《与三角形有关的线段》教学设计(第2课时)
最新部编人教版四年级数学下册第五单元《三角形》教学设计(共6课时)
第五单元:三角形第1课时(共6课时)师:谁能说一说这三个三角形都有哪些共同特征?指名口答,根据学生口答,教师板书。
教师指出:每个三角形都有三条边、三个角、三个顶点,这就是三角形在黑板上先画一个三角形。
教师边示范边说明:(四)评价反馈通过今天这节课的学习,你有哪些收获?师生共同归纳:认识了三角形的特征;认识了三角形的底和高并学会了画三角形的高。
第五单元:三角形第2课时(共6课时)为什么要这样做呢?2、导入课题:其实三角形在我们的生活中有着广泛的运用,你对三角形有哪些认识?(学生回答)今天这节课我们就来学习三角形的特性。
板书课题:三角形的特性。
(二)探索发现教学教材第61页例2。
1、小组活动:用3根小棒摆三角形,用4根小棒摆四边形,看看各能摆出几个?(小棒的长度都一样)教师巡视指导,交流后反馈:摆三角形:不管怎么摆,只能摆出一种三角形。
摆四边形:可以摆出多种不同的四边形。
师:通过刚才的活动,你发现了什么?师生交流后明确:用同样长的小棒摆三角形和四边形,发现三角形不管第五单元:三角形第3课时(共6课时)第五单元:三角形第4课时(共6课时)启发学生思考:①一个三角形最多有几个锐角?最少有几个锐角?(3)认识直角三角形。
课件出示一个直角三角形:直角的两条边叫直角三角形的直角边,条边叫斜边。
师:量一量这个直角三角形的直角边和斜边长,锐角三角形:钝角三角形:等边三角形:直角三角形:等腰三角形:3、动手画一个直角三角形。
(四)评价反馈三个角都是锐角有一个角是直角有一个角是钝角有两条边相等三条边都相等第五单元:三角形第5课时(共6课时)2、算出下面三角形中∠3的度数。
它们各是什么三角形?(1)∠1=42°,∠2=38°(2)∠1=34°,∠2=56°∠1+∠2+∠3=180°,三角形的内角和是180°。
第五单元:三角形第6课时(共6课时)4、回顾与反思。
2024~2025学年度八年级数学上册第2课时 用“SAS”判定三角形全等教学设计
第2课时用“SAS ”判定三角形全等教学步骤师生活动教学目标课题12.2第2课时用“SAS ”判定三角形全等授课人素养目标1.掌握基本事实:两边及其夹角分别相等的两个三角形全等,经历探索“SAS ”的过程,培养学生观察、归纳及动手能力,发展学生的几何直观感知能力与推理能力.2.能用尺规作图:已知两边及其夹角作三角形,培养学生分析与作图能力.教学重点“SAS ”的探索及运用,尺规作图:已知两边及其夹角作三角形.教学难点“SAS ”的探究过程.教学活动教学步骤师生活动活动一:创设情境,新课导入设计意图设置悬念引起学生思考,为接下来探究三角形全等的判定条件——“SAS”做铺垫.【情境引入】小红到小明家去玩,发现小明正拿着一只玻璃容器苦思冥想,原来他想测量一下它的内径是多少,但是无法将刻度尺伸进去直接测量.小红帮他想出一个办法:把两根长度相等的小木条AB ,CD 的中点连在一起,木条可以绕中点O 自由转动,如下图所示,这样只要测量A ,C 之间的距离,就可以知道玻璃容器的内径.你想知道为什么吗?经过这节课的学习你就会知道答案了.【教学建议】此问题实际求证BD =AC,学生可联想到利用全等三角形的性质,而已有两边和夹角分别相等,自然过渡到探讨“SAS”是否可行,顺利衔接新课.这个问题中涉及了转化思想与数学建模思想.活动二:动手操作,探究新知设计意图以“两边一角分别相等”能否保证两个三角形全等切入主题,经历探索三角形全等的判定条件——“SAS”的过程,学会尺规作图:已知两边及其夹角作三角形的方法,并运用“SAS”解题,经历“SSA”无法判定两个三角形全等的探索过程.探究点用“SAS”判定三角形全等在上节课中我们知道用三个条件探索三角形全等共有四种情况——三边分别相等、两边一角分别相等、两角一边分别相等、三角分别相等,并探索了用“SSS”判定三角形全等的过程.这节课我们将继续探索“两边一角分别相等”能否证明两个三角形全等.问题“两边一角分别相等”有几种可能性呢?请举例.答:有两种可能性,如图所示.我们分情况进行讨论.探究先任意画出一个△ABC.再画出一个△A ′B ′C ′,使A ′B ′=AB ,A ′C ′=AC ,∠A ′=∠A(即两边和它们的夹角分别相等).把画好的△A ′B ′C ′剪下来,放到△ABC 上,它们全等吗?【教学建议】“探究”中讨论的是两边一角分别相等中的两边及其夹角分别相等的情形.这里对“SAS”的处理与“SSS”类似,先通过作图实验操作,让学生充分经历探究满足两边及其夹角分别相等的两个三角形是否全等的过程,然后总结规律,直接以基本事实的方式给出“SAS”的判定方法.需注意已知两边及其夹角作三角形也是课标要求的重要作图,需要学生掌握作图步骤,作图过程中利用了上节课学到的作一个角等于已知角的基本作图.设计意图问题4揭示图形语言与文字语言之间的联系,使学生经历从现实世界抽象出几何模型的过程,认识三角形的各个基本要素.如图给出了画△A′B′C′的方法.你是这样画的吗?答:上述画法是先画一个角,再画夹这个角的两边.也可以采用先画一边,然后画角,再画另一边的方法,步骤如下:(1)作A′B′=AB;(2)作∠B′A′E=∠A;(3)在射线A′E 上截取A′C′=AC;(4)连接B′C′.探究的结果反映了什么规律?由探究可以得到以下基本事实,用它可以判定两个三角形全等:也就是说,三角形的两条边的长度和它们的夹角的大小确定了,这个三角形的形状、大小就确定了.例(教材P 38例2)如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?分析:如果能证明△ABC ≌△DEC ,就可以得出AB =DE.由题意可知,△ABC 和△DEC 具备“边角边”的条件.∴△ABC≌△DEC (SAS)∴AB=DE.追问:想一想,∠1=∠2的根据是什么?AB=DE 的根据是什么?答:∠1=∠2的根据是对顶角相等,AB=DE 的根据是全等三角形的对应边相等.从例题可以看出:因为全等三角形的对应边相等,对应角相等,所以证明线段相等或角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?图中的△ABC 与△ABD 满足两边和其中一边的对角分别相等,即AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.【教学建议】例题从实际背景中引申出几何问题——证明两条线段相等.可引导学生观察思考,要证的线段是两个三角形中的两条边,如果能证明两个三角形全等,那么就能利用全等三角形的性质得到线段相等.于是通过例题可以达到三个教学目的,一是让学生学会运用“SAS”解题;二是让学生更透彻地认识到证线段相等或角相等可以利用判定三角形全等的手段(之前的学习中已经提到过);三是启发学生联想,以另外的实际背景对活动一中的问题进行解释.【教学建议】“思考”以做实验的方式探讨两边和其中一边的对角分别相等能否保证两个三角形全等.教学中也可以画出如左栏图所示的图形,让学生直观地发现结论.