于点,P Q (点P 的横坐标小于点Q 的横坐标). (1)求椭圆C 焦点的坐标;(2)是否存在常数λ,使OP OQ EP EQ ⋅+λ⋅为定值,若存在,求出λ的值;若不存在,请说明理由.(3)当设直线l 的斜率不为0时,设直线AP 与BQ 交于点S .请提出一个与点S 有关的问题,并求解该问题.(备注:本小题将根据提出问题的质量及其解答情况进行分层计分.)7参考答案一、填空题 1.()1,0; 2.4π; 3.()1,2−; 4.2; 5.0.5; 6. 643π; 7. 2; 8.16; 9.0.030; 10.13; 11. 10或11 12. 43π. 二、选择题13. A 14. D 15.C 16.C 15.已知事件A 与B 互斥,它们都不发生的概率为25,且()()2=P A P B ,则()=P A ( ). A .15 B .25 C .35 D .45【答案】C【解析】由,A B 都不发生的概率为25,可得()()23155P A P B +=−=, 将()()2P A P B =代入,得()15P B =,()()225==P A P B ,所以()35=P A ,故答案为C. 三.解答题17.(1)110,11==a d ;(2)844=S . 18.(1)60°;(2. 19.(1)3;(2)30a =;(3)32a =. 20.【答案】(1)证明略;(2)arctan (3)图略. 21.【答案】(1)();(2)179λ=−;(3)点S 的横坐标恒为1.。
上海高二年级第二学期期末考试(数学)
上海高二年级第二学期期末考试卷数学一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编码的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.的共轭复数是是虚数单位)(2i i -________________ .2.0732)2,1(=-+-y x 且以直线过点的法向量为方向向量的直线方程为______________________ .3.已知四棱锥P ABCD -的底面是边长为4的正方形,侧棱PA ⊥底面ABCD , 且6=PA ,则该四棱锥的体积是___________________ .4.动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则点P 的轨迹方程为________________ .5.把地球看作是半径为R 的球,A 、B是东经060圈上两点,它们的纬度差为030,则A 、B两点间的球面距离是____________________.6.若关于x 的实系数一元二次方程02=++q px x 有一个根为)(1是虚数单位i i +,则q 的值为______________________.7.如图,一个直三棱柱形的密闭容器111C B A ABC -盛有水 ,41=AA ,若以B B AA 11液面恰好过AC 、BC 、11C A 、11C B 的中点,则以面ABC 为底面水平放置时液面的高度为________________.8.过椭圆)0(12222>>=+b a b y a x 的左焦点)0,(1c F -作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则a c 的值为_______________________________.9.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被这两个平面分成三部分,这三部分的体积由小到大的比为_________. 10.直线P y x 上有一点042=--,它与两定点)3()14(,4B,A -的距离之差最大,则P 点坐标为_________.11.四面体A —BCD 的四个顶点都在半径为2的球面上,且AB 、AC 、AD 两两垂直,则的最大值是ACD ABD ABC S S S ∆∆∆++________12.等边圆柱(轴截面是正方形)、球、正方体的体积相等,它们的表面积正方体球圆柱、S、S S由小到大的顺序是__________ .13.命题p :实系数一元二次方程022=++ax x 的两根都是虚数;命题q :存在复数z 同时满足12=+=a z z 且.则p 是q 的_________条件.14.如图从双曲线12222=-b ya x 的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT ,交双曲线右支于P ,若M 为线段FP 的中点,O 为原点,则MTMO -的值为(用a 、b 表示)_________________ .二.选择量(本大题满分20分)本大题共有4题,每题有且只有一个正确答案。
上海市高二下学期期末考试数学试题(带答案)
高二下学期期末考试数学试题(考试时间:120分钟 满分:150分 )一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.过点)2,1(、)6,3(的直线的斜率为______________.2.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________.3.正四面体ABC S -的所有棱长都为2,则它的体积为________.4.以)2,1(-为圆心且过原点的圆的方程为_____________.5.某几何体的三视图如图所示,则该几何体的体积为__________.6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.7.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________. 8.双曲线1422=-y x 的顶点到其渐近线的距离等于_________. 9.已知球的半径为1,A 、B 是球面上两点,线段AB 的长度为3,则A 、B 两点的球面距离为 ________.10.在长方体1111D C B A ABCD -中,已知36,91==BC AA ,N 为BC 的中点,则直线11C D 与 平面N B A 11的距离是___________.11.从3名骨科、4名脑外科和5名内科医生中选派6人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答).12. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若 AB 的中点坐标为(1,1)-,则E 的方程为_________________.13.设实数y x ,满足⎪⎩⎪⎨⎧≤-≥-+≤--,032,042,02y y x y x 则y x z -=2的最大值为____________.14.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一 个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直 线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编 号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.在正方体1111D C B A ABCD -中,任取两条棱,则这两条棱为异面直线的概率为( )A .112B .114C .116D .11816.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80),[80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .12017.=++-+++-+1)1(4)1(6)1(4)1(234x x x x ( )A .4xB .4x -C .1D .1- 18.若直线m x y l +-=2:与曲线|4|21:2x y C -=有且仅有三个交点,则m 的取值范围是() A .)12,12(+- B .)2,1( C .)12,1(+ D .)12,2(+三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.19.(12分)求8)32(xx +的二项展开式中的第5项的二项式系数和系数.20.(14分)求半径为10,且与直线07034=-+y x 相切于)10,10(的圆的方程.21.(14分)已知椭圆13422=+y x 上存在两点A 、B 关于直线m x y +=4对称,求m 的取值范围.22.(16分)如图,四棱柱1111D C B A ABCD -中, 侧棱⊥A A 1底面ABCD ,AD AB DC AB ⊥,//, 1==CD AD ,21==AB AA ,E 为棱1AA 的中点.(1) 证明:CE C B ⊥11;(2) 求异面直线E C 1与AD 所成角的大小.(结果用反三角函数值表示)23.(18分)下图是利用计算机作图软件在直角坐标平面xOy 上绘制的一列抛物线和一列直线,在焦点为n F 的抛物线列x p y C n n 4:2=中,n p 是首项和公比都为)10(<<p p 的等比数列,过n F 作斜率2的直线n l 与n C 相交于n A 和n B (n A 在x 轴的上方,n B 在x 轴的下方).(1)证明:n OA 的斜率是定值;(2)求1A 、2A 、Λ、n A 、Λ所在直线的方程;(3)记n n OB A ∆的面积为n S ,证明:数列}{n S 是等比数列,并求所有这些三角形的面积的和.第23题图第二学期高二年级数学学科期末考试卷参考答案19.(12分)解:4485)32)((x x C T =, 所以二项式系数为7048=C ,系数为811120.21.(14分)解:设直线AB 方程为b x y +-=4,联立 ⎪⎩⎪⎨⎧+-==+,4,124322b x y y x 得,0481681322=-+-b bx x 从而,138b x x B A =+ ,13242)(41b b x x y y B A B A =++-=+则B A ,中点是)1312,134(b b, 则,013121344=+-⋅m b b 解得.134b m -= 由0481681322=-+-b bx x 有实数解得,0)4816(526422≥--=∆b b 即.4132≤b 于是.413)413(2≤-m 则m 的取值范围是.1313213132≤≤-m23.(18分)解:(1)由已知得n n p p =,抛物线焦点)0,(n n p F ,抛物线方程为x p y n42=,直线n l 的方程为).(2n p x y -=于是,抛物线n C 与直线n l 在x 轴上方的交点),(11y x A n 的坐标满足⎪⎩⎪⎨⎧-==),(2,411121n n p x y x p y 则有,042211121=-+x y x y而直线n OA 的斜率为11x y k n OA =,则,042112=-+OA OA k k 解得,51±-=n OA k 又,0>k 点n A 在第一象限,则51+-=n OA k ;(2)直线方程为x y )51(+-=;(3)由⎪⎩⎪⎨⎧-==),(2,42n n p x y x p y 得,04222=--n n p y p y 则n p AB 10||=, 而O 到直线n l 的距离为52np ,于是n n OB A ∆的面积n n p S 252=,所以数列}{n S 是以252p 为首项,2p 为公比的等比数列.由于10<<p , 所以所有三角形面积和为22152p p -.。
上海市高二下学期期末数学试题(解析版)
