正碰的分类及特点(动量守恒定律的应用)
第2讲 碰撞中的动量守恒与能量守恒
m1v10 m1v1 m2v2
碰撞过程由能量守恒得
② ③
v2 2m1 2 gh m1 m2
1 1 1 2 2 2 m1v10 m1v1 m2v2 2 2 2
① 、②、③式联立解得
3、(单)带有光滑弧形轨道的小车质量为m,放在光滑水 平面上,一质量也是m的铁块,以速度v滑上轨道水平端 后上滑,至某一高度后再向下返回,则当铁块回到小车右 端时,将( ) A.以速度v做平抛运动 B.以小于v的速度做平抛运动 C.静止于车上 D.自由下落
D
讨论: b.若m1<<m2 v1=v1,v2=0
球摆至最低点时,恰好与水平面上原来静止的、质量为2m
的木块相碰,碰后小球速度反向且动能是碰前动能 的 加速度取g.求:
16 .已知木块与地面的动摩擦因素μ= 25
9 ,重力 40
θ
(1)小球与木块碰前瞬间所受拉力大小?
(2)木块在水平地面上滑行的距离?
m
L
2m
解:(1)设小球摆至最低点时的速度为v,由动能定理有: 1 2 mgL (1 cos ) mv L θ Rcosθ 2 m 碰撞前瞬间拉力为T,有:
m v m v (m1 m2 )v EK 损
2 1 1 1 2 2 2 2 1 2 2
1、质量相等的A、B两球在光滑平面上沿同线同向运动,A 球动量为7kg· m/s,B球的动量为5kg· m/s,当A球追上B球时 发生碰撞,则碰后A、B两球的动量PA、PB可能值是: ( ) A、PA=6kg· m/s PB=6kg· m/s B、PA=3kg· m/s PB=9kg· m/s C、PA=-2kg· m/s PB=14kg· m/s D、PA=-4kg· m/s PB=17kg· m/s
弹性碰撞和非弹性碰撞-[新]高中物理选修第一册
后,仅最左边的球被弹起,摆至最大高度后落下来再次碰撞,致使最
右边钢球又被弹起。硕大钢球交替弹开,周而复始,情景蔚为壮观。
上述现象如何解释?
要点提示:质量相等的两物体发生弹性正碰,碰撞中的动量、动
能都守恒,碰后二者交换速度。
问题一
问题二
当堂检测
为零。
点燃爆竹后木块陷入沙中深5 cm,若沙对木块运动的阻力恒为58 N,不计爆竹中火药质量和空气阻力。
vA'=1 m/s,vB'=1 m/s
光滑水平地面上有两个静止的小物块a和b,a的质量为m,b的质量为M,可以取不同的数值。
解析:斜碰也满足动量守恒定律。
m1v1'+m2v2'
(4)速度不同的两小球碰撞后粘在一起,碰撞过程中没有能量损
mv0=(m+mB)v
设碰撞过程 A、B 系统机械能的损失为 ΔE,则
1
1
1
ΔE=2m(2)2+2mB(2v)2-2(m+mB)v2
1
联立②③④式得 ΔE= 0 2 。
答案:(1)
2
1
(2) 0 2
6
6
③
④
⑤
问题一
问题二
当堂检测
规律方法 处理碰撞问题的几个关键点
(1)选取动量守恒的系统:若有三个或更多个物体参与碰撞时,要
(4)位移特点:碰撞过程时间极短,在物体发生碰撞瞬间,可忽略物体的位移,认为物体在碰撞前后仍在原位置。
若两球质量相同,碰后以某一相等速率同向而行
炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等
例题3一辆质量m1=3.