这个过程也再次让学生体会到要判断一个命题是假命题,只要举出一个反例.最后是对“两边一角分别相等”能否保证两个三角形全等进行总结性描述.教学步骤师生活动°=30°.ABC≌△ECD(SAS).+∠ACD=90°,【作业布置】1.教材P43~45习题12.2第3,10,13题.2.《创优作业》主体本部分相应课时训练.板书设计第2课时用“SAS ”判定三角形全等1.基本事实:两边和它们的夹角分别相等的两个三角形全等(“边角边”或“SAS ”).2.尺规作图:已知两边及其夹角作三角形.3.实际应用:用“SAS ”判定三角形全等.教学反思本节课是探索三角形全等条件的第2课时,是在学习了“SSS ”之后展开的.它不仅是下节课探索其他判定三角形全等条件的基础,又为后面探索直角三角形全等的条件提供了很好的模式和方法.因此,本节课的知识具有承前启后的作用,占有相当重要的地位.同时,本节课具有较强的操作性和直观性,有利于学生从直观上积累感性认识,促进学生对新知识的理解和掌握.解题大招一用“SAS ”判定三角形全等的实际应用在实际生活中,常常通过说明两个三角形全等,得出对应边相等,对应角相等,从而解决一些实际问题,如把不能直接测量的长度(或角度)“转移”到可以直接测量的位置测量.例1如图是雨伞在开合过程中某时刻的截面图,D ,E 分别是伞骨AB ,AC 的中点,DM ,EM 是连接弹簧M 和伞骨的支架,且DM =EM ,在弹簧向上滑动的过程中,∠AMD =∠AME ,试说明AB =AC.解:在△ADM 和△AEM =EM ,AMD =∠AME ,=AM ,∴△ADM ≌△AEM(SAS ),∴AD =AE.∵D ,E 分别是AB ,AC 的中点,∴AD =12AB ,AE =12AC ,∴AB =AC.解题大招二用倍长中线法构造全等三角形当出现中线,而现有图形中不存在两个全等三角形时,常通过倍长中线法将中线延长一倍,根据“SAS ”构造全等三角形,再利用对应边相等去寻求线段间的数量关系.例2在数学课上,老师出示了这样一个问题:“如图①,在△ABC 中,AC =8,BC =5,D 为AB 边的中点,求AB 边上的中线CD 的取值范围.”经过小组合作交流,找到了解决方法——“倍长中线法”.请按照图②所示的思维框图,完成求解过程.解:如图①,延长CD 至点E ,使DE =CD ,连接AE ,则CE =2CD.∵D 为AB 边的中点,∴AD =BD.又∠ADE =∠BDC ,DE =DC ,∴△ADE ≌△BDC(SAS ),∴AE =BC =5.在△ACE 中,AC -AE <CE <AC +AE ,∴8-5<2CD <8+5,∴1.5<CD <6.5.解题大招三利用“SAS ”证三角形全等的“手拉手”模型例3两个大小不同的等腰直角三角板如图①放置,图②是由它抽象出的几何图形,B ,C ,E 三点在同一直线上,连接CD.(1)求证:△ABE ≌△ACD ;(2)试猜想CD 与BE 的位置关系,并证明你的结论.(1)证明:∵△ABC 和△ADE 都是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD.在△ABE 和△ACD =AC ,BAE =∠CAD ,=AD ,∴△ABE ≌△ACD(SAS ).(2)解:CD ⊥BE.证明如下:∵△ABE ≌△ACD ,∴∠B =∠ACD.∵∠BAC =90°,∴∠B +∠ACB =90°,∴∠ACD +∠ACB =90°,即∠BCD =90°,∴CD ⊥BE.培优点用“SAS ”判定三角形全等解决动点问题例如图①,在△ABC 中,∠A =∠B ,AC =BC =20cm ,AB =16cm ,D 为AC 的中点.(1)如果点P 在线段AB 上以6cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BC 上由点B 向点C运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△APD 与△BQP 是否全等?说明理由.②若点Q 的运动速度与点P 的运动速度不相等,设运动时间为t s ,当t 为何值时,△APD 与△BQP 全等?求出此时点Q 的运动速度.(2)如图②,若点Q 以②中的运动速度从点B 出发,点P 以原来的运动速度从点A 同时出发,都按逆时针方向沿△ABC 的三边运动,经过多长时间,点P 与点Q 第一次在△ABC 的哪条边上相遇?解:(1)①△APD 与△BQP 全等.理由:经过1s 后,AP =BQ =6cm .∵AC =20cm ,D 为AC 的中点,∴AD =12AC =10cm .又BP =AB -AP =16-6=10(cm ),∴AD =BP.又∠A =∠B ,∴△APD ≌△BQP(SAS ).②因为v P ≠v Q ,所以AP≠BQ.又∠A=∠B,所以要使△APD与△BQP全等,只能AP=BP=12AB=8cm,BQ=AD=10cm,∴6t=8,解得t=43,∴点Q的运动速度为10÷43=7.5(cm/s).所以当t为43时,△APD与△BQP全等,此时点Q的运动速度为7.5cm/s.(2)因为v Q>v P,所以只能是点Q追上点P,即点Q比点P多走BC+AC的路程.设经过x s后点P与点Q第一次相遇,依题意得7.5x-6x=20+20,解得x=803,此时P运动了803×6=160(cm).又△ABC的周长为AB+BC+AC=16+20+20=56(cm),且160=56×2+48,所以点P,Q第一次是在AC边上相遇,即经过803s,点P与点Q第一次在△ABC的AC边上相遇.。
【大单元教学】人教版数学八上 第十一章 三角形 单元教学设计
2
11.3
多边形及其内角和
2
达成评价
课题
课时目标
达成评价
评价任务
11.1.1 三角形的 边
1.认识三角形并会用几 何语言表示三角形,了 解三角形分类. 2.掌握三角形的三边关 系. 3.运用三角形三边关系
学生能够认识三角 形并了解三角形的 分类 能掌握三角形三边 关系并运用三边关 系解决问题
任务 1.引言得出三 角形有关概念 任务 2.探究三角形 三边关系 任务 3.出示例题 任务 4.归纳总结
三 角
11.1.3 三角形稳定性
形
11.2.1 三角形内角
11.2.2 三角形外角
11.3.1 多边形
思考:三角形分类
探究:三角形三边关系
例题解析 活动 1:三角形高 活动 2:三角形中线以及重心 活动 3:三角形角平分线 例题解析 探究:三角形稳定性 举例 例题 探究:三角形内角和 例题 直角三角形性质
解决有关的问题.
11.1.2 三角形的 1.掌握三角形的高,中 学生会画三角形的 任务 1:由实际问题
高,中线与角平 线及角平分线的概念. 高,中线,角平分线; 引出三角形的高
分线
2.掌握三角形的高,中 并且能根据概念解 任务 2:探究三角形
线及角平分线的画法. 决问题
中线的概念以及中
3. 掌握钝 角三 角形的
角和公式就是利用上述方法得到的,将多边形的有关内容与三角形的有关内容紧接安排.
可以加强它们之间的联系,便于学生学习.