5.双曲线的渐近线方程为22124x y -=6.以为圆心,且经过()1,1C 7.如图所示,靶子由一个中心圆面概率分别为0.35、0.30、0.25A.2 B.315.下列命题:①底面是正多边形的棱锥是正棱锥;②各侧棱的长都相等的棱锥是正棱锥;③各侧面是全等的等腰三角形的棱锥是正棱锥A .80厘米B .100厘米C .120厘米D .140厘米三、解答题17.设等比数列的前项和为,已知,.{}n a n n S 34a =632a =- (1)根据茎叶图提供的有限信息,求频率分布直方图中和的值,指出样本的x y(1)当点是棱的中点时,求证:直线M 1CC (2)当时,求点11D M AB ⊥(3)当平面将正四棱柱1AB M 线段的长度.MC 21.如图,已知点(2,1A (1)求椭圆的离心率;Γ(2)直线交椭圆于两点(BD ΓB D 、为2,直线是否过定点?若是,请求出该定点的坐标;若不是,请说明理由BD (3)点、点是椭圆上的两个点,圆E G Γ【详解】 由题意可得,,则异面直线11//AC A C ,且为等腰直角三角形,所以CAB ABC 故答案为:45︒2x 【解析】根据方程得出,即可得出该双曲线的渐近线方程2,2a b ==【详解】 设圆锥底面圆半径AO OB ==因为圆锥的体积为,即3π3π,所以333SO SAB OA ===故答案为:. π3①②④设正三棱柱的各条棱长都为111ABC A B C -1(0,0,0),(0,2,0),(3,1,0),(0,0,B A C B于是,.()()()10049991101,49999914900i a i i a =+--=+-=故答案为:4900.13.C【分析】由向量相等的定义即可判断.【详解】由相等向量的定义:方向相同且大小相等的两个向量是相等向量,故在长方体中,与相等的向量是、、,1111ABCD A B C D -AB DC 11A B 11D C 故选:C14.D【分析】根据球的几何性质,利用截面距及球半径由勾股定理计算即可求得截面圆半径.【详解】如图所示,为球面上一点,则,C 5OC =球心到平面的距离为3,即,且,O α13OO =11OO O C ⊥则小圆的半径长即为,1O 1O C 在中,由勾股定理可得,解得.1OO C 22211OC OO O C =+14O C =故选:D15.A【分析】由正棱锥满足的条件即可判断.【详解】是正棱锥必须满足两个条件:(1)底面是正多边形(2)过顶点作底面垂线,垂足为底面正多边形中心,即侧面是全等的等腰三角形.对于①,底面是正多边形的棱锥,但侧面不是全等的等腰三角形时不满足条件(2),故错误;对于②,比如一个四棱锥满足各侧棱的长都相等,但其底面可以为矩形,此时不满足条件(1),故错误;对于③,比如一个四棱锥满足各侧面是全等的等腰三角形,但其底面可以为菱形,此时不满足条件(1),故错误.丝带从棱上的点出发,沿着长方体的各个表面绕行一圈回到AD G 方体从面1111ABCD A B C D -ABCD 所示:则线段即为最短路径,即为所需丝带的最短长度,1GG 易知,,所以180HG =60HG =2180GG =+所以在捆扎方案一中,丝带长度最短为100厘米;在捆扎方案二中,所需丝带长度为矩形ABCD()(11,1,1,0,1,1AM B M ==- 由,10AM B M ⋅= 1AM D M ⋅ 又,、11B M D M M ⋂=1B M 所以直线平面AM ⊥11B MD (2)如图,以为原点,A(3)作平行于,交MN 1B A 连接,设线段的长为BM CM 由得,12CN h =2hCN =S 梯形可得11324M ABCN h V -⎛⎫=⨯+⨯ ⎪⎝⎭又由112132M ABB V -⎛⎫=⨯⨯⨯ ⎪11NMC AB B P AB B P NMC V V V ---=-棱台棱锥棱锥()21111113343h x x x ⎛=⨯⨯+-⨯⨯= ⎝由题意,()1112NMC AB B V -=⨯⨯⨯棱台所以,整理得21121h x ⎛⎫-+=即,则点223n =()(0,E n r y +,整理得()2222y rn rn r =++++由得()220142n r y ++=02y -=。
2023-2024学年上海中学高二下学期数学期末试卷及答案(2024.06)
1上海中学2023-2024学年第二学期高二年级数学期末2024.06一、填空题(每题3分,共36分)1.已知事件A 满足()0.3P A =,则()P A =___________.2.将4封不同的信投入3个不同的信箱,则不同的投递方式共有___________种.3.已知3223n n C P =,则n =___________.4.在()101x +的展开式中,3x 的系数为.___________(以数字作答)5.函数()242f x lnx x x =−−的驻点为___________.6.若随机变量X 服从正态分布()1,3,21N Y X =+,则[]D Y =___________.7.集合A 是{}12,3,4,5,6,7,8,9,10,的子集,且A 中的元素有完全平方数,则满足条件的集合A 共有___________个.8.从正方体的12条棱中选择两条,这两条棱所在直线异面直线的概率为___________. 9.若不等式x e ax ≥对任意1x ≥−成立,则a 的取值范围是___________.10.对于在定义域上恒大于0的函数()f x ,令()()g x lnf x =.已知()f x 与()g x 的导函数满足关系式()()()f x f x g x ′=′.由此可知,函数()2x f x x =在1x =处的切线方程为___________.11.甲、乙、丙、丁、戊乘坐高铁结伴出行并购买了位于同一排座位的五张车票,因此他们决定自行安排这些座位.高铁列车的座位安排如图,甲希望坐在靠窗的座位上,乙不希望坐在B 座,丙和丁希望坐在相邻的座位上(中间不能隔着过道),则满足要求的座位安排方式共有___________种.12.将1,2,3,4,5,6的所有排列按如下方式排序:首先比较从左至右第一个数的大小,较大的排列在后;若第一个数相同,则比较第二个数的大小,较大的排列在后,依此类推.按这种排序2方式,排列2,3,4,5,6,1的后一个排列是___________. 二、选择题(每题4分,共16分) 13.设()2f x sin x =,则()f x ′=( )(A)2cos x (B)2cos x − (C)22cos x (D)22cos x −14.某班级共有40名同学,其中15人是团员.现从该班级通过抽签选择10名同学参加活动,定义随机变量X 为其中团员的人数,则X 服从( )(A)二项分布 (B)超几何分布 (C)正态分布 (D)伯努利分布 15.将一枚硬币连续抛掷三次,每次得到正面或反面的概率均为12,且三次抛掷的结果互相独立.记事件A 为“至少两次结果为正面”,事件B 为“第三次结果为正面”,则()P B A =∣( ) (A)12 (B)23 (C)34 (D)7816.现有编号分别为()1,2,,*n n N …∈的小球各两个,每个球的大小与质地均相同.将这2n 个球排成一列,使得任意编号相同的球均不相邻,记满足条件的排列个数为n a ,则( ) ①对任意,*n n N a ∈都是偶数;②()()()11212n n a n n a n −>−−≥.(A)①②都是真命题 (B)①是真命题,②是假命题 (C)①是假命题,②是真命题 (D)①②都是假命题 三、解答题(本大题共5题,共48分,解答各题须写出必要的步骤) 17.(本题8分)求函数()()231x f x e x x =⋅−+的单调区间.18.(本题8分)某公司对购买其产品的消费者进行了调研,已知这些消费者在一年内再次购买产品的概率为33%,且这些消费者可以分为A B C、、三类.其中A类消费者占30%,其在一年内再次购买产品的概率为60%;B类消费者占40%,其在一年内再次购买产品的概率为30%;C类消费者占比x%,其在一年内再次购买产品的概率为y%.(1)求x与y的值.(2)若一名消费者在一年内再次购买了产品,求其是B类消费者的概率.19.(本题10分)某学校举办知识竞赛,该竞赛共有三道问题,参赛同学须回答这些问题,以其答对的问题的得分之和作为最终得分.每个问题的得分与参赛同学答对的概率如下表(每次回答是否正确相互独立).定义随机变量X为最终得分.(1)求()50P X=.(2)求[]D X.E X与[]3420.(本题10分)设函数()()()1f x x x x a =−−,其中1a >.且()f x 在0x =与x a =处的切线分别为12,l l .(1)若1l 与2l 平行,求a 的值.(2)记(1)中a 的值为0a .当0a a >时,记12,l l 与x 轴围成的三角形面积为S .当S 取到最小值时,求a 的值.21.(本题12分)仿照二项式系数,可以定义“三项式系数”k n T 为()21nx x ++的展开式中kx 的系数()02k n ≤≤,即()201122221.nn n n n n n x x T T x T x T x ++++++其中0122,,,,n n n n n T T T T Z …∈. (1)求234333,,T T T 的值:(2)对于给定的*n N ∈,计算以下两式的值:20n knk T =∑与20nk n k k T =∑(3)对于*n N ∈,记0122,,,,n n n n n T T T T …中偶数的个数为n a ,奇数的个数为n b .是否存在n 使得2024n n a b −≥?若存在,请给出一个满足要求的n 并说明理由;若不存在,请给出证明.5参考答案一、填空题1.0.7;2.81;3.11;4.120;5.1;6.12;7.896;8.411;9.1,e e−; 10.210x y −−=; 11.11 12.2,3,4,6,1,5二、选择题13.C 14.B 15.C 16.A 三.解答题17.(1)增区间为()(),1,2,−∞−+∞,减区间为[]1,2− 18.(1)30,10x y == (2)123319.(1)0.36 (2)[]57E X =,[]853D X = 20.(1)2 (221.(1)234333676,,T T T ===(2)203nnk nk T ==∑,203n nk n k k T n ==⋅∑ (3)1024n =。
上海市民办尚德实验学校2023-2024学年高二下学期期末考试数学试卷
上海市民办尚德实验学校2023-2024学年高二下学期期末考试数学试卷一、填空题1.已知集合(1,2),(0,3)A B =-=,则A B =I .2.函数y3.若()2f x x x =+,则()0(im 11)l x f x f x →∆+∆-∆=.4.关于x 的方程2321x x x -+-+=-的解集为.5.设lg2a =,lg3b =,则5log 12=.(结果用a 和b 表示)6.已知21110x nx ++=,且()22210,2x nx n ++=>且12x x ≠,则12x x ⋅=7.设132y x x =-,则满足0y <的x 的取值范围为.8.曲线313y x =在8(2,)3P 点处的切线方程为. 9.已知()32023f x x x =+,若实数(),0,a b ∈+∞且113022f a f b ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,则11a b +的最小值是. 10.采矿、采石或取土时,常用炸药包进行爆破,部分爆破呈圆锥漏斗形状(如图),已知圆锥的母线长是炸药包的爆破半径R ,它的值是固定的.当炸药包埋的深度为可使爆破体积最大.11.已知函数1()2xf x ⎛⎫= ⎪⎝⎭与2()24(0)g x x ax a =-+>,若对任意的1(0,1)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,则实数a 的取值范围是.12.已知函数()()222311e ex x x x f x a a 骣琪=+-+-琪桫有三个不同的零点123,,x x x ,其中123x x x <<则3122312111e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为.二、单选题13.已知R a b ∈、,则“1,1a b >>”是“1ab >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件 14.下列求导计算正确的是( )A .()e e x x x '=B .2ln 1ln x x x x '-⎛⎫= ⎪⎝⎭C .()()122121x x --'⎡⎤+=-+⎣⎦D .()cos 1sin x x x '+=+15.已知函数()f x ,其导函数()f x '的图象如图所示,则( )A .()f x 有2个极值点B .()f x 在1x =处取得极小值C .()f x 有极大值,没有极小值D .()f x 在(),1-∞上单调递减16.设非空集合S ={x | m ≤x ≤l }满足:当x ∈S 时,有x 2∈S . 给出如下三个命题:①若m =1,则S ={1};②若m =12- ,则14 ≤ l ≤ 1;③ l =12,则0m ≤ 其中正确命题的个数是A .0B .1C .2D .3三、解答题17.已知2()ln 3f x x x x =+-.求:(1)函数()y f x =的单调区间及极值;(2)函数()y f x =在区间1,44⎡⎤⎢⎥⎣⎦上的最大值与最小值. 18.已知()()1R 1f x ax a x =+∈+. (1)当1a =时,求不等式()()11f x f x +<+的解集;(2)若[]1,2x ∈时,()f x 有零点,求a 的范围.19.随着环保意识的增强,电动汽车正成为人们购车的热门选择.某型号的电动汽车经高速路段(汽车行驶速度不低于60km /h )测试发现:①汽车每小时耗电量P (单位:KWh )与速度v (单位:km /h )的关系满足()()20.0020.04560120P v v v v =-+≤≤;②相同路程内变速行驶比匀速行驶耗电量更大.现有一辆同型号电动汽车从A 地经高速公路(最低限速60km /h ,最高限速120km /h )驶到距离为500km 的B 地,出发前汽车电池存量为75KWh ,汽车到达B 地后至少要保留5KWh 的保障电量.(假设该电动汽车从静止加速到速度为v 的过程中消耗的电量与路程都忽略不计).(1)判断该车是否可以在不充电的情况下到达B 地,并说明理由;(2)若途经服务区充电桩功率为15kw (充电量=充电功率⨯时间),求到达B 地的最少用时(行驶时间与充电时间总和).20.已知函数12x x b y a+=+(0b >且1b ≠) (1)若2a b ==,求函数的值域;(2)若0a =,是否存在正数b ,使得函数是偶函数,请说明理由.(3)若0a >,4b =,且函数在[)1,-+∞上是严格增函数,求实数a 的取值范围.21.对于在某个区间[),a +∞上有意义的函数()f x ,如果存在一次函数()g x kx b =+使得对于任意的),x a ⎡∈+∞⎣,有()()1f x g x -≤恒成立,则称函数()g x 是函数()f x 在区间[),a +∞上的弱渐近函数.(1)判断()g x x =是否是函数()f x [)1,+∞上的弱渐近函数,并说明理由.(2)若函数()31g x x =+是函数()3m f x x x=+在区间[)4,+∞上的弱渐近函数,求实数m 的取值范围;(3)是否存在函数()g x kx =,使得()g x 是函数()f x =[)1,+∞上的弱渐近函数?若存在,求出实数k 的取值范围;若不存在,说明理由.。