高三力学复习十五讲--碰撞、反冲
力学复习十一、 动量守恒定律应用——碰撞、反冲【知识点析】1、碰撞:相互作用的几个物体,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞。
(1)特点:一是碰撞的物体之间的作用时间短;二是碰撞物体之间的作用力大,物体的运动状态改变显著。
(2)规律:动量守恒定律。
(3)种类。
①按碰撞前后的速度方向可分为:正碰:碰撞前后的速度方向在一条直线上.斜碰:碰撞前后的速度方向不在一条直线上.②按能量变化情况可分为:弹性碰撞:碰撞后系统的总动能没有损失.非弹性碰撞:碰撞后系统的总动能有损失.(4)原则原则一:系统动量守恒的原则三种类型碰撞的共同特点:碰撞中的相互作用的内力远大于系统外力,所以碰撞问题的解应首先满足系统动量守恒的原则,其数学表式为:m 1v 1+m 2v 2=m 1′v 1′+m 2′v 2′, 或△p 1+△p 2=0。
原则二:物理情景可行性原则碰撞过程中相互作用的内力对其中一个物体是外力,应遵守牛顿第三定律,同时要满足动量定理。
不同的碰撞有各自的特点。
例如,相向碰撞和追赶碰撞,碰撞前后的v, p, E K 都有各自的规律,其情况比较复杂,一定要根据具体情况认真分析其过程,确定物理情景是否可行。
原则三:不违背能量守恒的原则三种碰撞,除完全弹性碰撞中系统的机械能不损失外,其它碰撞中系统均有机械能的损失,而完全非弹性碰撞中系统机械能损失最多,所以系统必须满足:2221212221212222112222112222,21212121m p m p m p m p v m v m v m v m '+'≥+'+'≥+或 其可能的合理解应介于完全弹性碰撞和完全非弹性碰撞的解之中。
2、反冲:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.(1)实例:发射炮弹,爆竹爆炸,发射火箭.(2)特点:系统相互作用的内力远大于系统受到的外力.(3)规律:系统总动量守恒[例题思析][例题1] 两只小船逆向航行,航线邻近,在两船首尾相齐时,由每只船上各自向对方放置一质量为m=50kg 的麻袋,结果载重较小的船停了下来,另一船则以v=8.5m/s 的速度沿原方向航行.设两只小船及船上载重量分别为m 1=500kg,m 2=1000kg,问交换麻袋前各小船的速率多大?(水的阻力不计)[解析] 在水的阻力(外力)不计的情况下,系统动量守恒.分别以各小船原航行方向为正方向,则对抛出麻袋后的小船和 m 2上麻袋组成的系统有(m 1-m)v 1-mv 2=0 …………………………………①对抛出麻袋后的小船和m 1 上的麻袋组成的系统有(m 2-m)v 2-mv 1=(m 2-m+m)v …………………………………②代入数据得(500-50)v 1-50v 2=0 …………………………………①’(1000-50)v 2-50v 1=1000×8.5 ………………………………②’解之可得 v 1=1m/s,v 2=9m/s.[注意] 本题也可选取两船及其麻袋组成一个系统,设m 2船原航行方向为正方向,可列如下方程m 2v 2-m 1v 1=(m 2-m+m)v+(m 1-m+m)×0 ………………………③③结合①或②式求解。
碰撞和动量守恒知识点总结
第一章碰撞和动量守恒知识点总结知识点1 物体的碰撞1.生活中的各种碰撞现象碰撞的种类有正碰和斜碰两种.(1)正碰:像台球的碰撞中若两个小球碰撞时的速度沿着连心线方向,则称为正碰.(2)斜碰:像台球的碰撞中若两个小球碰撞前的相对速度不在连心线上,则称为斜碰.2.弹性碰撞和非弹性碰撞(1)碰撞分为弹性碰撞和非弹性碰撞两种.①弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变能完全恢复,则没有动能损失,碰撞前后两个物体构成的系统动能相等.②非弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变不能完全恢复或完全不能恢复(黏合),则有动能损失(或损失最大),损失的动能转变为热能,碰撞前后两个物体构成的系统动能不再相等,碰撞后的总动能小于碰撞前的总动能.(2)两种碰撞的区别:弹性碰撞没有能量损失,非弹性碰撞有能量损失.当两个小球的碰撞发生在水平面上时,两小球碰撞前后的重力势能不变,变化的是动能,根据动能是否守恒,把小球的碰撞分为弹性碰撞和非弹性碰撞,如下所示:(3)注意.①非弹性碰撞一定有机械能损失,损失的机械能一般转化为内能.碰撞后的总机械能不可能增加,这一点尤为重要.②系统发生爆炸时,内力对系统内的每一个物体都做正功,故爆炸时,系统的机械能是增加的,这一增加的机械能来源于炸药贮存的化学能.知识点2 动量、冲量和动量定理一、动量1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。
是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。
单位是kg·m/s;2、动量和动能的区别和联系①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。
即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。
第一章 第三节 动量守恒定律在碰撞中的应用
滑水平面上.A 以初速度 v0与 B 发生弹性正碰,两者质量均为 m, ) 下列说法正确的是(
图 1-3-4 A.A 速度为零时,弹簧压缩量最大 B.A 速度为零时,B 速度最大
1 2 C.弹簧的最大弹性势能为 mv0 4 1 2 D.碰撞过程中任意时刻系统的总动能为 mv0 2
解析:碰撞过程中,A 始终做减速运动,B 始终做加速运 动,当 A、B 速度相等时,弹簧压缩量最大,此时弹簧弹性势 能最大,总动能最小. 由动量守恒:mv0=2mv,v=v0/2;此时最大弹性势能:
答案:见解析
规律总结:非完全弹性碰撞问题主要考虑三个因素:①碰 撞中系统动量守恒:对于选择题,首先要验证动量是否守恒; ②碰撞过程中系统动能不增加:对于发生在水平面上的碰撞,
p2 根据 Ek= 验证碰撞前后的动能是否增加;③碰撞的合理性: 2m
碰前、碰后两个物体的位置关系不穿越和速度大小应保证其 顺序合理.这三条是解决非完全弹性碰撞问题的法宝.)