学情分析
"三角形”是《课程标准》”几何与图形”的重要内容.在第四章《几何图形初步》、 第五章《相交线与平行线》中,学生已经学习了直线、线段、射线、角等基本的平面图形,
《线段的垂直平分线》第2课时示范公开课教案【八年级数学下册北师大版】
《线段的垂直平分线》教学设计第2课时一、教学目标1.会证明三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,并解决相关的问题.2.掌握三角形三条边的垂直平分线的性质,能利用尺规作出符合条件的三角形.3.能用尺规做出已知直线的垂线,培养尺规作图的技能.4.经历探索、猜测、证明的过程,进一步体会证明的必要性,增强证明意识和能力.二、教学重难点重点:会证明三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,并解决相关的问题.难点:掌握三角形三条边的垂直平分线的性质,能利用尺规作出符合条件的三角形.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师提出问题,引导学生思考回答.问题1:线段的垂直平分线的性质定理是什么?它有哪些应用?预设:线段垂直平分线上的点到这条线段两个端点的距离相等.几何语言:如图,直线MN⊥AB,垂足是点C,且AC=BC,P是MN上的点,则P A=PB.应用:经常用来证明两条线段相等.问题2:线段的垂直平分线的判定定理是什么?它有哪些应用?预设:到线段两个端点距离相等的点在这条线段的垂直平分线上.几何语言:如图,线段AB,P A=PB,则点P在线段AB的垂直平分线上(即PC⊥AB且AC=CB).应用:经常用来证明点在直线上或直线经过某一点.问题3:如何作已知线段的垂直平分线?预设:已知:线段AB,如图.求作:线段AB的垂直平分线.作法:1.分别以点A和B为圆心,以大于线段AB 长度的一半为半径作弧,两弧交于点C和D.2. 作直线CD.则直线CD就是线段AB的垂直平分线.的学生适当点拨,最终教师展示答题过程.例1求证:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.分析:两条直线相交只有一个交点.要想证明三条直线相交于一点,只要能证明两条直线的交点在第三条直线上即可.证明前要先将题目转化为几何语言,画出图形.然后结合前面学过的线段垂直平分线的判定定理和性质定理进行证明.求解过程:已知:如图,在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在边AC的垂直平分线上,且P A =PB=PC.证明:∵点P在边AB的垂直平分线上,∴P A=PB(线段垂直平分线上的点到这条线段两个端点的距离相等).同理,PB=PC.∴P A=PB=PC.∴点P在边AC的垂直平分线上(到线段两个端点距离相等的点在这条线段的垂直平分线上).【议一议】分别作出锐角三角形、直角三角形、钝角三角形三边的垂直平分线,说说你的发现.⊥ 锐角三角形三边的垂直平分线交于三角形内部一点;⊥ 直角三角形三边的垂直平分线交于三角形斜边中点处.⊥ 钝角三角形三边的垂直平分线交于三角形外部一点.【归纳】教师活动:结合上面的例题讲授及作图内容,鼓励学生先自主思考并讨论总结三角形外心的相关内容,然后做整体归纳总结.三角形的外心:三角形三边的垂直平分线交于一点,这一点称为三角形的外心.三角形的外心到三角形三个顶点的距离相等.三角形外心的位置:(1)锐角三角形三边的垂直平分线交于三角形内部一点;(2)直角三角形三边的垂直平分线交于三角形斜边中点处;(3)钝角三角形三边的垂直平分线交于三角形外部一点.【议一议】(1)已知三角形的一条边及这条边上的高,你能做出满足条件的三角形吗?如果能,能作几个?所作出的三角形都全等吗?预设:能作出无数个,所作出的三角形不都全等.(2)已知等腰三角形的底边及底边上的高,你能用尺规作出满足条件的一个等腰三角形吗?分析:先作出底边的垂直平分线,再截取已知长度的高,即可作出满足条件的三角形.预设:能作出两个三角形,所作出的两个三角形全等.【典型例题】教师活动:先帮学生回忆前面学习的尺规作图的基本内容,然后和学生一起分析具体作图方法,在学生作图过程中,引导学生体会每一作图步骤的作用及其理论依据.例2 已知底边及底边上的高,求作等腰三角形.已知:如图,线段a,h.求作:△ABC,使AB=AC,且BC=a,高AD= h.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线l,交BC于点D.(3)在l上截取DA= h.(4)连接AB,AC.△ABC就是所求作的等腰三角形.【做一做】已知直线l和l上一点P,用尺规作l 的垂线,使它经过点P 呢.小明的作法如下,你能明白他的作法吗?分析:先在直线l上截取A、B两点,且这两点到点P的距离相等;接着分别以点A、B为圆心,大于线段AB的一半的长为半径画弧,交于两点;最后连接得到的两个交点,得到直线m即为所求.你是怎样作的?和同学们交流讨论一下.【议一议】如果点P是直线l外一点,那么怎样用尺规作l的垂线,使它经过点P呢?说说你的作法,并与同伴进行交流.分析:应先依据题意写出已知、求作.可以在直线l的另一侧取点K,过P点以PK长为半径作弧,与直线l相交于两点,即构造出等腰三角形,则问题就转化为等腰三角形作底边垂直平分线的问题,得以解决.已知:直线l,及l外一点P .求作:直线m垂直于直线l,且经过点P.作法:1. 任取一点K,使点K与点P在直线l 两旁;2.以点P为圆心,以PK的长为半径作弧,交直线l于点A和点B;3.作线段AB的垂直平分线m.直线m垂直于直线l,且经过点P.教师活动:进行总结说明,给出简要证明,因为P A=PB,根据线段垂直平分线的判定定理可证得.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.【随堂练习】1.三角形三边的垂直平分线的交点() A.到三角形三边的距离相等B.到三角形三个顶点的距离相等C.到三角形三个顶点与三条边的距离相等D.不能确定2. 如图,D是线段AC,AB的垂直平分线的交点,若∠ACD=30°,∠BAD=50°,则∠BCD 的大小是()A.10°B.20°C.30°D.40°3.如图,O为△ABC三边垂直平分线的交点,点O到顶点A的距离为 5 cm,则AO+BO+CO=cm.4.如图,在△ABC中,∠BAC=52°,O为AB,AC的垂直平分线的交点,连接OB,OC,那么∠OCB=______.5.如图,在△ABC中,BC=2,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,请找出图中相等的线段,并求△AEF的周长.答案:1.B2.A3.154.38°5.解:如果设AB的中点为D,AC的中点为G,那么图中相等的线段有:AD=BD(已知),AG=CG(已知),BE=AE(线段垂直平分线上的点到这条线段两个端点的距离相等),同理AF=CF.思维导图的形式呈现本节课的主要内容:。
《认识三角形》第2课时教学设计
《认识三角形》第2课时教学设计4、总结归纳,定义:(1)三条边各不相等的三角形叫作不等边三角形(2)有两条边相等的三角形叫作等腰三角形(3)三条边都相等的三角形叫作等边三角形等边三角形和等腰三角形之间有什么关系?(等边三角形是特殊的等腰三角形)5、我们可以把三角形按照三边情况进行分类(不等边三角形三角形按边分类]笠殛—缶等腰三角形I等腰二角形I等边三角形(二)三角形的三边关系。
1、探究活动1:如下图,点A为小明家,点B为学校,点C为邮局,小明想:我要到学校怎么走呀?哪一条路最近呀?为什么?学生讨论后个别回答,然后师生共同小结。
路线1:从A到C再到B的路线走;路线2:沿线段AB走请问:路线1、路线2哪条路程较短,你能说出根据吗?解:路线2较短;两点之间线段最短。