上海高二数学下学期期末考试试卷含答案(共3套)
上海市静安区第二学期高中教学质量检测高二数学试卷一、填空题1.若一个实系数一元二次方程的一个根是112z i =+,则此方程的两根之积为______.2.1-的平方根为______.3.如图,在四棱柱1111ABCD A BC D -中,3AB =,14AA =,则11AC 与1BC 所成角的余弦值为______.4.622x x ⎛⎫- ⎪⎝⎭的二项展开式中3x 项的系数为______. 5.设A 、B 是半径为1的球面上一个大圆上的两点,且1AB =,则A 、B 两点的球面距离为______.6.在3名男生和4名女生中选出3人,男女生都有的选法有______种.7.由一条直线和直线外的5个点可确定平面的个数最多为______.8.请列举出用0,1,2,3,4这5个数字所组成的无重复数字且比3000大的,且相邻的数字的奇偶性不同的所有四位数奇数,它们分别是______.二、选择题9.复数a bi +(a 、b R ∈)和c di +(c 、d R ∈)的积是实数的充要条件是( )A .0ad bc +=B .0ac bd +=C .ac bd =D .ad bc = 10.①垂直于同一直线的两条不同的直线平行;②垂直于同一平面的两条不同的直线平行;⑤平行于同一平面的两条不同的直线平行;④平行于同一直线的两条不同的直线平行.以上4个关于空间直线与平面的命题中真命题的个数是( )A .1B .2C .3D .4三、解答题11.(1)设m 、*n N ∈,m n ≤,求证:1111m m n n n C C m +++=+; (2)请利用二项式定理证明:()2*3213,n n n n N >+≥∈. 12.如图,菱形ABCD 的边长为2,60A ∠=︒,将ABD △沿BD 翻折,使点A 移至点P .(1)求证:BD PC ⊥;(2)若二面角P BD C --的平面角为60︒,求PC 与平面BCD 所成角的大小.13.如图,我们知道,圆锥是Rt AOP △(及其内部)绕OP 所在的直线旋转一周形成的几何体.我们现将直角梯形11AOO A (及其内部)绕1OO 所在的直线旋转一周形成的几何体称为圆台.设1O 的半径为r ,O 的半径为R ,1OO h =.(1)求证:圆台的体积3313R r V h R rπ-=⋅-; (2)若2R =,1r =,3h =,求圆台的表面积S .14.现新定义两个复数111z a bi =+(1a 、1b R ∈)和222z a b i =+(2a 、2b R ∈)之间的一个新运算⊗,其运算法则为:121212z z a a bb i ⊗=+.(1)请证明新运算⊗对于复数的加法满足分配律,即求证:()1231213z z z z z z z ⊗+=⊗+⊗;(2)设运算○÷为运算⊗的逆运算,请推导运算○÷的运算法则.高二数学试卷答案一、填空题1.52.i ± 3.10 4.-160 5.3π6.30 7.158.4103,4301,4123,4321 二、选择题9.A 10.B三、解答题11.证:(1)()()()()111!1!11!!1!!1m m n nn n n n C C m n m m m n m m +++++==⋅=+-+-+; (2)当3n ≥,*n N ∈时,()122312122...2n n n n n C C =+=+⋅+⋅++122212221n n C C n >+⋅+⋅=+12.(1)证:设BD 的中点为E ,联结,PE CE .∵ABCD 是菱形,∴BD PE ⊥,BD CE ⊥.又PC 在平面PEC 上,∴BD PC ⊥.(2)在AEC △中,作PO EC ⊥,O 是垂足,又由(1)有PO BD ⊥,∴PO ⊥平面BCD ,∴点O 是点P 在平面BCD 上的射影,∴PCO ∠既为PC 与平面BCD 所成角.∵BD PE ⊥,BD CE ⊥,∴60PEC ∠=︒,∵PE CE =,∴AEC △是等边三角形.13.解:(1)证:∵11~PAO PAO △△, ∴11PO r PO h R=+,解得1rh PO R r =-,∴2211133V R PO r PO ππ=⋅-⋅ 221133rh rh R h r R r R r ππ⎛⎫=⋅+-⋅ ⎪--⎝⎭ 2313R r h R rπ-=⋅- (2)在PAO △中,过点1A 作1AB AO ⊥,B 是垂足, 则在1Rt ABA △中,1AB R r =-=,1A B∴160A AB ∠=︒,∴4PA =,12PA =, 所以,该圆台的表面积221112222S R PA r PA R r ππππ=⋅-⋅++ 22111221122R PA r PA R r πππππ=⋅-⋅++= 14.解:(1)证:设333z a b i =+(3a 、3b R ∈).左()()()()123112323z z z a b i a a b b i =⊗+=+⊗+++⎡⎤⎣⎦()()123123a a a b b b i =+++()()12131213a a a a bb bb i =+++右121312121313z z z z a a bb i a a bb i =⊗+⊗=+++()()12131213a a a a bb bb i =+++左=右,证毕.(2)因为运算○÷为运算⊗的逆运算,所以1z ○÷2z 的运算结果是关于变量z 的方程21z z z ⊗=的解. 设z x yi =+(x 、y R ∈),则()()2211x yi a b i a bi +⊗+=+,即2211xa yb i a bi +=+.当10a ≠,10b ≠时,解得,21a x a =,21b y b =.∴1122a b z i a b =+, 故,当10a ≠,10b ≠时,1z ○÷11222a b z i a b =+.上海市嘉定区第二学期高二年级数学期末质量调研(满分150分,时间120分钟)一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.抛物线24y x =的焦点坐标为 .2.平面直角坐标系中点)2,1(到直线012=++y x 的距离为 .3.若复数z 满足(1i)4z -=(i 是虚数单位),则z 的虚部是 .4.世界杯小组赛,从四支队伍中出线两支队伍,则出线队伍共有 种不同的组合.5.侧棱长为3,底面面积为8的正四棱柱的体对角线的长为 .6.双曲线22133x y -=的两条渐近线的夹角大小为 . 7.底面半径和高均为3的圆柱的表面积为 .8.双曲线221y x m +=的虚轴长是实轴长的2倍,则m = . 9.已知空间直角坐标系中,某二面角-l-αβ的大小为θ,02πθ<<,半平面α和β的一个法向量分别为1(1,3,0)n =,2(0,2,4)n =,则θ= .(结果用反三角函数值表示)10.二项式31(2)x x +的展开式中各项系数的和是 .11.有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,容器内放着49个半径为1厘米的玻璃球,在向容器倒满水后,再把玻璃球全部取出,则此时容器内水面的高度为 厘米.12.已知定点(0,2)P ,点Q 在抛物线24x y =上运动,若复数12z z 、在复平面内分别对应点P Q 、的位置,且12z z z =-,则z 的最小值为 .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.空间内,异面直线所成角的取值范围是……………………………………( ). (A) π(0,)2 (B) π(0,]2(C) π[0,)2 (D) π[0,]214.“14a =”是“直线(1)310a x ay +++=与直线(1)(1)30a x a y -++-=相互垂直”的 ……………………………………………………………………………( ).(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件15.曲线22:21x xy y Γ-+=的图像………………………………………………( ).(A)关于x 轴对称 (B)关于原点对称,但不关于直线y x =对称(C)关于y 轴对称 (D)关于直线y x =对称,也关于直线y x =-对称16.下列命题中,正确的命题是……………………………………………………( ).(A) 若1z 、2z ∈C ,120z z ->,则12z z >.(B) 若z ∈R ,则2||z z z ⋅=不成立.(C) 12z z ∈C 、,120z z ⋅=,则10z =或20z =.(D) 12z z ∈C 、,22120z z +=,则10z =且20z =.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. (本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知复数2i α=-,i m β=-,m ∈R .(1)若2αβα+<,求实数m 的取值范围;(2)若β是关于x 的方程2100()x nx n -+=∈R 的一个根,求实数m 与n 的值.18.(本题满分14分)本题共2小题,第(1)小题7分,第(2)小题7分.如图,长方体1111B ABC A C D D -中,2AB BC ==,直线1A C 与平面ABCD 所成的角的大小为4π. (1)求三棱锥1A A BD -的体积;(2)求异面直线1A B 与1B C 所成角的大小.19.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.已知4()2n x x +的二项展开式中,第三项的系数为7.(1)求证:前三项系数成等差数列;(2)求出展开式中所有有理项(即x 的指数为整数的项).20.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题6分.已知椭圆22221(0)x y a b a bΓ+=>>:的左右顶点分别是(2,0)(2,0)A B -,,点1(3,)2在椭圆上.过该椭圆上任意一点P 作PQ x ⊥轴,垂足为Q ,点C 在QP 的延长线上,且QP PC =.(1)求椭圆Γ的方程;(2)求动点C 的轨迹E 的方程;(3)设直线AC (C 点不同于A B 、)与直线2x =交于R ,D 为线段RB 的中点,证明:直线CD 与曲线E相切.21. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.在平面直角坐标系中,O 为坐标原点.已知曲线C 上任意一点(,)P x y (其中0x ≥)到定点(1,0)F 的距离比它到y 轴的距离大1.(1)求曲线C 的轨迹方程;(2)若过点(1,0)F 的直线l 与曲线C 相交于不同的,A B 两点,求OA OB ⋅的值;(3)若曲线C 上不同的两点M 、N 满足0,OM MN ⋅=求ON 的取值范围.第二学期高二期末质量调研数学答案(满分150分,时间120分钟)考生注意:1.答卷前,考生务必在答题纸上将学校、班级、考试号、姓名等填写清楚.2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.本试卷共有21道试题,可以使用规定型号计算器.一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分. 1.抛物线24y x =的焦点坐标为 . (1,0)2.平面直角坐标系中点)2,1(到直线012=++y x 的距离为 .3.若复数z 满足(1i)4z -=(i 是虚数单位),则z 的虚部是 . 24.世界杯小组赛,从四支队伍中出线两支队伍,则出线队伍共有 种不同的组合.246C =5.侧棱长为3,底面面积为8的正四棱柱的体对角线的长为 . 