A 的动量减小了 2 kg· m/s,而方向不变,那么 A、B 质量之比的可能
范围是什么?
5 6 解析:A 能追上 B,说明碰前 vA>vB,所以 > ;碰后 A 的速 mA mB 3 8 52 度不大于 B 的速度, ≤ ; 又因为碰撞过程系统动能不会增加, mA mB 2mA 62 32 82 3 mA 4 + ≥ + ,由以上不等式组解得: ≤ ≤ . 2mB 2mA 2mB 8 mB 7
p′2 2 + 2m2 21 所以有:m1≤ m2,不少同学就选择 C、D 选项. 51
这个结论合“理”,但却不合“情”.因为题目给出物理 情景是“甲从后面追上乙”,要符合这一物理情景,就必须有 p1 p2 v1>v2,即 > ;同时还要符合碰撞后乙球的速度必须大于或 m1 m2 p1′ p2′ 1 等于甲球的速度这一物理情景,即 ≤ ,所以 m2≤m1< m1 m2 5 5 m .因此选项 D 是不合“情”的,正确的答案应该是 C 选项. 7 2
动量守恒定律的应用之碰撞问题(解析版)
动量守恒定律的应用之碰撞问题1.分析碰撞问题的三个依据(1)动量守恒,即p 1+p 2=p 1′+p 2′。
(2)动能不增加,即E k1+E k2≥E k1′+E k2′或p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2。
(3)速度要合理①碰前两物体同向,则v 后>v 前;碰后,原来在前的物体速度一定增大,且v 前′≥v 后′。
②两物体相向运动,碰后两物体的运动方向不可能都不改变。
2.弹性碰撞的规律两球发生弹性碰撞时应满足动量守恒和机械能守恒。
以质量为m 1,速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有m 1v 1=m 1v 1′+m 2v 2′①12m 1v 21=12m 1v 1′2+12m 2v 2′2② 由①②得v 1′=(m 1-m 2)v 1m 1+m 2 v 2′=2m 1v 1m 1+m 2结论:(1)当m 1=m 2时,v 1′=0,v 2′=v 1,两球碰撞后交换了速度。
(2)当m 1>m 2时,v 1′>0,v 2′>0,并且v 1′<v 2′,碰撞后两球都向前运动。
(3)当m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的球被反弹回来。
【典例1】 两个小球A 、B 在光滑水平面上沿同一直线运动,其动量大小分别为5 kg·m/s 和7 kg·m/s ,发生碰撞后小球B 的动量大小变为10 kg·m/s ,由此可知:两小球的质量之比可能为( )A.m A m B=1 B.m A m B =12 C.m A m B =15D.m A m B =110 【答案】C(-5)22m A +722m B ≤1222m A +(-10)22m B。
(2)设A 、B 两小球同向运动而发生碰撞,且A 球在前,B 球在后,取两小球碰前的运动方向为参考正方向,即p A 0=5 kg·m/s ,p B 0=7 kg·m/s 。
动量守恒定律在碰撞问题中的应用分析
动量守恒定律在碰撞问题中的应用分析摘要:动量守恒定律作为自然界中比较普遍的定律之一,具有广泛的适用性,不仅适用于宏观物体的低速运动,也适用于微观物体的高速运动。
只要满足守恒条件的力,都适用动量守恒定律。
在教学中,动量守恒定律也是高中物理中的一个重要知识点。
本文主要是探究动量守恒定律在碰撞问题中的应用,这也是动量守恒定律知识中的一个分支,高考中的重要考点。
关键词:动量守恒定律,碰撞,应用在实践教学中,教师一般是结合教材内容设计教学目标,明确教学重点,设计教学方案,以此来完成对应知识点的教学。
随着动量守恒定律与碰撞问题成为高考必考内容之后,高中物理教师也加强了对于该知识点的研究,加强学生对知识的理解、记忆以及运用,能够在高考中取得高分。
本文就对该知识点进行总结分析。
1.动量守恒定律与碰撞问题1.1动量守恒定律动量守恒定律,是物理中的基本守恒定律之一,由牛顿定律推论得出,却是比牛顿定律更基础的物理规律。