≡由此可以得到:4- BOAB ÷BO AC ÷ AR > RO2、议一议:(1)在同一个三角形中,任意两边之和与第三边有什么大小关系?(2)在同一个三角形中,任意两边之差与第三边有什么大小关系?(3)三角形三边有怎样的不等关系?通过动手实验(数学课本第85页“做一做”)同学们可以得到哪些结论? 理由是什么?3、探究活动2:做一做分别量出下面三个三角形的三边长度,并填入空格内。
Z∖ N 2(1) (2) (3)⑴a=,b=, C=。
(2) a=,b=,C=O⑶a=,b=,C=O根据你的测量结果,计算三角形的任意两边之差,并与第三边比较,完成填空:(1) a- b c,c- b a,c- a b⑵b—a c, c-a b,b—c a。
⑶a- c b,a— b c,b—c a。
你能得到什么结论?再画一些三角形试一试。
得出结论:三角形任意两边之差小于第三边。
4、归纳总结三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
(三)典例分析1、例I有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13Cm的木棒呢?解:取长度为2cm的木棒时,由于2+5=7<8,出现了两边之和小于第三边的情况,所以它们不能摆成三角形.取长度为13cm的木棒时,由于5+8=13, 出现了两边之和等于第三边的情况,所以它们也不能摆成三角形。
初二数学教案:平行线分线段成比例定理(二)
初二数学教案:平行线分线段成比例定理(二) (第二课时)一、教学目标1.使学生在明白得的基础上把握平行线分线段成比例定理及其推论,并会灵活应用.2.使学生把握三角形一边平行线的判定定理.3.已知线的成已知比的作图问题.4.通过应用,培养识图能力和推理论证能力.5.通过定理的教学,进一步培养学生类比的数学思想.二、教学设计观看、猜想、归纳、讲解三、重点、难点l.教学重点:是平行线分线段成比例定理和推论及其应用.2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.四、课时安排1课时五、教具学具预备投影仪、胶片、常用画图工具.六、教学步骤【复习提问】叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).【讲解新课】在黑板上画出图,观看其特点:与的交点A在直线上,依照平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,如此即可得到:平行于的边BC的直线DE截AB、AC,所得对应线段成比例.在黑板上画出左图,观看其特点:与的交点A在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,如此即可证到:平行于的边BC的直线DE截边BA、CA的延长线,因此对应线段成比例.综上所述,能够得到:推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.如图,(六个比例式).此推论是判定三角形相似的基础.注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,假如已知,DE是截线,那个推论包含了下图的各种情形.那个推论不包含下图的情形.后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)例3 已知:如图,,求:AE.教材上采纳了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即:.让学生摸索,是否可直截了当未出AE(找学生板演).【小结】1.明白推论的探究方法.2.重点是推论的正确运用七、布置作业(1)教材P215中2.一样说来,“教师”概念之形成经历了十分漫长的历史。
七年级数学下册《三角形的三条重要线段》教案、教学设计
3.及时反馈原则:要求学生在规定时间内提交作业,教师及时给予评价和指导,帮助学生发现问题、提高自己。
-指出:“在解决几何问题时,我们要学会运用所学的性质,进行严密的逻辑推理。”
3.鼓励学生对所学知识进行自我反思,评价自己的学习效果。
-提问:“你认为自己在今天的课堂上有哪些收获?还有哪些地方需要进一步学习和提高?”
五、作业布置
为了巩固学生对三角形三条重要线段的理解和应用,以及提高他们的问题解决能力,我设计了以下作业:
3.引导学生通过观察、思考、总结,形成解决问题的策略和方法。
-教师鼓励学生在学习过程中积极思考,通过问题驱动的方式,引导学生总结三角形三条重要线段的相关性质。
-学生在教师的引导下,学会运用几何知识进行逻辑推理,形成解题的策略。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的探究欲望。
-通过设置具有挑战性的问题,教师激发学生的学习兴趣,鼓励学生主动探索三角形三条重要线段的秘密。
-学习笔记要体现学生的自主学习和思考过程,有助于他们梳理知识结构。
5.互动交流作业:鼓励学生与家长或同学分享今天学到的三角形知识,讨论解决实际问题的策略。
-通过互动交流,培养学生的沟通能力和团队合作精神。
作业布置时,注意以下原则:
1.分层次原则:针对不同学生的学习水平,提供不同难度的作业,使每个学生都能得到适当的挑战和锻炼。
-通过例题,让学生看到中线如何将三角形分成面积相等的两部分,角平分线如何将角平分,高线如何与底边垂直。
3.解释这些性质在解决几何问题中的应用,并展示解题步骤。
-以具体的几何题目为例,示范如何运用中线、角平分线、高线的性质来解决问题。
初中八年级数学教案-《三角形中几条重要线段》-优秀奖
教学设计织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中把握三大概念。
2学法课前进行预习,明确学习目标,了解所需掌握的知识,课上在教师的组织、引导、点拨下折纸和画图形等实践过程等活动,从而真正理解和掌握三角形的高、中线与角平分线等概念。
五、教学重点及难点教学重点:理解三角形的高、中线及角平分线概念及画法。
教学难点:钝角三角形的高的画法及不同类型的三角形高线的位置关系。
六、课时设计:1课时教学过程教师活动学生活动预设设计意图一、知识回顾:出示课件,结合图形回顾已学知识:1垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
2线段中点的定义:把一条线段分成两条相等的线段的点。
3角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
4 同学们还记得“过一点画已知直线的垂线”的作法吗画法(提问演示)学生回答回顾旧知识,为本节课学习三角形中几条重要线段作铺垫。
二、探究新知探究一:三角形的高让学生找出概念,然后探究以下问题:1出示课件,先演示画三角形的一条高后提问:学生动手操作,先独立思考后与同桌相互交流让学生通过观察、归纳、总结出三角形高三、课堂练习1、下图作三角形中的高正确的是( )2、在❒ABC 中,AD 是BC 边上的中线,若❒ABC 的面积是4,则❒ABD 的面积为3、角平分线的理解:∵BE 是△ABC 的角平分线 ∴ = =21∠ABC ∵CF 是△ABC 的角平分线 ∴∠ACB= =学生独立完成解答,教师提问学生对本节知识进行巩固练习,学以致用四、课堂小结1、谈谈本节课学习了什么内容2、你有什么收获学生畅所欲言,谈谈本节课学到了哪些知识, 需要注意什么问题。
师生互相交流本节课的内容及应用需要注意的问题。
《三角形边的关系》教学设计优秀5篇
《三角形边的关系》教学设计优秀5篇初中三角形三边关系教学设计篇一【教学目标】教学重点:“三角形任意两边之和大于第三边”的关系的探究和归纳。
教学难点:判断怎样的三条线段能构成三角形?教学关键:让学生合作交流,通过实验和观察PPT课件,从中体验三角形的三边关系及构成三角形的条件,并从中探索出解决这种问题的实质。
教学准备:教材、PPT演示文稿、小棒教法:情境导入法、设疑诱导法、操作发现法、观察、归纳,分析归纳教学法;学法:实验操作法、合作探究法、观察法、分析法、归纳法,对比法。