56.双曲线22133x y -=的两条渐近线的夹角大小为 . π2 7.底面半径和高均为3的圆柱的表面积为 .36π8.双曲线221y x m+=的虚轴长是实轴长的2倍,则m = .4- 9.已知空间直角坐标系中,某二面角-l-αβ的大小为θ,02πθ<<,半平面α和β的一个法向量分别为1(1,3,0)n =,2(0,2,4)n =,则θ= .(结果用反三角函数值表示) 10.二项式31(2)x x+的展开式中各项系数的和是 .2711.有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,容器内放着49个半径为1厘米的玻璃球,在向容器倒满水后,再把玻璃球全部取出,则此时容器内水面的高度为 厘米.612.已知定点(0,2)P ,点Q 在抛物线24x y =上运动,若复数12z z 、在复平面内分别对应点P Q 、的位置,且12z z z =-,则z 的最小值为 . 2二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.空间内,异面直线所成角的取值范围是……………………………………( B ). (A) π(0,)2(B) π(0,]2(C) π[0,)2(D) π[0,]214.“14a =”是“直线(1)310a x ay +++=与直线(1)(1)30a x a y -++-=相互垂直”的 ……………………………………………………………………………( A ). (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件15.曲线22:21x xy y Γ-+=的图像………………………………………………( D ).(A)关于x 轴对称 (B)关于原点对称,但不关于直线y x =对称(C)关于y 轴对称 (D)关于直线y x =对称,也关于直线y x =-对称 16.下列命题中,正确的命题是……………………………………………………( C ). (A) 若1z 、2z ∈C ,120z z ->,则12z z >. (B) 若z ∈R ,则2||z z z ⋅=不成立.(C) 12z z ∈C 、,120z z ⋅=,则10z =或20z =.(D) 12z z ∈C 、,22120z z +=,则10z =且20z =.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. (本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知复数2i α=-,i m β=-,m ∈R . (1)若2αβα+<,求实数m 的取值范围;(2)若β是关于x 的方程2100()x nx n -+=∈R 的一个根,求实数m 与n 的值.解: (1)αα==………………………………………………………………2分于是 222i m i m i αβ+=-+-=+-=…………………………4分又2αβα+< ,所以()22425m ++<62m -<<. …………6分所以实数m 的取值范围为(6,2)-. …………………………………………………7分(2)因为m i -(m ∈R )是方程2100()x nx n -+=∈R 的一个根,m i +(m ∈R )也是此方程的一个根,…………………………………………9分于是()()()()10m i m i nm i m i ++-=⎧⎪⎨+⋅-=⎪⎩ …………………………………………………11分解得36m n =⎧⎨=⎩ 或36m n =-⎧⎨=-⎩,且满足2()4130,n ∆=--⨯<……………………13分所以36m n =⎧⎨=⎩或36m n =-⎧⎨=-⎩ ……………………………………………………………14分18.(本题满分14分)本题共2小题,第(1)小题7分,第(2)小题7分.如图,长方体1111B ABC A C D D -中,2AB BC ==,直线1A C 与平面ABCD 所成的角的大小为4π. (1)求三棱锥1A A BD -的体积;(2)求异面直线1A B 与1B C 所成角的大小. 解:(1)联结AC , 因为1AA ABCD ⊥平面,所以1ACA ∠就是直线1A C 与平面ABCD 所成的角,………………………………2分 所以14A CA π∠=,所以122AA =……………………………………………4分所以11114233A BD ABD ABD A A V V S A A --==⋅7分(2)联结1A D ,BD因为11//A B CD ,所以11//AD B C 所以1BA D ∠就是异面直线1A B 与1B C 所成的角或其补角………………………10分在△1BA D 中,2221(23)(23)(22)2cos 322323BA D ∠==⨯⨯所以12arccos3BA D ∠=……………………………………………………………13分 所以异面直线1A B 与1B C 所成角的大小是2arccos 3…………………………………14分19.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.已知4()2n x x+的二项展开式中,第三项的系数为7.(1)求证:前三项系数成等差数列;(2)求出展开式中所有有理项(即x 的指数为整数的项). 解:(1)322222341()()42n-n nn T C x C x x-==…………………………………2分22172884n n C C n =⇒=⇒=,……………………………………………4分 所以前三项分别为0804184()()2T C x x x==,131714284()()42T C x x x==,52622384()()72T C x x x==……………………………………………………7分所以前三项系数分别为1,4,7,即前三项系数成等差数列……………………8分 (2)348418841()(),0,1,2,,7,822rr rrr r r T C x C x r x --+===……………10分0,4,8r ∴=时,展开式中x 的指数为整数,所以展开式中所有有理项为:0804184()()2T C x x x==、348178T C x x ==、8288211256256T C x x -==……………………………………………………………14分20.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题6分.已知椭圆22221(0)x y a b a bΓ+=>>:的左右顶点分别是(2,0)(2,0)A B -,,点1(3,)2在椭圆上.过该椭圆上任意一点P 作PQ x ⊥轴,垂足为Q ,点C 在QP 的延长线上,且QP PC =.(1)求椭圆Γ的方程;(2)求动点C 的轨迹E 的方程;(3)设直线AC (C 点不同于A B 、)与直线2x =交于R ,D 为线段RB 的中点,证明:直线CD 与曲线E 相切.解:(1)由题意可知24a =且22311144b b+=⇒=,………………………………2分 所以椭圆方程为1422=+y x ……………………………………………………………4分 (2)设(,)C x y ,则由QP PC =可得1(,)2P x y , ………………………………6分 又1(,)2P x y 在椭圆1422=+y x 上,可知224x y +=,……………………………9分 所以动点C 的轨迹E 的方程是224x y +=……………………………………………10分 (3)设(,)C m n ,(2,)R t ,由题意可知A C R 、、三点共线,所以AC AR ,因为(2,)AC m n =+,(4,)AR t =,则44(2)2n n t m t m =+⇒=+,即4(2,)2nR m +, …………………………………………………………………………12分2(2,)2n D m +,从而22224CD nn mn m k m m -+==--,又224m n +=, 故224CD mn mn mk m n n===--- :()40CD ml y n x m mx ny n-=--⇒+-= …………………………………14分则圆心到直线CD的距离2d r === …………………………………15分所以直线CD 与曲线E 相切 …………………………………………………………16分21. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.在平面直角坐标系中,O 为坐标原点.已知曲线C 上任意一点(,)P x y (其中0x ≥)到定点(1,0)F 的距离比它到y 轴的距离大1.(1)求曲线C 的轨迹方程;(2)若过点(1,0)F 的直线l 与曲线C 相交于不同的,A B 两点,求OA OB ⋅的值; (3)若曲线C 上不同的两点M 、N 满足0,OM MN ⋅=求ON 的取值范围.解:(1)依题意知,动点P 到定点F (1,0)的距离等于P 到直线1x =-的距离,曲线C 是以原点为顶点,F (1,0)为焦点的抛物线………2分∵12p= ∴2p = ∴ 曲线C 方程是24y x =…………………4分 (2)当l 平行于y 轴时,其方程为1x =,由214x y x =⎧⎨=⎩解得(1,2)A 、(1,2)B -此时=14=3OA OB ⋅--…………………………………………………6分当l 不平行于y 轴时,设其斜率为k , 则由2(1)4y k x y x=-⎧⎨=⎩ 得2222(24)0k x k x k -++= 设1122(,),(,)A x y B x y 则有121x x =,212224+k x x k +=……………………8分∴12121212==(1)(1)OA OB x x y y x x k x k x ⋅++--2221212(1)()k x x k x x k =+-++ 2222224=1+143k k k k k +-⋅+=-=-……………………………10分 (3)设221212(,),(,)44y y M y N y∴222121121(,),(,)44y y y OM y MN y y -==- ………………………………12分 ∵0OM MN ⋅=∴0)(16)(121212221=-+-y y y y y y ∵0,121≠≠y y y ,化简得)16(112y y y +-=………………………………14分∴6432256232256212122=+≥++=y y y ……………………………………14分当且仅当 4,16,2561212121±===y y y y 时等号成立………………………………16分∵22||(64y ON y ==≥∴当222min 64,8||85||y y ON ON ==±=,,故的取值范围是),58[+∞………18分上海市高二下学期期末数学测试卷一、填空题1.已知复数12z i =-,则z =______.2.()()21m i mi ++是实数,则实数m =______.3.若,a b R ∈,且()a i i b i +=+,则a b +=______.4.直线1:10l x y -+=与直线2:50l x y -+=之间的距离是______. 5.若复数z 同时满足2z z i -=,z iz =,则z =______.6.若抛物线24y x =上一点M 到焦点的距离等于2,则M 到坐标原点O 的距离等于______. 7.若方程220x y x y m +-++=表示一个圆,则实数m 的取值范围是______. 8.过点()3,2P -且与直线210x y ++=垂直的直线方程是______.9.已知点)M,椭圆2214x y +=与直线(y k x =+交于,A B ,则ABM △的周长为______.10.设()1,2A ,()3,1B -,若直线2y kx =-与线段AB 有公共点,则实数k 的取值范围是______.11.已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为1F 、2F ,过1F 的直线与C 的两条渐近线分别交于,A B 两点,若1F A AB =,120F B F B ∈=,则C 的渐近线方程为______. 12.曲线C 是平面内与两个定点()11,0F -和()21,0F 的距离的积等于常数()21aa >的点的轨.给出下列四个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则122PF PF a +<;④若点P 在曲线C 上,则12F PF △的面积212S a ≤.其中,所有正确的序号是______. 二、选择题13.已知直角坐标系xOy 平面上的直线1x ya b+=经过第一、第二和第四象限,则,a b 满足( ) A .0,0a b >> B .0a >,0b < C .0a <,0b <D .0a <,0b <14.