其定义为:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变。
具有矢量性、瞬时性、相对性、普适性的特点[1]。
不仅适用于宏观物体的低速运动,也适用于微观物体的高速运动。
只要满足守恒条件的力,都适用动量守恒定律。
表达式:p=p′,系统相互作用开始时的总动量等于相互作用结束时的总动量。
m1v1+m2v2=m1v1′+m2v2′,当系统总动量的变化为零的时候。
Δp1=Δp2,两个物体组成的系统,动量变化大小相等,方向相反。
就需要注意动量变化的矢量性,在两物体相互作用过程中,动量可能都增大,或者都见效,但是矢量和不变。
1.2碰撞问题(1)碰撞定义是相对运动的物体在相遇时,极短的时间内他们运动状态发生显著变化的过程。
就如子弹射入木块、绳子两端的物体将松弛的绳子突然拉紧、中子轰击原子核等都属于碰撞。
简单来讲,就是物体之间的相互作用持续时间极短,但是物体之间的相互作用用力很大的一种现象[2]。
一般对于碰撞按照运动方向可以分为正碰、斜碰。
0动量守恒定律及碰撞-知识点
动量守恒定律本章知识所处的地位:本章在高中物理中占有重要地位。
动量守恒定律是自然界普遍适用的基本规律之一,它比牛顿定律适用范围广泛的多,即使在牛顿定律的适用范围内,应用动量守恒定律解决诸如碰撞、爆炸等问题,也要比应用牛顿定律大为简单、方便。
知识网络:一.动量守恒定律知识一 动量1.定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p 来表示.2.表达式:p =mv .3.单位:kg·m/s .4.特性(1)标矢性:动量是矢量,其方向和速度方向相同.(2)瞬时性:动量是一个状态量,每一个动量对应一个时刻。
(3)相对性:选用不同的参考系,同一运动物体的动量可能不同,通常在不说明参考系的情况下,指的是物体相对地面的动量。
5.建立动量的意义(1)描述力作用一段时间后对物体产生的效果(2)揭示相互作用的物体系统,在作用过程中遵循的守恒规律 知识二 动量守恒定律1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律. (2)表达式① P=P′即m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和. ②ΔP =0 ③ΔP 1=-ΔP 2 (3)特殊表达式①原来静止的两物体组成的系统: 0= m 1v 1 + m 2v 2(你动我动、你快我快、你慢我慢、你停我停,你我速率和各自质量成反比)力在一段时间上的作用 冲量 动量物体的运动状态动量定理动量守恒定律爆炸、反冲碰撞②两物体相互作用后结合在一起:m1v1 + m2v2 =(m1 + m2)v′(4)适用范围:比牛顿定律的适用范围要广泛的多,小到微观粒子间的作用,大到天体间作用,无论物体间作用力性质如何都适用。
中学阶段,运用动量守恒定律研究的对象主要是一条直线上运动的两个物体所组成的系统,如两球相碰问题。
2.动量守恒条件:(1)如果研究的系统不受外力,这是一种理想化状态,例如太空中两星球的碰撞或微观粒子之间的碰撞;(2)如果研究系统所受合外力为零,则系统的总动量守恒。
碰撞类型和所遵循的原则及其应用
碰撞类型和所遵循的原则及其应用作者:万东来源:《中国教育技术装备》2007年第05期碰撞问题是中学物理中常见的问题。
所谓碰撞是指相对运动的物体相遇,在极短的时间内,通过相互作用,运动状态发生显著变化的过程。
1 碰撞的三种类型碰撞的三种类型为: ①完全非弹性碰撞。
碰撞过程中,物体的动量和动能都发生变化,碰撞分为三个阶段,第一阶段为压缩阶段,物体自相互接触到具有相同的速度。
在这一阶段,由于两物体之间相互作用力的大小相等、方向相反,作用时间也相同,所以两物体间相互作用的冲量大小相等,由此产生的动量变化量也相等,只是变化方向相反,这个阶段总动量是守恒的。
由于物体发生了形变,一部分动能转化为其他形式的能,动能显然不再守恒。
这部分转化了的动能是否还会重新转变为动能,取决于材料的性质。