教学课时:一课时教学过程:一、导入新课,板书课题上课后,放幻灯片1引入新课。
二、展示学习目标放幻灯片2-3放幻灯片4 导学案反馈。
老师:讲出现的问题及强调得到的结论。
放幻灯片5、6知识应用。
三、合作交流(8分钟)放幻灯片7 合作交流的要求。
老师巡视观察学生完成学案的情况。
四、高效展示(8分钟)放幻灯片8 高效展示要求。
五、点评(约15分钟)展示完成后,放幻灯片9点评要求。
2分钟以后按照分工开始点评。
点评【活动一】完成后放幻灯片10,老师点拨。
学生继续点评。
学生点评完【跟踪练习1】后,放幻灯片11 变形练习。
完成后学生继续点评。
《三角形三边的关系》教案教学设计篇二教学目标:1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。
2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。
教学重点、难点:探索并发现三角形任意两边之和大于第三边。
教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。
教学过程:一、复习旧知,导入新课这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。
同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。
二、动手操作,发现问题师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?生:三角形。
2022年数学精品初中教学设计《三角形的高、中线与角平分线》特色教案
三角形的高、中线与角平分线一、新课导入1.导入课题:在与三角形有关的线段中, 除了它的三边外, 还有它的高、中线和角平分线, 这节课我们来学习三角形的高, 中线和角平分线的意义、作法和发现的规律性结论.2.学习目标:(1)了解三角形的高、中线和角平分线的意义.(2)会画出三角形的高、中线和角平分线.(3)结合图形写出三种线段分别得到的相应结论.3.学习重、难点:重点:三角形的高、中线和角平分线的意义和画法.难点:结合三角形高、中线和角平分线的定义探索相应的规律结论.二、分层学习1.自学指导:〔1〕自学内容:教材第4页《11.1.2 三角形的高、中线与角平分线》的第1自然段.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本的内容, 划出你认为是重点的语句.〔4〕自学参考提纲:①表述出什么是三角形的高?从三角形的一个顶点向它的对边作垂线, 所得线段叫做三角形的高.②如图1, ∵AD是△ABC的高,∴AD⊥BC于点D〔或∠ADB=∠ADC=90°〕.反之, ∵AD⊥BC于点D〔或∠ADB=∠ADC=90°〕,∴AD是△ABC中BC边上的高.③请画出以下三角形三边上的高, 并说说你有什么发现?发现:三角形的高可以在三角形内, 也可以在三角形边上, 还可以在三角形外.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:三角形的高, 这局部知识实际上是探讨线与线之间的位置关系, 学生会作锐角三角形的高, 但直角三角形、钝角三角形三边上的高线, 学生容易混淆, 所以应跟踪学情点拨引导.②差异指导:引导学生找准要作哪条边上的高, 及掌握直角三角板的两条直角边的用法.〔2〕生助生:学生互助交流不同类别三角形的高的画法.4.强化:〔1〕强调三角形的高线是一条线段.〔2〕作三角形高的方法.〔3〕练习:如图, 写出以AE为高的三角形.解:△ABE, △ABD,△ABC,△AED,△AEC,△ADC.1.自学指导:〔1〕自学内容:教材第4页《11.1.2 三角形的高、中线与角平分线》的第2自然段到第5页的第1自然段.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本的内容, 结合图形划出你认为是重点的语句及存有疑点之处.〔4〕自学参考提纲:①连接三角形一个顶点和它对边中点的线段, 叫做三角形的中线.②结合右图填空:∵AD是△ABC的中线,∴BD=CD=1BC.2S△ABC.∴S△ABD=S△ADC=12反之:∵BD=DC, ∴AD是△ABC的中线.③画出以下三角形三边的中线, 说说你的发现.发现:它们的中线都在三角形内部且相交于一点.④要找到一块质地均匀的三角形钢板的平衡点, 你应怎样做?作它的三条中线, 交点即为平衡点〔即重心〕.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:重点了解学生对画中线的根本步骤, 及三条中线交于一点即重心的掌握.②差异指导:引导学生寻找画中线的方法:a.先要找准边的中点;b.连接该中点与这边所对的顶点的线段.〔2〕生助生:学生相互讨论交流学习疑难点.4.强化:〔1〕强调三角形的中线是一条线段.〔2〕三角形的中线的概念和中线的画法.〔3〕练习:如下图, AM是△ABC的中线, 假设△ABM的面积是20平方厘米, 求△ABC的面积.S△ABC=2S△ABM=40平方厘米1.自学指导:〔1〕自学内容:教材第5页图11.1-5到“练习〞前的内容.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本的内容, 结合图形完成参考提纲.划出你认为重点的语句和学习疑点.〔4〕自学参考提纲:①定义:三角形一个内角的平分线与它的对边相交, 这个角的顶点与对边上的交点之间的线段, 叫做三角形的角平分线.②结合右图填空:∵AD是△ABC的角平分线,∴∠1=∠2=1∠BAC.2反之, ∵∠1=∠2, ∴AD是△ABC的角平分线.③如右图, △ABC中, ∠B、∠C的平分线相交于O, ∠A=70°, 那么∠BOC=125°.④画出以下三角形的三条角平分线, 你有什么发现?发现:三角形的角平分线都在三角形内部且相交于一点.⑤你怎样来区别三角形的高线、中线、角平分线?三角形的高线垂直于三角形的边;三角形的中线平分三角形的边;三角形的角平分线平分三角形的角.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:三角形的角平分线是探究角之间的数量关系, 学生已经掌握了量角器的用法, 能很快地画出一个角的角平分线.②差异指导:引导学生从概念、画法等方面区别高线、中线、角平分线.〔2〕生助生:学生之间相互交流帮助解决学习中的疑惑.4.强化:(1)三角形的角平分线的概念及其画法.(2)练习:①, AD是△ABC的中线, AE是∠BAC的平分线, 那么BD=DC=12BC,∠BAE=∠CAE=12∠BAC.②, BD是△ABC的角平分线, DE∥BC, ∠DBC=20°, 求∠AED.解:∵BD是△ABC的角平分线, ∴∠DBC=12∠ABC.∵DE∥BC,∠DBC=20°,∴∠AED=∠ABC=2∠DBC=40°.三、评价1.学生自我评价〔围绕三维目标〕:学生交流自己的学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法、学习成果及存在的缺乏进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价〔教学反思〕:本课时教学以“自主探究——合作交流〞为主体形式, 先给学生独立思考的时间, 提供学生创新的空间与可能, 再给不同层次的学生提供一个交流合作的时机, 培养学生独立探究, 合作学习的能力.一、根底稳固〔每题10分, 共50分〕1.三角形的高、中线和角平分线都是〔C〕2.如图,在△ABC中, AD是角平分线, AE是中线, AF是高, 那么:(1)BE=EC=12BC;(2)∠BAD=∠DAC=12∠BAC;(3)∠AFB=∠AFC=90°;(4)△ABC的面积=12BC·AF.3.