复数(),z a bi a b R =+∈,()m z z b =+,n z z =⋅,2p z =,则( )A .m 、n 、p 三数都不能比较大小B .m 、n 、p 三数的大小关系不能确定C .m n p ≤=D .m n p ≥=15.设复数()0,0z a bi a b =+>≠是实系数方程20x px q ++=的根,又3z 为实数,则点(),p q 的轨迹在一条曲线上,这条曲线是( ) A .圆B .椭圆C .双曲线D .抛物线16.已知a ,b ,c 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -⋅+=,则a b -的最小值是( )A 1B 1C .2D .2三、解答题17.设,αβ分别是方程220x x a ++=()a R ∈的两个虚数根.(1)求a 的取值范围及αβ+的值;(2)若4αβ-=,求a 的值.18.已知ABC △的三个顶点(),A m n 、()2,1B 、()2,3C -. (1)求BC 的边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,且ABC △的面积为7,求点A 的坐标. 19.已知直线:l y x m =+,m R ∈.(1)若以点()2,0M 为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程; (2)若直线l 与抛物线2:4C x y =有且仅有一个公共点,求m 的取值范围.20.已知椭圆222:1x C y m+=(常数1m >),点P 是C 上的动点,M 是右顶点,定点A 的坐标为()2,0.(1)若M 与A 重合,求C 的焦点坐标; (2)若3m =,求PA 的最大值与最小值; (3)若PA 的最小值为MA ,求m 的取值范围.21.已知直线1:l y x =及直线2:l y x =-.平面上动点(),A x y ,且x y >,记M 到直线1l 、2l 的距离分别为1d 、2d ,满足:()21202a d d a ⋅=>.(1)求动点M 的轨迹Γ的方程;(2)若直线l 的方向向量为()1,2,过),0的直线l 与曲线Γ交于A 、B 两点,问以AB 为直径的圆是否恰过原点O ?若是,求a 的值;若不是,判断原点在圆内还是圆外,并说明理由?(3)若过原点O 作斜率为k 的直线l 交曲线Γ于M 、N 两点,设()0,1P ,求PMN △的面积S 关于k 的函数解析式,并求S 的取值范围.参考答案一、填空题1 2.1- 3.04.5.1o -+67.1,2⎛⎫-∞ ⎪⎝⎭8.270x y --=9.810.[){}4,1+∞-11.y =12.②④二、选择题13.A 14.C 15.D 16.B 三、解答题17.(1)1a >,(2)518.(1)240x y +-=;(2)()3,0-或()3,419.(1)()2228x y -+=;(2)1m =-20.(1)();(2)2,5;(3)11m <≤21.(1)222x y a -=;(2)圆外;(3)[),a +∞.。
2023-2024学年上海市宝山区高二(下)期末数学试卷+答案解析
2023-2024学年上海市宝山区高二(下)期末数学试卷一、单选题:本题共4小题,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.“”是“曲线表示椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.已知直线l的方向向量是,平面的法向量是,则l与的位置关系是()A. B.C.或D.l与相交但不垂直3.已知曲线C:,过点作该曲线的5条弦,这些弦的长度构成一个递增的等差数列,则该数列公差的取值范围是()A. B. C. D.4.已知实数x,y满足,则的取值范围是()A. B. C. D.二、填空题:本题共12小题,共54分。
5.已知直线l的方程为,则直线l的倾斜角为______.6.在等差数列中,,则的值是______.7.若双曲线的一条渐近线方程为,则实数______.8.若无论实数m取何值,直线l:都经过一个定点,则该定点坐标为______.9.经过点,且与直线平行的直线的方程为______.10.已知向量,则在方向上的投影向量为______.11.如图,在四面体PABC中,E是AC的中点,,设,则______用表示12.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,此日脚痛减一半,六朝才得到其关,要见此日行数里,请公仔仔细算相还”,其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问第二天走了______.13.在数列中,,且,则______.14.抛物线C:的焦点为F,准线为l,点P是准线l上的动点,若点A在抛物线C上,且,则为坐标原点的最小值为______.15.已知点P在椭圆上,为椭圆的右焦点,直线PF与圆相切,且为原点,则椭圆的离心率为__________.16.我国著名数学家华罗庚说“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”,包含的意思是:几何图形中都蕴藏着一定的数量关系,数量关系又常常可以通过几何图形做出直观的反映和描述,通过“数”与“形”的相互转化,常常可以巧妙地解决问题,所以“数形结合”是研究数学问题的重要思想方法之一.比如:这个代数问题可以转化为点与点之间的距离的几何问题.结合上述观点可得,方程的解为______.三、解答题:本题共5小题,共78分。
上海市高二下学期期末考试数学试题(共3套,含答案)
高二下学期期末考试数学试题(考试时间:120分钟 满分:150分 )一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.过点)2,1(、)6,3(的直线的斜率为______________.2.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________.3.正四面体ABC S -的所有棱长都为2,则它的体积为________.4.以)2,1(-为圆心且过原点的圆的方程为_____________.5.从一副52张扑克牌中第一张抽到“Q ”,重新放回,第二张抽到一张有人头的牌,则这两个事件都发生的概率为________.6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.7.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________.8.双曲线1422=-y x 的顶点到其渐近线的距离等于_________. 9.某人5次上班途中所花的时间(单位:分钟)分别为9,11,10,,y x .已知这组数据的平均数为10,方差为2,则=-||y x __________.10.在长方体1111D C B A ABCD -中,已知36,91==BC AA ,N 为BC 的中点,则直线11C D 与平面N B A 11的距离是___________.11.棱长为1的正方体1111D C B A ABCD -的8个顶点都在球面O 的表面上,E 、F 分别是棱1AA 、1DD 的中点,则直线EF 被球O 截得的线段长为________.12.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外 科和内科医生都至少有1人的选派方法种数是___________.(用数字作答)13.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)14.设焦点是)5,0(1-F 、)5,0(2F 的双曲线C 在第一象限内的部分记为曲线T ,若点ΛΛ),,(),,2(),,1(2211n n y n P y P y P 都在曲线T 上,记点),(n n y n P到直线02:=+-k y x l 的距离为),2,1(Λ=n d n ,又已知5lim =∞→n n d ,则常数=k ___________. 二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是( )平方米.A .32424-πB .33636-πC .32436-πD .33648-π第15题图16.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80),[80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .12017.使得*)()13(N n x x x n ∈+的展开式中含有常数项的最小的n 为 ( ) A .4B .5C .6D .7 18.若直线m x y l +-=2:与曲线|4|21:2x y C -=有且仅有三个交点,则m 的取值范围是() A .)12,12(+- B .)2,1( C .)12,1(+ D .)12,2(+三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.19.(12分)求8)32(xx +的二项展开式中的第5项的二项式系数和系数.20.(14分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者从装有3个红球、1 个蓝球、6奖如下:奖级 摸出红、蓝球个数 获奖金额一等奖 3红1蓝 200元二等奖 3红1白 50元三等奖 2红1蓝或2红2白 10元(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望()E X .21.(14分)已知椭圆13422=+y x 上存在两点A 、B 关于直线m x y +=4对称,求m 的取值范围.22.(16分)如图,四棱柱1111D C B A ABCD -中, 侧棱⊥A A 1底面ABCD ,AD AB DC AB ⊥,//, 1==CD AD ,21==AB AA ,E 为棱1AA 的中点.(1) 证明:CE C B ⊥11;(2) 设点M 在线段E C 1上, 且直线AM 与平面11A ADD 所成角的正弦值为62, 求线段AM 的长.23.(18分)下图是利用计算机作图软件在直角坐标平面xOy 上绘制的一列抛物线和一列直线,在焦点为n F 的抛物线列x p y C n n 4:2=中,n p 是首项和公比都为)10(<<p p 的等比数列,过n F 作斜率2的直线n l 与n C 相交于n A 和n B (n A 在x 轴的上方,n B 在x 轴的下方).(1)证明:n OA 的斜率是定值;(2)求1A 、2A 、Λ、n A 、Λ所在直线的方程;(3)记n n OB A ∆的面积为n S ,证明:数列}{n S 是等比数列,并求所有这些三角形的面积的和.第22题图 E D 1 C 1 B 1 A 1 D C B A金山中学第二学期高二年级数学学科期末考试卷参考答案19.(12分)解:4485)32)((xx C T =, 所以二项式系数为7048=C ,系数为811120. 20.(14分)解:(1)214103713=C C C ; X0 10 50 200 P(X) 4231 358 351 2101 321020035503510420)(=⋅+⋅+⋅+⋅=X E . 21.(14分)解:设直线AB 方程为b x y +-=4,联立 ⎪⎩⎪⎨⎧+-==+,4,124322b x y y x 得,0481681322=-+-b bx x 从而,138b x x B A =+ ,13242)(41b b x x y y B A B A =++-=+ 则B A ,中点是)1312,134(b b ,则,013121344=+-⋅m b b 解得.134b m -= 由0481681322=-+-b bx x 有实数解得,0)4816(526422≥--=∆b b 即.4132≤b 于是.413)413(2≤-m 则m 的取值范围是.1313213132≤≤-m23.(18分)解:(1)由已知得n n p p =,抛物线焦点)0,(n n p F ,抛物线方程为x p y n 42=,直线n l 的方程为).(2np x y -=于是,抛物线n C 与直线n l 在x 轴上方的交点),(11y x A n 的坐标满足⎪⎩⎪⎨⎧-==),(2,411121n n p x y x p y 则有,042211121=-+x y x y而直线n OA 的斜率为11x y k n OA =,则,042112=-+OA OA k k 解得,51±-=n OA k 又,0>k 点n A 在第一象限,则51+-=n OA k ;(2)直线方程为x y )51(+-=;(3)由⎪⎩⎪⎨⎧-==),(2,42n n p x y x p y 得,04222=--n n p y p y 则n p AB 10||=, 而O 到直线n l 的距离为52np ,于是n n OB A ∆的面积n n p S 252=,所以数列}{n S 是以252p 为首项,2p 为公比的等比数列.