如果相撞的物体是完全范性体(形变后不恢复),形变就不能恢复,这部分动能就转化为内能或其他形式的能,最后两物体连在一起,以同一速度运动,这就是完全非弹性碰撞,碰撞前后总动量不变而总动能减少,这时动能损失最多。
②弹性碰撞。
如果两个相撞的物体是弹性体,碰撞将进入第二阶段,即为恢复阶段,自两物体具有相同的速度开始分离到完全分开为止。
同样,在这阶段内,由于两个物体间的弹力的冲量大小相等。
方向相反,所以动量的改变量也相等,只是方向相反,两物体的总动量仍没有变化。
如果相撞的物体是完全弹性体那么在第一阶段转化为弹性势能的动能在第二阶段又全部转变为动能,所以动能守恒,这就是完全弹性碰撞。
③非弹性碰撞。
实际物体间的碰撞介于弹性碰撞和完全非弹性碰撞之间,即为非弹性碰撞,形变有恢复又未完全恢复,系统有能量损失,系统动量守恒而动能不守恒,这就是非弹性碰撞。
2 碰撞遵循的三个原则从上面的分析可知,分析有关碰撞问题时应同时遵循三个原则。
原则一:系统动量守恒的原则。
三种类型碰撞的共同特点是碰撞中的相互作用的内力远大于系统外力,所以碰撞问题的解应首先满足系统动量守恒的原则。
动量守恒定律第4节碰撞讲义-人教版高中物理选修3-5讲义练习
第4节碰撞1.如果碰撞过程中机械能守恒,这样的碰撞叫做弹性碰撞,如果碰撞过程中机械能不守恒,这样的碰撞叫做非弹性碰撞。
2.两小球碰撞前后的运动速度与两球心的连线在同一条直线上,这种碰撞称为正碰,也叫对心碰撞。
3.微观粒子相互接近时并不像宏观物体那样“接触”,这样的碰撞又叫散射。
一、碰撞的分类1.从能量角度分类(1)弹性碰撞:碰撞过程中机械能守恒。
(2)非弹性碰撞:碰撞过程中机械能不守恒。
(3)完全非弹性碰撞:碰撞后合为一体或碰后具有共同速度,这种碰撞动能损失最大。
2.从碰撞前后物体运动的方向是否在同一条直线上分类(1)正碰:(对心碰撞)两个球发生碰撞,如果碰撞之前球的速度方向与两球心的连线在同一条直线上,碰撞之后两个球的速度方向仍会沿着这条直线的方向而运动。
(2)斜碰:(非对心碰撞)两个球发生碰撞,如果碰撞之前球的运动速度方向与两球心的连线不在同一条直线上,碰撞之后两球的速度方向都会偏离原来两球心的连线而运动。
二、弹性碰撞特例1.两质量分别为m1、m2的小球发生弹性正碰,v1≠0,v2=0,则碰后两球速度分别为v1′=m1-m2m1+m2v1,v2′=2m1m1+m2v1。
2.若m1=m2的两球发生弹性正碰,v1≠0,v2=0,则v1′=0,v2′=v1,即两者碰后交换速度。
3.若m1≪m2,v1≠0,v2=0,则二者弹性正碰后,v1′=-v1,v2′=0。
表明m1被反向以原速率弹回,而m2仍静止。
4.若m1≫m2,v1≠0,v2=0,则二者弹性正碰后,v1′=v1,v2′=2v1。
表明m1的速度不变,m2以2v1的速度被撞出去。
三、散射1.定义微观粒子相互接近时并不像宏观物体那样“接触”而发生的碰撞。
2.散射方向由于粒子与物质微粒发生对心碰撞的概率很小,所以多数粒子碰撞后飞向四面八方。
1.自主思考——判一判(1)两小球在光滑水平面上碰撞后粘在一起,因而不满足动量守恒定律。
(×)(2)速度不同的两小球碰撞后粘在一起,碰撞过程中没有能量损失。
碰撞与动量守恒第2讲动量守恒定律及应用
第2讲动量守恒定律及应用1•动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
(2)表达式①P= P’,系统相互作用前总动量P等于相互作用后的总动量P’。
②m2V2= mivi '+ m2V2 " »相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
③Api =- A P2,相互作用的两个物体动量的增量等大反向。
④Ap= 0,系统总动量的增量为零。
2・动量守恒的条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
(2)近似守恒:系统受到的合力不为零,但当內力远大于外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