如图, 在△ABC中, AD平分∠BAC且与BC相交于点D, ∠B=40°, ∠BAD=30°, 那么∠C的度数是80°.4.以下说法错误的选项是〔A〕D.一个三角形的三条高、中线、角平分线分别交于同一个点5.如下图, 在△ABC中, ∠1=∠2, G为AD的中点, 连接BG并延长, 交AC于点E, CF⊥AD于点H, 交AB于点F.以下说法中, 正确的有〔A〕①AD是△ABE的角平分线②BE是△ABD的边AD上的中线③CH是△ACD的边AD上的高.二、综合应用〔每题10分, 共20分〕6.直角三角形两锐角的平分线所夹的钝角为多少度?解:如图, △ABC中, ∠B=90°,AD、CE是△ABC的角平分线, 那么∠DAC+∠ECA=12〔∠BAC+∠BCA〕=45°,∴∠AFC=180°-(∠ECA+∠DAC)=135°.所以直角三角形两锐角的平分线所夹的钝角为135°.7.如图, AD是△ABC的边BC上的中线, AB=5cm,AC=3cm.△ABD的面积为acm 2,(1)S △ABC=2acm 2;(2)△ABD 与△ACD 的周长之差为2cm.三、拓展延伸〔每题15分, 共30分〕△ABC 中, AD 是∠A 的平分线, DE ∥AC 交AB 于E, EF ∥AD 交BC 于F, 试问EF 是△BED 的角平分线吗?说说你的理由.解:EF 是△BED 的角平分线, 理由如下:∵AD 是∠BAC 的平分线, ∴∠1=∠2.∴DE ∥AC,∴∠5=∠2=∠1. ∵EF ∥AD,∴∠3=∠5,∠4=∠1,∴∠3=∠4,∴EF 是△BED 的角平分线.△ABC 中, ∠ACB=90°,CD ⊥AB 于D, AB=13,CD=6,BC=10, 求AC 的长.解:∵S △ABC=12AB·CD=12AC·BC, AB=13,CD=6,BC=10, ∴AC=AB CD BC •=13610⨯=7.8. 三角形全等的判定一、教学目标知识技能1掌握三角形全等的“ASA 和AAS 〞条件.2.能初步应用ASA 和AAS 〞条件判定两个三角形全等.数学思考1.使学生经历探索三角形全等条件的过程, 体会利用操作、归纳获得数学结论的过程.2.在探索三角形全等条件及其运用过程中, 能够进行有条理的思考并进行简单的推理.解决问题会用ASA 和AAS 〞条件证明两个三角形全等.情感态度1.通过探索和实际的过程体会数学思维的乐趣,激发应用数学的意识.2.通过合作交流,培养合作意识,体验成功的喜悦.二、教学方法探究式、讨论式三、教学手段多媒体辅助教学.四、教学过程Ⅰ、创设情境, 引入新课一天, 小明的妈妈叫他去玻璃店画一块三角形玻璃,小明不小心把画的三角形玻璃打碎成了三块,他为了省事,他从打碎的三块玻璃中选一块去,小明想法能办得到吗? 假设能,你认为小明应该拿哪块玻璃去呢? 为什么?【师生行为】教师通过〔Flash课件〕展示视频内容, 提出情境问题.学生独立思考, 发表自己的见解.【设计意图】创设性的设计问题, 变“教教材〞为“用教材〞.①使学生快速集中精力, 调整听课状态.②知识的呈现过程与学生已有的生活密切联系起来, 学有用的数学, 激发学生的学习兴趣. ③使学生产生认知上的冲突, 从而引入本课课题, 明确本节课的探究方向, 激发学习欲望.Ⅱ、实践操作、探索新知问题1、如图, △ABC是任意一个三角形, 画△A1B1C1,使A1B1=AB,∠A1=∠A,∠B1=∠B把画得△A1B1C1剪下来放在△ABC进行比拟, 它们是否重合?问题2、如图,△ABC是任意一个三角形, 画△A1B1C1,使A1C1=AC, ∠A1=∠A,∠B1=∠B, 请你猜想△A1B1C1与△ABC是否全等? 假设它们全等,你能用"ASA"来证明你猜想结论成立吗?【师生行为】教师提出问题, 学生思考问题, 动手实践、小组讨论、交流.学生在探索过程中, 难免有困难, 教师要鼓励学生争论和启发引导下及时作出正确的结论. 教师通过动画演示作图过程. 得出结论:有两角和它们的夹边对应相等的两个三角形全等〔可以简写成“角边角〞或“ASA〞〕用数学语言表示为:在△ABC与△A1B1C1中∠A=∠A1AB=A1B1∠B=∠B1∴△ABC≌△A1B1C1(ASA)【设计意图】对于问题1, 因为学生已经在学习“SSS〞条件有了一定的作图和探究图形的根底. 所以这里就直接提出问题让学生动手操作, 教师适时引导. 对于问题2, 学生在问题1的根底上通过类比思想可以得出结论. 〔即:可以通过"角边角"(ASA)来证明在△ABC和△A1B1C1中因为∠A1=∠A,∠B1=∠B所以∠C1=∠C在△ABC与△A1B1C1中∠A=∠A1AC=A1C1∠C=∠C1∴△ABC≌△A1B1C1(ASA)〕让学生在合作学习中共同解决问题, 使学生主动探究三角形全等的条件,培养学生分析、探究问题的能力. 培养学生的合作意识和竞争意识. 体会合作交流的重要性.Ⅲ、例题讲解、应用新知例1、如图,点D在AB上, 点E在AC上, BE和CD相交于点O, AB=AC,∠B=∠C,求证:BE=CD例2、例2、如图, 海岸上有A、B两个观测点, 点B在点A的正东方, 海岛C在观测点A的正北方, 海岛D在观测点B的正北方, 从观测点A看C, D的视角∠CAD与从观测点B看海岛C, D的视角∠CBD相等, 那么点A到海岛C的距离与点B到海岛D的距离相等, 为什么?【师生行为】先让学生独立思考, 在互相讨论、交流.然后引导学生分析题设中的条件, 以及两个三角形全等还需要的条件, 判断两个三角形全等的过程.证明:〔1〕在△ADC和△AEB中,∠A=∠A 〔公共角〕AC=AB∠C=∠B∴△ACD≌△ABE (ASA)∴AD=AE 〔全等三角形的对应边相等〕又AB=AC∴BE=CD证明:〔2〕∵∠CAD=∠CBD, ∠1=∠2∴∠C=∠D.在△ABC与△BAD∠CAB=∠ABD〔〕∠C=∠D 〔已证〕AB=BA 〔公共边〕∴△ABC≌△BAD〔AAS〕∴AC=BD即点A到海岛C的距离与点B到海岛D的距离相等【设计意图】培养学生的逻辑推理能力、独立思考能力, 会用“ASA或AAS“判断三角形全等, 标准地书写证明过程. 培养学生合情合理的逻辑推理能力, 语言表达能力, 标准地书写证明过程.培养学生的符号感, 体会数学知识的严谨性. Ⅳ、课堂练习、稳固新知1、如图1,小明把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃, 那么最省事的方法〔〕A、选①去,B、选②C、选③去2、如图2, O是AB的中点, 要使通过角边角〔ASA〕来判定△OAC≌△OBD, 需要添加一个条件,以下条件正确的选项是(〕A、∠A=∠BB、AC=BDC、∠C=∠D3、如图, 要测量河两岸相对的两点A、B的距离, 可以在AB的垂线BF上取两点C、D, 使BC=CD, 再定出BF 的垂线DE, 使A, C, E在一条直线上, 这时测得DE的长度就是AB的长度, 为什么?4、如图, AB⊥BC, AD⊥DC, ∠BAC=∠CAD, 求证:AB=AD【师生行为】教师提出问题. 学生思考、交流, 解答问题. 教师正确引导学生正确运用〞ASA/AAS条件来解决实际问题. 针对练习可以通过让学生来演示结果, 形成共识.【设计意图】使学生正确地理解定理, 并能用它来解决实际问题. 稳固知识, 及时了解学生掌握定理的情况.Ⅴ、反思小结、布置作业1、通过本节课你学到了哪些内容?你有何收获?2、判断两个三角形全等有哪些方法呢?【师生行为】教师以问题的形式提出, 让学生归纳、总结所学知识, 进行自我评价, 自我总结.学生把作业做在作业本上, 教师检查、批改.【设计意图】通过回忆本节课的所学内容, 从知识、技能、数学思考等方面加以归纳, 有利于学生掌握、运用知识.教学反思《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆, 学生学习数学的重要方式是动手实践、自主探索与合作交流, 以促进学生自主、全面、可持续开展〞.数学教学是数学活动的教学, 是师生之间、学生之间相互交往、积极互动、共同开展的过程, 是“沟通〞与“合作〞的过程.本节课我结合情景问题自然地引入课题, 让学生亲身体验到数学知识来源于实践, 从而激发学生的学习积极性.为学生提供了大量的操作、思考和交流的学习时机,通过“画图〞——“观察“——“操作〞——“交流〞发现“ASA/AAS〞定理. 在信息社会, 信息技术与课程的整合必将带来教育者的深刻变化.我充分地利用多媒体教学, 为学生创设了生动、直观的现实情景, 具有强列的吸引力, 能激发学生的学习欲望.本节课, 通过情景引入问题, 让学生亲身体验、动手操作来探究三角形全等的条件. 整个探索过程, 不仅教师引导学生的过程, 同时也是教师从学生的角度考虑问题, 顾及全面、充分准备好自己的心理提升.缺乏之处:本节课安排学生的活动较多, 教师必须准备到位, 操作有序、收放自如. 教学中出现学生有自己的语言描述时、语言不够准确简练, 描述不够完整等等, 都需要教师及时纠正.。