由于10<<p , 所以所有三角形面积和为22152pp -.高二下学期期末考试数学试题(考试时间:120分钟 满分:150分 )一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.过点)2,1(、)6,3(的直线的斜率为______________.2.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________.3.正四面体ABC S -的所有棱长都为2,则它的体积为________.4.以)2,1(-为圆心且过原点的圆的方程为_____________.5.某几何体的三视图如图所示,则该几何体的体积为__________.6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.7.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________. 8.双曲线1422=-y x 的顶点到其渐近线的距离等于_________. 9.已知球的半径为1,A 、B 是球面上两点,线段AB 的长度为3,则A 、B 两点的球面距离为 ________.10.在长方体1111D C B A ABCD -中,已知36,91==BC AA ,N 为BC 的中点,则直线11C D 与 平面N B A 11的距离是___________.11.从3名骨科、4名脑外科和5名内科医生中选派6人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答).12. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若 AB 的中点坐标为(1,1)-,则E 的方程为_________________.13.设实数y x ,满足⎪⎩⎪⎨⎧≤-≥-+≤--,032,042,02y y x y x 则y x z -=2的最大值为____________.14.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一 个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直 线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编 号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.在正方体1111D C B A ABCD -中,任取两条棱,则这两条棱为异面直线的概率为( )A .112B .114C .116D .11816.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80),[80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .12017.=++-+++-+1)1(4)1(6)1(4)1(234x x x x ( )A .4xB .4x -C .1D .1- 18.若直线m x y l +-=2:与曲线|4|21:2x y C -=有且仅有三个交点,则m 的取值范围是() A .)12,12(+- B .)2,1( C .)12,1(+ D .)12,2(+三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.19.(12分)求8)32(xx +的二项展开式中的第5项的二项式系数和系数.20.(14分)求半径为10,且与直线07034=-+y x 相切于)10,10(的圆的方程.21.(14分)已知椭圆13422=+y x 上存在两点A 、B 关于直线m x y +=4对称,求m 的取值范围.22.(16分)如图,四棱柱1111D C B A ABCD -中, 侧棱⊥A A 1底面ABCD ,AD AB DC AB ⊥,//, 1==CD AD ,21==AB AA ,E 为棱1AA 的中点.(1) 证明:CE C B ⊥11;(2) 求异面直线E C 1与AD 所成角的大小.(结果用反三角函数值表示)24.(18分)下图是利用计算机作图软件在直角坐标平面xOy 上绘制的一列抛物线和一列直线,在焦点为n F 的抛物线列x p y C n n 4:2=中,n p 是首项和公比都为)10(<<p p 的等比数列,过n F 作斜率2的直线n l 与n C 相交于n A 和n B (n A 在x 轴的上方,n B 在x 轴的下方).(4)证明:n OA 的斜率是定值;(5)求1A 、2A 、Λ、n A 、Λ所在直线的方程;(6)记n n OB A ∆的面积为n S ,证明:数列}{n S 是等比数列,并求所有这些三角形的面积的和.第23题图第二学期高二年级数学学科期末考试卷参考答案19.(12分)解:4485)32)((x x C T =, 所以二项式系数为7048=C ,系数为811120.22.(14分)解:设直线AB 方程为b x y +-=4,联立 ⎪⎩⎪⎨⎧+-==+,4,124322b x y y x 得,0481681322=-+-b bx x 从而,138b x x B A =+ ,13242)(41b b x x y y B A B A =++-=+则B A ,中点是)1312,134(b b, 则,013121344=+-⋅m b b 解得.134b m -= 由0481681322=-+-b bx x 有实数解得,0)4816(526422≥--=∆b b 即.4132≤b 于是.413)413(2≤-m 则m 的取值范围是.1313213132≤≤-m24.(18分)解:(1)由已知得n n p p =,抛物线焦点)0,(n n p F ,抛物线方程为x p y n42=,直线n l 的方程为).(2np x y -=于是,抛物线n C 与直线n l 在x 轴上方的交点),(11y x A n 的坐标满足⎪⎩⎪⎨⎧-==),(2,411121nnp x y x p y 则有,042211121=-+x y x y 而直线n OA 的斜率为11x y k n OA =,则,042112=-+OA OA k k 解得,51±-=n OA k 又,0>k 点n A 在第一象限,则51+-=n OA k ; (4)直线方程为x y )51(+-=;(5)由⎪⎩⎪⎨⎧-==),(2,42nn p x y x p y 得,04222=--n n p y p y 则np AB 10||=,而O 到直线n l 的距离为52np ,于是n n OB A ∆的面积nn pS 252=,所以数列}{n S 是以252p 为首项,2p 为公比的等比数列.由于10<<p ,所以所有三角形面积和为22152pp -.上海市高二年级第二学期数学学科期终考试试卷(注意事项:本试卷共2页,满分100分,答题时间90分钟。
上海市华东师范大学第二附属中学2023-2024学年高二下学期期末考试数学试卷
华东师大二附中2023-2024学年第二学期期末质量检测高二数学(满分150分,时间120分钟)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应编号位置直接填写结果.1.函数y =的定义域为.2.已知复数2i z =+,则5log z =.3.在61x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为4.已知平面直角坐标系xoy 中,(1,3),(2,4)A B -,则三角形AOB 面积为.5.已知随机变量X 服从二项分布B ~(n ,p ),若E (X )=30,D (X )=20,则P=.6.已知向量()2(1,2),,2a b x =-= ,且3cos ,5a b 〈〉= ,则x =.7.已知甲乙两组数据如茎叶图所示,其中,N m n ∈,若这两组数据的中位数相等,平均数也相等,则m n=.8.已知,αβ为锐角,sin(2)4sin αββ+=,则tan()tan αβα+=.9.已知()0.6P A =,()0.5P B A =,()0.2P B A =,那么()P B =.10.设123,,l l l 为空间中三条不同的直线,若1l 与2l 所成角为π6α=,1l 与3l 所成角为π4β=,那么2l 与3l 所成角的取值范围为.11.已知椭圆方程为2222x y 1(a b 0)a b +=>>,双曲线方程为2222x y 1(m 0,n 0)m n-=>>,若该双曲线的两条渐近线与椭圆的四个交点以及椭圆的两个焦点恰为一个正六边形的六个顶点,则椭圆的离心率与双曲线的离心率之和为.12.在数列{}n a 中,若存在两个连续的三项12,,i i i a a a ++与12,,j j j a a a ++相同(i j ≠),则称{}n a 是“3阶可重复数列”.已知给定项数为m (N,4m m ∈≥)的数列{}n a ,其中{0,1}(1,2,,)i a i m ∈= 一定是“3阶可重复数列”,则m 的最小值是.二、选释题(本大题共有4题,满分18分,第13,14题每题4分,第15,16题每题5分)考生应在答题纸的相应编号位置直接填写结果.13.下列函数中,既是定义域内单调增函数,又是奇函数的是()A .()tan f x x=B .()1f x x x=-C .()cos f x x x=-D .()()e ex xf x x -=+14.数字串2024,依次写出该数字串中偶数的个数、奇数的个数以及总的数字个数,把这三个数从左到右写成一个新数字串;重复以上工作,最后会得到一个反复出现的数字,我们称它为“数字黑洞”,如果把这个数字设为a ,则πsin π26a⎛⎫+= ⎪⎝⎭()A .12B .12-CD .15.设2(),(,,)f x ax bx c a b c =++∈R .已知关于x 的方程()0f x =有纯虚数根,则关于x 的方程(())0f f x =()A .只有纯虚数根B .只有实数根C .有两个实数根,两个纯虚数根D .既没有实数根,也没有纯虚数根16.对于集合A 中的任意两个元素x ,y ,若实数(,)d x y 同时满足以下三个条件:①“(,)0d x y =”的充要条件为“x y =”;②(,)(,)d x y d y x =;③对任意z A ∈,都有(,)(,)(,)d x y d x z d y z ≤+.则称(,)d x y 为集合A 上的距离,记为A d .对于命题P 、命题Q ,下列说法正确的是()命题P :(,)||d x y x y =-为R d ;命题Q :(,)|sin sin |d x y x y =-为R d A .命题P 是真命题,命题Q 是假命题B .命题P 是假命题,命题Q 是真命题C .命题P 和命题Q 都是真命题D .命题P 和命题Q 都是假命题三、解答题(本大题共有5题,满分78分,)考生应在答题纸的相应编号位置直接填写结果.17.已知函数()21cos cos 2f x x x x =-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)若()f x 在区间[]0,m 上的最大值为1,求m 的最小值.18.6月1日某商场举办了赢取冰墩墩、雪容融吉祥物挂件答题活动.为了提高活动的参与度,计划有13的人只能赢取冰墩墩挂件,另外23的人既能赢取冰墩墩挂件又能赢取雪容融挂件,每位顾客若只能赢取冰墩墩挂件,则记1分,若既能赢取冰墩墩挂件又能赢取雪容融挂件,则记2分,假设每位顾客能赢取冰墩墩挂件和赢取雪容融挂件相互独立,视频率为概率.(1)从顾客中随机抽取3人,记这3人的合计得分为X ,求X 的分布列和数学期望;(2)从顾客中随机抽取n 人(*N n ∈),记这n 人的合计得分恰为1n +分的概率为n P ,求1 ni i p =∑.19.如图所示,在底半径为R 、高为H (,H R 为定值,且H R ≤)的圆锥内部内接一个底半径为r 、高为h 的圆柱,甲、乙两位同学采用两种不同的方法来解决.甲采用圆柱底面与圆锥底面重合的“竖放”方式(图甲),乙采用圆柱母线与圆锥底面直径重合的“横放”方式(图乙).(1)设1V 、2V 分别“竖放”、“横放”时内接圆柱的体积,用内接圆柱的底半径r 为自变量分别表示1V 、2V ;(2)试分别求1V 、2V 的最大值()1max V 、()2max V ,并比较()1max V 、()2max V 的大小.20.满足一定条件的全体直线组成集合M ,集合M 的包络曲线E 定义为:集合M 中的每一条直线都是曲线E 上某点处的切线,且曲线E 上的每一点处的切线都是集合M 中的某条直线.(1)若圆22:(2)1E x y +-=是集合{:1,,}M ll mx ny m n R =+=∈∣的包络曲线,求m ,n 满足的关系式;(2)求证:集合{}2:2(1)(1)0,()A l l a x y a a =----=∈R ∣的包络曲线E 为:2y x =;(3)在(2)的条件下,过曲线E 上A ,B 两点作曲线E 的切线1212,,l l l l P = ,P 在直线4y x =-上若||2||AB AP =,求点P 的坐标.21.