3・动量守恒定律的“五性”[思维诊断](1)动量具有瞬时性。
0(2)物体动量的变化等于某个力的冲量。
()(3)动量守恒定律中的速度是相对于同一参考系的速度。
()(4)系统的总动量不变是指系统总动量的大小保持不变。
()(5)系统的动量守恒时,机械能也一定守恒。
()答案:(1)z (2)X (3)z (4)X (5)x[题组训练]1 •[动量守恒的条件]在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在其中,将弹簧压缩到最短。
若木块和弹簧合在一起作为系统,则此系统在从子弹开始射入到弹簧被将子弹、木块和弹簧合在一压缩至最短的整个过程中()A・动量守恒,机械能守恒B•动量不守恒,机械能不守恒C•动量守恒?机械能不守恒D •动量不守恒,机械能守恒解析:子弹射入木块是瞬间完成的,这个过程相当于子弹与木块发生一次完全非弹性碰撞,动量守恒,机械能不守恒,一部分动能转化为内能,之后木块(连同子弹)压缩弹簧,将其动能转化为弹性势能,这个过程机械能守 恒,但动量不守恒。
由于左侧挡板的支持力的冲量作用,使系统的动量不断减少,所以整个过程中,动量和机械能均不 守恒。
知识讲解 动量守恒定律的应用(碰撞) 基础
动量守恒定律的应用(碰撞) 编稿:张金虎 审稿:XXX【学习目标】1.知道什么是弹性碰撞和非弹性碰撞;2.知道什么是对心碰撞和非对心碰撞及散射现象;3.会运用动量守恒定律分析,解决碰撞物体相互作用的问题.【要点梳理】 要点一、碰撞1.碰撞及类碰撞过程的特点(1)时间特点:在碰撞、爆炸等现象中,相互作用时间很短.(2)相互作用力特点:在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大.(3)动量守恒条件特点:系统的内力远远大于外力,所以,系统即使所受外力之和不为零,外力也可以忽略,系统的总动量守恒.(4)位移特点:碰撞、爆炸过程是在一瞬间发生的,时间极短,所以,在物体发生碰撞、爆炸的瞬间,可忽略物体的位移.可以认为物体在碰撞、爆炸前后仍在同一位置.(5)能量特点:碰撞过程中,一般伴随着机械能的损失,碰撞后系统的总动能要小于或等于碰撞前系统的总动能,即:1212k k k k E E E E +≤+''.(6)速度特点:碰后必须保证不穿透对方. 2.碰撞的分类(1)按碰撞过程中动能的损失情况,可将碰撞分为弹性碰撞和非弹性碰撞.①弹性碰撞:碰撞过程中机械能不损失,即碰撞前后系统总动能守恒:1212k k k k E E E E +=+''.②非弹性碰撞;碰撞过程中机械能有损失,系统总动能不守恒:1212k k k k E E E E ++''<.③完全非弹性碰撞:碰撞后两物体“合”为一体,具有共同的速度,这种碰撞动能损失最大.(2)按碰撞前后,物体的运动方向是否沿同一条直线,可将碰撞分为正碰和斜碰. ①正碰:碰撞前后,物体的运动方向在同一条直线上,也叫对心碰撞. ②斜碰:碰撞前后,物体的运动方向不在同一条直线上,也叫非对心碰撞. 高中阶段一般只研究正碰的情况. ③散射指微观粒子之间的碰撞.要点诠释:由于粒子与物质微粒的碰撞并非直接接触,而是相互靠近,且发生对心碰撞的概率很小,所以多数粒子在碰撞后飞向四面八方.要点二、碰撞问题的处理方法 1.解析碰撞问题的三个依据(1)动量守恒,即1212p p p p +=+''.(2)动能不增加,即1212k k k k E E E E +≥+''.或222212121212''2222p p p p m m m m +≥+. (3)速度要符合情境:如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即v v 后前>,否则无法实现碰撞.碰撞后,原来在前的物体的速度一定增大,且原来在前的物体速度大于或等于原来在后的物体的速度.即v v ≥后前'',否则碰撞没有结束.如果碰前两物体是相向运动,则碰后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.