与三角形有关的线段说课稿
与三角形有关的线段各位评委老师:大家好!我是××号考生,今天我抽到的题目是初中数学人教版八年级上册第十一章第11.1节《与三角形有关的线段》。
下面我将从说教材、说教法、说学法、说教学过程、板书设计、教学反思六个方面来进行我的说课展示。
一、说教材1、本节教材的地位和作用与三角形有关的线段是初中数学图形与几何的内容,在此之前,学生已经学习了角、线段、相交线、平行线等知识,为本节课的学习做了良好的铺垫;另一方面,本节课的学习可以加深学生对三角形的认识,对后续学习其他几何图形奠定了基础。
因此,本节课起着承上启下的作用。
2、学情分析从学生的认知基础看,学生在此之前已经对三角形有了初步认识。
希望通过本节课对三角形的进一步学习,引导学生通过观察和比较的方法来思考和解决问题,培养学生的归纳概括能力。
3、教学目标基于以上对教材和学生的分析,以及新课标理念,我设计如下教学目标:①知识与技能目标:认识三角形,能用符号语言表示三角形,理解三角形的概念及三角形的分类。
②过程与方法目标:通过经历三角形三边不等关系的探究过程,理解三角形的三边不等关系,培养学生的归纳概括能力。
③情感态度价值观目标:通过自主探究、合作交流等方式培养学生的探究精神和团队意识。
4、教学重点和难点通过以上综合分析,我确定本节课的——教学重点:理解三角形的概念,能用符号语言表示三角形,理解三角形的三边不等关系。
教学难点:对三角形三边不等关系的应用。
二、说教法基于我对研究性学习,“启发式”教学模式和新课程改革理论的认识,本节课我主要采用小组合作、诱思探究、生成体验的教学方法来完成本节课教学。
为了实现教学目标,在教学过程中,注重多媒体课件的直观展示,通过观察比较等方法,加深学生对新知识的感知和理解。
三、说学法学生是学习的主体,教师的教要紧紧围绕学生的学。
因此,在课堂教学中,我注重师生互动、学生相互交流等方式,并综合运用多媒体技术服务教学;在学生合作探究过程中,注重学生的主动评价,通过小组展示,培养学生的归纳总结能力。
11.1与三角形有关的线段(第2课时)教案
11.1与三角形的关的线段(第2课时)
2.三角形的中线的概念
1、如图,教师给出一个准备好的三角形纸片,把
B,C重合对折,折痕与BC交于点D.
问题:(1)D点有什么特殊性?
(2)连接线段AD人。
把厶ABC分成的两个三角形的面积有何关系?
(3)请归纳线段AD的特点.
并用语言描述中线定义.
三角形中,连结一个顶点和它对边中的线段叫做三角形的中线
表示方法:1.AE是厶ABC的BC上的中线.
1
2.BE=EC= BC.
2
问题:你认为一个三角形有几条中线?并分别作出来,你有什么发现?结论:三条
定义:
三角形的三条中线的交点叫做三角形的重心
3.三角形的角平分线的概念
如图,教师再给出一个三角形纸片,对折,使AC与AB
所在直线重合,折痕与BC交于D.
问题:(1)通过这个操作你认为AD有什么位置特点?
(2)请给出三角形角平分线的定义.
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段叫做三角形角的平分线
表示方法:1.AM是厶ABC的/ BAC的平分线.
1
2. / 仁/ 2= —/ BAC.
2
思考:三角形的高、中线和角平分线是代表线段还是代
通过画、折等实践操作活动理解三角形的角平分线概念,并培养学生动手操作能力,自主探索、合作交流,发现三角形的三条角平分线交于一点的规律
让学生能感知并有一种意识去动手实践,主动探究。
《探究等腰三角形中的相等线段》数学活动(教案)
《探究等腰三角形中的相等线段》数学活动(教案)教学目标:1.学会利用等腰三角形的轴对称性,发现等腰三角形中相等的线段,并且利用三角形全等和等腰三角形的性质证明这些结论。
2.通过动手实践,合作交流,培养观察、分析、解决问题的能力。
3.鼓励学生积极思考、实践、探究、证明,逐步培养空间想象能力,合作与探究的意识。
教学重点:通过折叠等腰三角形,探究相等的线段。
教学过程:活动一:回顾与导入:师问:前面我们学习了等腰三角形,请问等腰三角形具有哪些性质?生答:等腰三角形的两腰相等;等腰三角形的两角相等;等腰三角形的三线合一;等腰三角形是轴对称图形……师:同学们回答得很好!其实,在等腰三角形中通过添加一些条件,构建出相等的线段还有很多,今天这节课,我们就共同来探究等腰三角形中相等的线段!2.活动探究活动二:团结协作如图,在△ABC中,AB=AC,点D为BC的中点。
经过点D构造两条线段,并说明哪两条线段相等,最后加以证明。
(这里“经过点D构造两条线段,并说明哪两条线段相等”改为“经过点D构造两条线段,使之产生新的线段相等,并说明理由?”)(教师补充说明:同学们经过点D构造线段时,从构造出的线段与图中已经存在的线段的数量关系与位置关系,以及构成的角的关系去考虑,去构造)同学们请带着这个问题,以小组为单位进行探讨和交流,最后推荐同学展示成果。
教师点评并归纳:(1)当DE⊥AB,DF⊥AC,垂足分别为E、F.则DE=DF.(等腰三角形底边中点到两腰的距离相等)证明方法:1.三角形全等2.面积法3.角平分线性质定理4.折叠5.轴对称(这里证明方法有五种,如果学生回答不全面,可以让学生再次讨论,切忌老师包办代替)(过渡语:同学们,还有其他的构造方法同样使得DE =DF 吗?) (2) 当E 、F 分别为AB 、AC 边上的中点时,DE =DF 。
(等腰三角形底边中点到两腰中点的距离相等)将(2)中点E 、F 拓展为三等分点、五等分点以及n 等分点时的对应点后,DE 与DF 仍然相等。
北师大版八年级数学下册《线段的垂直平分线》三角形的证明PPT课件(第2课时)
实践探究,交流新知
解:(1)已知三角形的一条边及这条边上的高,能作出三角形,并且能作出无 数多个,如图所示. (2)已知等腰三角形的底边,用尺规作出等腰三角形,这样的等腰三角形也有 无数多个. (3)如果等腰三角形的底边和底边上的高都一定,这样的等腰三角形应该只有 两个,它们是全等的,且分别位于已知底边的两侧,如图所示.
北师大版 八年级下册 第一章 三角形的证明
线段的垂直平分线(第2课时 )
前言
学习目标
1.会证明三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,并 解决相关的问题. 2.会用尺规作已知线段的垂直平分线,培养尺规作图的技能.
学习重点
掌握三角形三条边的垂直平分线的性质,能利用尺规作出符合条件的三角形.
(1)教材第26页随堂练习. (2)教材第26页习题1.8第1,2题.
同学们, 下课!
. 39°
3.如图,在△ABC中,∠BAC是钝角. (1)画出边BC上的中线AD; (2)画出边BC上的高AH.
第1题
第2题
第3题
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获? (1)三角形三条边的垂直平分线的性质 (2)尺规作线段的垂直平分线、等腰三角形
2.布置作业:
学习难点
三角形三条边的垂直平分线性质的证明及应用.