函数()F x 的定义域为R D ⊆,如果存在t D ∈,使得()F t t =,称t 为()F x 的一个不动点.函数()(e 1xg x x a =+--(R a ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.(1)求证:()()2112f x f x x =-为奇函数;(2)当a 变化时,求函数()g x 不动点个数;(3)若存在,()()0112x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()g x 的一个不动点,求a 的取值范围.1.[)2,3-【分析】根据二次根式被开方数非负、分母不为零可求得原函数的定义域.【详解】对于函数|3|y x =-,有26030x x x ⎧-++≥⎨-≠⎩,解得233x x -≤≤⎧⎨≠⎩,故函数|3|y x =-的定义域为函数的定义域为[2,3)-.故答案为:[2,3)-.2.12【详解】由题意可得551log log 2log 2z i =+==.故答案为:12.3.20【分析】根据二项式展开式的通项公式计算即可求解.【详解】二项式61(x x+展开式的通项公式为662166C C r r r r rr T x x x ---+=⋅=,令620r -=,解得3r =,所以61()x x+展开式的常数项为36C 20=.故答案为:204.5【分析】在平面直角坐标系中画出三角形AOB ,将三角形补成梯形,再用梯形面积减去剩余两个小三角形面积即可.【详解】在平面直角坐标系中画出三角形AOB,将三角形补成梯形,如图:()121=1+27=22S ⨯⨯梯形,2111=13245222AOB S S S =--⨯⨯-⨯⨯= 阴梯形.故答案为:5.5.13【详解】试题分析:直接利用二项分布的期望与方差列出方程求解即可.解:随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,可得np=30,npq=20,q=,则p=,故答案为.点评:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.6.1±【分析】利用向量数量积定义求解.【详解】23cos ,5a ba b a b ⋅〈〉===⋅解得1,x =±故答案为:1±.7.38##0.375【分析】先得到甲乙的中位数,可得到3m =,再利用平均数相同即可求解【详解】通过茎叶图可发现甲的中位数为30m +,乙的中位数为3234332+=因为两组数据的中位数相同,则3033,m +=3m =,又因为平均数相同,则27333920323438834n n ++++++=⇒=,∴38m n =.故答案为:388.53##213【分析】利用角变换结合切化弦求解.【详解】()()()sin tan cos sin tan cos αβαβαβααα+++=,()[]sin 4sin ()αβααβα⎡⎤++=+-⎣⎦,()()()sin cos cos sin 4sin cos αβααβααβα+++=+()4cos sin ,αβα-+()()5cos sin 3sin cos ,αβααβα+=+()tan 5.tan 3αβα+=故答案为:53.9.0.38##1950【分析】根据条件概率公式即可求解.【详解】因为()0.6P A =,所以()0.4P A =,因为()()()0.5P AB P B A P A ==,所以()()0.50.3P AB P A ==,因为()()()0.2P AB P B A P A ==,所以()()0.20.08P AB P A ==,所以()()()0.38P B P AB P AB =+=.故答案为:0.38.10.5π,1212π⎡⎤⎢⎥⎣⎦【分析】不妨设123l l l 、、相交于点S ,根据题意构造两个圆锥,结合轴截面可得2l 与3l 所成角的最小值与最大值,可得答案.【详解】设123,,l l l 为空间中三条不同的直线,若1l 与2l 所成角为π6α=,1l 与3l 所成角为π4β=,不妨设123,,l l l 相交于点S ,如图,根据题意构造两个圆锥,其中底面圆心为O ,轴SO 所在直线为1l ,小圆锥的母线所在直线为2l ,轴截面SCD ;大圆锥的母线所在直线为3l ,轴截面SAB ,且,,,,A B C D O 在一条直线上.由题意π6OSC OSD ∠=∠=,π4OSA OSB ∠=∠=,可知π2CSD ASB ∠<∠=,由图可知,当2l 移动到SD ,3l 移动到SB 时,可得2l 与3l 所成角的最小,最小值为πππ4612DSB ∠=-=;当2l 移动到SC ,3l 移动到SB 时,可得2l 与3l 所成角的最大,最大值为ππ5π4612CSB ∠=+=,所以,2l 与3l 与所成角的取值范围为π5π[,]1212.故答案为:π5π[,]1212.111【分析】利用已知条件求出正六边形的顶点坐标,代入椭圆方程,求出椭圆的离心率;利用渐近线的夹角求解双曲线的离心率即可.【详解】椭圆方程为22221(0)x y a b a b +=>>,双曲线方程为22221(0,0)x y m n m n-=>>,若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标()2,0F c ,()1,0F c -,正六边形的一个顶点,.22c A c ⎛⎫⎪ ⎪⎝⎭122AF AF a +==,2c a +=,∴椭圆离心率11ce a==-,n m,可得双曲线的离心率为22e =.121+=1.【点睛】本题考查椭圆以及双曲线的简单性质的应用,考查计算能力.属于中档题.12.11【分析】由题意可知连续3项共有8种情况,然后分类讨论,分11m =,10m =和310m ≤<根据题意讨论即可.【详解】因为数列{}n a 的每一项只可以是0或1,所以连续3项共有328=种不同的情况,若11m =,则数列{}n a 中有9组连续3项,则这其中至少有两组按次序对应相等,即项数为11的数列{}n a 一定是“3阶可重复数列”,若10m =,数列0,0,1,0,1,1,1,0,0,0不是“3阶可重复数列”,则310m ≤<时,均存在不是“3阶可重复数列”的数列{}n a ,所以,要使数列{}n a 一定是“3阶可重复数列”,则m 的最小值为11,故答案为:11【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.13.D【分析】对于A ,利用正切函数的性质判断;对于B ,由单调区间不能合并判断;对于C ,利用函数的奇偶性定义判断;对于D ,利用奇偶性定义及导数法判断.【详解】解:对于A ,()tan f x x =为奇函数,在定义域内不单调,不符合题意;对于B ,()1f x x x=-,定义域为()(),00,∞-+∞U ,()()f x f x -=-,所以()f x 为奇函数,在(),0∞-和()0,∞+上分别单调递增,不符合题意;对于C ,定义域为R ,关于原点对称,但()()()cos cos f x x x x x f x -=---=--≠-,故函数不是奇函数,不符合题意;对于D ,定义域为R ,关于原点对称,又()()()e e x xf x x f x --=-+=-,则()f x 是奇函数,()()()e e e e e 0x x x x x f x x x x --'=++-=≥,则()f x 单调递增,符合题意.故选:D.14.D【分析】根据题意,任取一个数字,经过运算,得到123a =,结合三角函数的诱导公式,即可求解.【详解】根据题意,任取一个数字2021,经过一步之后为314,经过第二步之后为123,再变为123,再变为123, ,所以123a =,所以π123π3ππsin πsin πsin πcos 2626266a ⎛⎫⎛⎫⎛⎫+=+=+=-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭故选:D.15.D【分析】根据题意假设()i 0,x m m m R =≠∈是方程()0f x =的根,进而代入得0,0b a =≠,,a c同号,再求(())0f f x =得2c x a =-,即可判断求得答案.【详解】解:因为关于x 的方程()0f x =有纯虚数根,不妨设为()i 0,x m m m R =≠∈,所以()2i 0i m m a b c ++=,即2i 0m m a b c -++=,所以20,b c m m a ==,所以0,0b a =≠,,a c 同号,所以2(),(0,,)f x ax c a a c =+≠∈R ,所以()()22242234222(())220f f x a ax c c a a x acx c c a x a cx ac c =++=+++=+++=,令20x t =≥,所以322220a t a ct ac c +++=,即因为2332424444404c a c a c a a a c a c -=-=-⋅∆-<=,所以2c x a =-±==,所以x 不可能为纯虚数,也不可能为实数,所以关于x 的方程(())0f f x =既没有实数根,也没有纯虚数根故选:D 16.A【分析】由A d 的定义对命题,P Q 分别判断即可得出答案.【详解】对于命题P ,当,R x y ∈时,①(,)||0d x y x y =-=,即x y =,若x y =,则(,)||||0d x y x y x x =-=-=,所以“(,)0d x y =”的充要条件为“x y =”.②(,)||||(,)d x y x y y x d y x =-=-=,成立,③对任意,,R z y x ∈,|||()()|||||x y x z z y x z z y -=-+-≤-+-,成立,故命题P 为真命题;对于命题Q ,当,R x y ∈时,(,)|sin sin |d x y x y =-,①即(,)|sin sin |0d x y x y =-=,即sin sin x y =,此时若0,πx y ==,则x y ≠,故命题Q 为假命题.故选:A.17.(Ⅰ)(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(Ⅱ)6π.【解析】(Ⅰ)利用二倍角的降幂公式以及辅助角公式将函数()y f x =的解析式变形为()sin 26f x x π⎛⎫+ ⎝=⎪⎭,然后解不等式()222262k x k k Z πππππ-+≤+≤+∈,即可得出函数()y f x =的单调递增区间;(Ⅱ)由[]0,x m ∈,2,2666x m πππ⎡⎤+∈+⎢⎥⎣⎦,结合题意得出262m ππ+≥,即可求出实数m 的最小值.【详解】(Ⅰ)()1cos 21122cos 2sin 2222226x f x x x x x π+⎛⎫=+-=+=+ ⎪⎝⎭,因为sin y x =的单调递增区间为()2,222k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,令()22,2622x k k k πππππ⎡⎤+∈-+∈⎢⎥⎣⎦Z ,得(),36x k k k ππππ⎡⎤∈-+∈⎢⎥⎣⎦Z .所以函数()y f x =的单调递增区间为(),36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ;(Ⅱ)因为[]0,x m ∈,所以2,2666x m πππ⎡⎤+∈+⎢⎥⎣⎦.又因为[]0,x m ∈,()sin 26f x x π⎛⎫+ ⎝=⎪⎭的最大值为1,所以262m ππ+≥,解得6m π≥,所以m 的最小值为6π.【点睛】本题考查三角函数的单调性以及最值的求解,解题的关键就是利用三角恒等变换思想将三角函数解析式化简,考查计算能力,属于中等题.18.(1)分布列见解析;5(2)1323(1)23n n ++-【分析】(1)根据题意,随机变量X 的取值为3,4,5,6,利用独立重复试验的概率公式,求得相应的概率,列出分布列,结合期望公式,即可求解;(2)根据题意,这n 人的合计得分恰为1n +分,得到11212C ()333n n n n n P -=⨯⨯=,结合乘公比错误相减法求和,即可求解.【详解】(1)解:根据题意,随机变量X 的取值为3,4,5,6,可得312311212(3)(,(4)C (327339P X P X =====⨯⨯=,123321428(5)C (),(6)(339327P X P X ==⨯⨯====,所以X 的分布列为:X3456P1272949827所以期望为()124834565279927E X =⨯+⨯+⨯+⨯=.(2)解:因为这n 人的合计得分恰为1n +分,则其中有且只有1人既能赢取冰墩墩挂件又能赢取雪容融挂件,所以11212C (333n n n n n P -=⨯⨯=,设122224623333n n n n S P P P =+++=++++ ,则23411246233333n n nS +=++++ ,两式相减得23411111(1)22222222233321133333333313n n n n n n n n n S +++-+=+++++-=⨯-=-- ,所以1323(1)23n n n S ++=-,即121323(123n n n P P P +++++=- .19.(1)()3210r V H r r R R π⎛⎫=-<< ⎪⎝⎭,3222202r H V R r r H π⎛⎫⎛⎫=-<< ⎪ ⎪⎝⎭⎝⎭(2)()21max 427V R H π=,()22max 227V RH π=,()()12max max V V >【分析】(1)作出圆锥的轴截面,截圆柱得一内接矩形,设,,,AC H CB R DE x EF y ====,由相似形得出,x y 的关系,竖放,x r =,横放,y r =,由体积公式计算可得12,V V ;(2)由导数求得12,V V 的最大值,并比较可得.【详解】(1)如图是圆锥的轴截面截圆柱得一内接矩形,设,,,AC H CB R DE x EF y ====,根据三角形相似得,1,1,1x H y y yx x R y H R H H H R -⎛⎫⎛⎫==-∴=-=- ⎪ ⎪⎝⎭⎝⎭.①若圆柱“竖放”,则(),10r x r h y h H r RR ⎛⎫==∴=-<< ⎪⎝⎭,()3222110r r V r h r H H r r R R R πππ⎛⎫⎛⎫∴==-=-<< ⎪ ⎪⎝⎭⎝⎭②若圆柱“横放”,则22,21022h r H x y r h R r H ⎛⎫⎛⎫==∴=-<< ⎪⎪⎝⎭⎝⎭322222221202r r H V r h r R R r r H H πππ⎛⎫⎛⎫⎛⎫∴==-=-<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)①()2'1320r V H r r R R π⎛⎫∴=-<< ⎪⎝⎭,由2132=0r V H r R π⎛⎫'=- ⎪⎝⎭,解得23r R =当203r R ⎛⎫∈ ⎪⎝⎭,时,10V '>,1V 递增;当23r R R ⎛⎫∈ ⎪⎝⎭,时,10V '<,1V 递减;()221max243327H V R R Hππ⎛⎫∴== ⎪⎝⎭②()226220r V R r r R H π⎛⎫'∴=-<< ⎪⎝⎭由22622=0rV R r H π⎛⎫'=-⎪⎝⎭解得13r H =当103r H ⎛⎫∈ ⎪⎝⎭,时,20V '>,2V 递增;当132H r H ⎛⎫∈ ⎪⎝⎭,时,20V '<,2V 递减;()222max223327H V R RH ππ⎛⎫∴== ⎪⎝⎭()()()2212max max 4222272727V V R H RH RH R H πππ-=-=- ()()12max max ,H R V V ≤∴> 20.(1)22341m n n =-+(2)证明过程见解析(3)()1,3P -或416,33⎛⎫-- ⎪⎝⎭【分析】(1)圆心()0,2到直线1mx ny +=的距离等于1,得到方程,求出22341m n n =-+;(2)在2y x =上任取一点()211,Q x x ,求出2y x =在该点处的切线方程21120x x y x --=,令直线族2:2(1)(1)0l a x y a ----=中()1212a x -=,得到直线211:20x x y x l --=,而对于任意2:2(1)(1)0l a x y a ----=,都是抛物线在点()()21,1a a --处的切线,证明出结论;(3)设()()()112200,,,,,A x y B x y P x y ,求出抛物线E 在点A 处的切线方程为1120x x y y --=,同理,抛物线E 在点B 处的切线方程为2220x x y y --=,从而得到直线AB 的方程为0020x x y y --=,与抛物线方程联立,得到两根之和,两根之积,根据||2||AB AP =得到方程,得到01x x =-,求出()211,3P x x --,将其代入4y x =-,得到方程,求出11x =-或43,求出答案.【详解】(1)由定义可知,1mx ny +=与22:(2)1E x y +-=相切,即圆心()0,2到直线1mx ny +=的距离等于1,1=,故22341m n n =-+,(2)2y x '=,在2y x =上任取一点()211,Q x x ,2y x =在该点处的切线斜率为12k x =,于是可以得到2y x =在()211,Q x x 处的切线方程为()21112y x x x x -=-,即21120x x y x --=,令直线族2:2(1)(1)0l a x y a ----=中()1212a x -=,故11a x -=,则直线211:20x x y x l --=,所以该曲线上的每一点处的切线都是该直线族中的某条直线,而对于任意2:2(1)(1)0l a x y a ----=,都是抛物线在点()()21,1a a --处的切线,所以集合{}2:2(1)(1)0,()A l l a x y a a =----=∈R ∣的包络曲线2:=E y x ;(3)设()()()112200,,,,,A x y B x y P x y ,则抛物线E 在点A 处的切线方程为()1112y y x x x -=-,即21111111122222y x x x y x x y y x x y =-+=-+=-,故1120x x y y --=,同理,抛物线E 在点B 处的切线方程为2220x x y y --=,又两切线交点为()00,P x y ,所以11222020x x y y x x y y --=⎧⎨--=⎩,所以直线AB 的方程为0020x x y y --=,联立00220x x y y y x--=⎧⎨=⎩,得20020x x x y -+=,故1201202,x x x x x y +==,因为||2||AB AP =1210x x -=-,121212x x x x +-=-,1212x x -=-,由于120x x x ≠≠,所以01x x =-,又因为1202x x x +=,所以213x x =-,所以201213y x x x ==-,故()211,3P x x --,又点P 在直线4y x =-上,所以21134x x -=--,解得11x =-或43,故点()1,3P -或416,33⎛⎫-- ⎪⎝⎭【点睛】方法点睛:新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.21.(1)证明过程见解析(2)答案见解析(3)e ,2⎫+∞⎪⎪⎣⎭【分析】(1)根据()()2f x f x x -+=变形得到()()()2211022f x x f x x ---+-=,从而得到()()110f x f x -+=,证明出结论;(2)由()g x x =得e x a =,令()e xh x =,求导得到函数单调性和极值情况,从而得到e x a =的解的情况,得到答案;(3)由题目条件得到()()2112f x f x x =-在R 上单调递减,变形得到()()()220000111122f x x f x x -≥---,即()()10101f x f x ≥-,由函数单调性得到012x ≤,根据不动点得到()g x x =在12x ≤时有解,构造()()q x g x x =-,12x ≤,求导得到其单调性和最值,从而得到不等式,求出a 的取值范围.【详解】(1)()()2f x f x x -+=,故()()()2211022f x x f x x ---+-=,其中()()2112f x f x x =-,则()()110f x f x -+=,其中()()2112f x f x x =-定义域为R ,故()()2112f x f x x =-为奇函数,(2)由()g x x =得e x a =,令()e x h x =,则()e xh x '=令()e 0xh x ='>,解得12x >,令()0h x '<,解得12x <,所以()e xh x =在1,2∞⎛⎫- ⎪⎝⎭单调递减,在1,2∞⎛⎫+ ⎪⎝⎭上单调递增,其中1222h ⎛⎫== ⎪⎝⎭,故当a <e x a =无解,当2a =时,e x a =有1个解,当a >e x a -=有2个解;综上,当a <()g x 没有不动点;当2a =时,函数()g x 有1个不动点;当a >()g x 有2个不动点.(3)当0x ≤时,()f x x '<,故()()10f x f x x ''=-<,所以()()2112f x f x x =-在(],0-∞上单调递减,根据奇函数的对称性,可得()()2112f x f x x =-在R 上单调递减,因为存在()()0112x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,即()()000112f x f x x +≥-+,则()()()()222000000011111112222f x x f x x x f x x -≥--+-=---,故()()10101f x f x ≥-,则001x x ≤-,即012x ≤,因为0x 为函数()g x 一个不动点,所以()g x x =在12x ≤时有解,令()()e xq x g x x a =-=-,12x ≤,因为当12x ≤时,()12e e 0x q x =≤=',所以()q x 在1,2x ⎛⎤∈-∞ ⎥⎝⎦上单调递减,且x 趋向于-∞时,()q x 趋向于+∞,所以只需102q ⎛⎫≤ ⎪⎝⎭02a --≤,解得a ≥故a 的取值范围是⎫+∞⎪⎪⎣⎭.【点睛】方法点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静安区高二期末数学试卷
2019.06
一. 填空题
1. 在复数集,方程24x =-的解为
2. 如图,在正方体中,AB 与CD 所成角的大小为
3. 已知某圆柱是将边长为2的正方形(及其内部)绕其一条边所
在的直线旋转一周形成的,则该圆柱的体积为
4. 用一块半径为2分米的半圆形薄铁皮制作一个无盖的圆锥形容
器,若衔接部分忽略不计,则该容器的容积为 立方分米 5. 62()x x -的二项展开式中2x 项的系数为
6. 请列举用0,1,2,3这4个数字所组成的无重复数字且比230大的所有三位偶数
7. 在5名男生和4名女生中选出3人,至少有一名男生的选法有 种(填写数值)
8. 有9本不相同的教科书排成一排放在书架上,其中数学书4本,外语书3本,物理书2本,如果同一学科的书要排在一起,那么有 种不同的排法(填写数值)
二. 选择题
9. 已知关于x 的实系数一元二次方程的一个根在复平面上对应点是(2,1),则这个方程可以是( )
A. 2450x x -+=
B. 2450x x ++=
C. 2430x x -+=
D. 2430x x +-=
10. 半径为2的球的表面积为( )
A. 4π
B. 8π
C. 12π
D. 16π
11. 下列5个命题中:① 平行于同一直线的两条不同的直线平行;② 平行于同一平面的两条不同的直线平行;③ 若直线l 与平面α没有公共点,则l ∥α;④ 用一个平面截一组平行平面,所得的交线相互平行;⑤ 若l ∥α,则过l 的任意平面与α的交线都平行于l . 其中真命题的个数是( )
A. 2
B. 3
C. 4
D. 5
三. 解答题
12. 已知虚数z 满足||1z =.
(1)求|2|z +的取值范围;(2)求证:1z z
-
是纯虚数.
13. 在平面直角坐标系xOy 中,点P 到直线l :3x =-的距离比到点(3,0)F 的距离大2.
(1)求点P 的轨迹C 的方程;
(2)请指出曲线C 的对称性,顶点和范围,并运用其方程说明理由.
14. 如图,在正三棱锥P ABC -中,侧棱长和底边长均为a ,点O 为底面中心.
(1)求正三棱锥P ABC -的体积V ;
(2)求证:BC PA ⊥.
15. 若二面角AB αβ--的平面角是直角,我们称平面α垂直于平面β,记作αβ⊥.
(1)如图1,已知αβ⊥,AB αβ=,l α,且l AB ⊥,求证:l β⊥;
(2)如图2,在长方形ABCD 中,AB =4BC =,将长方形ABCD 沿对角线BD 翻折,使平面BCD ⊥平面ABD ,求此时直线AC 与平面ABD 所成角的大小.
参考答案
一. 填空题
1. 2i ±
2. 4π
3. 8π
4.
5. 60
6. 310,302,320,312
7. 80
8. 1728
二. 选择题
9. A 10. D 11. C
三. 解答题
12.(1)1|2|3z <+<;(2)证明略.
13.(1)28(1)y x =-;(2)对称性:曲线C 关于x 轴对称;顶点:(1,0);范围:曲线C 在直线1x =右侧,且右上方和右下方无限延伸.
14.(1)3V =;(2)证明略.
15.(1)证明略;(2)CAE ∠=.。