创设情境,导入新课
1.问题提出: 利用尺规作三角形三条边的垂直平分线,当作图完成后你发现了什么? 2.问题探究: ①三角形三边的垂直平分线交于一点; ②这一点到三角形三个顶点的距离相等.
创设情境,导入新课
3.问题解决: 如图,剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这 三条垂直平分线,上述结论是否成立? 4.问题思考: 以上结论都是通过眼睛观察得到的,那么该结论一定成立吗?我们还需 运用已学过的公理和定理进行推理证明,这样,此发现才更有意义.
《与三角形有关的线段》教学设计
《与三角形有关的线段》教学设计兴农镇中学:于海波一、教材分析本节课是人教版八年级第一学期第十一章第一课时的内容。
教材首先借助于三角形在生活中的实例来引入本章内容,学生在小学阶段对三角形已有直观认识,会求三角形的面积。
本节课是初中第一次系统学习三角形,先让学生回忆旧知,对三角形有了进一步的认识后,学习掌握三角形的三边关系,为接下来学习等腰三角形、全等三角形的相关知识打下了基础。
二、教学目标A、知识目标(1)理解三角形的有关概念,会表示三角形的三个顶点、三条边、三个角,会用符号表示三角形。
B、能力目标:(1)理解掌握三角形的三边关系定理,并会运用此定理判段三条线段能否构成三角形。
C、情感态度:(1)通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人。
(2)通过对三角形的三边关系定理的探究活动,使学生初步认识数学与现实生活的密切联系。
3.教学重难点(1)重点:三角形的概念及其三边关系定理(2)难点:探究三角形的两边之和大于第三边的理由。
二、教法学法(1)教法:本节课主要采用自学辅导的教学方法,让学生理解掌握三角形的有关概念,并用猜想证明的数学方法,引导得出三角形的三边关系。
(2)学法:充分发挥学生的主体作用,让学生通过生活中的实例得出定理,激起学生学习数学的欲望,达到学习新知识的目的。
三、教学过程(一)激发兴趣,提出问题。
本节课的教学重点与难点是三角形的三边关系的探究,基于此我设计了场景,小红家到学校有三条路线,一条是走线段,一条是经过公园形成三角形,一条是经过超市和图书馆的两折线,依据两点之间,线段最短,选线段路线。
再让学生比较三角形路线与线段路线,引出了课题三角形,而且为证明三角形的任意两边之和大于第三边作了铺垫。
简洁的开场,利用学生已有的知识,提出问题引发学生深入思考,营造宽松的学习气氛,可以激发学生学习新知识的兴趣,架起了生活和学习的桥梁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《与三角形有关的线段》教学设计(第2课
时)
一、内容和内容解析
1.内容
三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.
2.内容解析
本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情.
理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.
本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.
二、目标和目标解析
1.教学目标
(1)理解三角形的高、中线与角平分线等概念;
(2)会用工具画三角形的高、中线与角平分线;
2.教学目标解析
(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.
(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.
(3)掌握三角形的高、中线与角平分线的画法.
(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.
三、教学问题诊断分析
三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.
三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.
三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.
四、教学过程设计
1.抛砖引玉,提出问题
先演示画三角形的一条高,再给出问题:
(1)任画一个三角形,你能画出它的三条高吗?
(2)同一个三角形的三条高线有什么位置关系?
(3)不同类型的三角形的三条高线的交点位置有什么差别?
师生活动:先让学生画图实践,教师下位随机点拔,再让会画和不会画的学生相互交流提点,然后带着问题讨论,最后各小组派代表发言,师生共同归纳概念和画法.
设计意图:这一环节是一个重要的实践活动,需要学生动手实践,动口交流,动脑思考,加深理解高线的概念和掌握画高线的作图能力.
2.从实践上升到理论,形成概念
师生活动:
定义:从三角形的一个顶点出发,向对边引垂线,这个顶点和垂足之间的连线段叫做三角形的高线,简称三角形的高.
三角形的高有三条,特别强调:钝角三角形的高有两条在三角形外部,一条在三角形内部.直角三角形的两直角边就是高线.任何三角形的三条高所在直线交于一点,这点叫三角形的垂心.
归纳:锐角三角形有条高,它们相交于一点,交点在三角形;
直角三角形有条高,它们相交于一点,交点在三角形;
钝角三角形有条高,它们所在直线相交于一点,交点在三角形.
注意:三角形的高是线段
(几何语言) ∵AD是ΔABC上的高
∴AD&perp;BC (&ang;ADB=&ang;ADC=90)
逆向:∵AD&perp;BC垂足是D
∴AD是ΔABC的边BC 上的高
几何语言表达可在学完三个定义之后统一学习.便于学生比较记忆形成知识结构.
设计意图:让学生体会由实践到理论的过程,培养学生的归纳总结能力.
补充说明:要养成习惯,画好高线后,随手标明垂直的记号和垂足的字母.
师生活动:结合具体图形,教师引导学生养成良好的作图习惯.
设计意图:进一步加深学生对几何符号和几何语言的熟悉.
3.类比学习,掌握几何探究的基本方法.
用相同的探究方法引导学生学习三角形的中线和角平分线.
师生活动:与高线的探究类似.
4.归纳总结,形成知识结构.
师生活动:师生共同完成这个表格.
三角形的重要线段定义图形表示法
三角形
的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段
1.AD是△ABC的BC上的高线.
2.AD&perp;BC于D.
3.&ang;ADB=&ang;ADC=90°.三角形
的中线三角形中,连结一个顶点和它对边中点的线段
1.AE是△ABC的BC上的中线.
2.BE=EC=BC.
三角形的
角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段
1.AM是△ABC的&ang;BAC的平分线.
2.&ang;1=&ang;2=&ang;BAC.
设计意图:通过这一活动的设计,提高学生归纳概括的能力,了解几何语言简洁性.
5. 应用巩固
课本上P5第1、2题
补充练习:
(1)如图,AE是△ABC的中线,EC=6,DE=2,则BD的
长为().
A.2
B.3
C.4
D.6
解析:因为AE是△ABC的中线,
所以BE=EC=6.又因为DE=2,
所以BD=BE-DE=6-2=4.
答案:C
(2)下列说法正确的是().
①平分三角形内角的射线叫做三角形的角平分线;
②三角形的中线、角平分线都是线段,而高是直线;
③每个三角形都有三条中线、高和角平分线;
④三角形的中线是经过顶点和对边中点的直线.
A.③④
B.③
C.②③
D.①④
解析:任何一个三角形都有三条高、中线和角平分线,并且它们都是线段,不是射线或直线,因此只有③正确,故选B.
答案:B
(3)三角形的三条高在().
A.三角形的内部
B.三角形的外部
C.三角形的边上
D.三角形的内部、外部或边上
解析:三角形的三条高交于一点,但有三种情况:当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外
部,所以只有D正确.
答案:D
学生通过解决这样的应用问题,特别是(3)中又要用到分类讨论的思想,学生通过解决问题的过程加深理解不同类型的三角形其高线都是交于一点,但交点位置却不同.
设计意图:除了考查学生的灵活运用的能力外,逐步培养学生一些基本的数学思想,还能突破难点加深学生对三角形高线位置的理解,一举多得.
6.总结反思
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
(1)三角形的高、中线、角平分线等有关概念及它们的画法.
(2)三角形的高、中线、角平分线的几何表达及性质的简单应用.
师生活动:教师引导,学生小结.
设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重难点.
8.布置作业:
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现
代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代
不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
教科书第8页第3,4题.
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。