爆炸问题爆炸与碰撞的共同点是物理过程剧烈,系统内物体的相互作用力(内力)很大,过程持续时间很短,即使系统所受合外力不为零,但合外力的冲量几乎为零,故系统的动量几乎不变,所以爆炸过程中可以近似认为动量守恒.要点诠释:爆炸与碰撞的不同点是爆炸过程中有其他形式的能向动能转化,故爆炸过程中系统的动能会增加.要点三、弹性正碰1.弹性正碰的讨论如图所示,在光滑水平面上质量为1m 的小球以速度1v 与质量为2m 的静止小球发生弹性正碰.讨论碰后两球的速度1v '和2v '.根据动量守恒和动能守恒有:111122 m v m v m v =+'',222111122111''222m v m v m v =+, 解上面两式可得:碰后1m 的速度121112'm m v v m m -=+,碰后2m 的速度121122'm v v m m =+.讨论:(1)若12m m >,1v '和2v '都是正值,表示1v '和2v '都与1v 方向相同.(若12m m ,121m m m ≈-,121m m m +≈,则:11v v =',212v v =',表示1m 的速度不变,2m 以12v 的速度被撞出去).(2)若12m m <,1v '为负值,表示1v '与1v 方向相反,1m 被弹回.(若12m m ,这时122m m m ≈--,11220m m m ≈+,11v v ='-,20v =',表示1m 被反向以原速率弹回,而2m 仍静止).(3)若12m m =,则有10v =',21v v =',即碰后两球速度互换. 2.拓展设在光滑的水平面上质量为1m 的小球以速度1v 去碰撞质量为2m 、速度为2v 的小球发生弹性正碰,试求碰后两球的速度1v '和2v '。
动量守恒定律及其应用
动量守恒定律及其应用一、动量守恒定律1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
(2)表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2。
(1)理想守恒:系统不受外力或所受外力的合力为0,则系统动量守恒。
(2)近似守恒:系统受到的合外力不为0,但当内力远大于合外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合外力为0或沿该方向F内≫F外时,系统在该方向上动量守恒。
二、动量守恒定律的应用1.碰撞(1)特点①作用时间:极短;②相互作用力:极大;③动能:不增加。
(2)分类(1)反冲的定义:一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另外一部分必然向相反方向运动,这个现象叫反冲。
(2)反冲的特点①物体的不同部分在内力的作用下向相反方向运动。
②在反冲运动中,系统的合外力一般不为0,但内力远大于外力,可认为反冲运动中系统动量守恒。
③在反冲运动中机械能总量一般是增加的。
(3)反冲现象的应用和防止①应用:反击式水轮机是使水从转轮的叶片中流出,由于反冲而使转轮旋转,从而带动发电机发电的;火箭、喷气式飞机是靠喷出气流的反冲作用而获得巨大的推力的。
②避免有害的反冲运动。
(4)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以认为系统动量守恒。
爆炸过程中位移很小,可忽略不计,可认为爆炸后各部分从相互作用前的位置以新的动量开始运动。
考点1动量守恒的判断1.(系统动量守恒的判断)如图所示,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。
用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。
以地面为参考系(可视为惯性系),从撤去推力开始,小车、弹簧和滑块组成的系统()A. 动量守恒,机械能守恒B. 动量守恒,机械能不守恒C. 动量不守恒,机械能守恒D. 动量不守恒,机械能不守恒B解析:因为滑块与车厢水平底板间有摩擦,且撤去推力时滑块在车厢底板上有相对滑动,则有摩擦力做功,而水平地面是光滑的;对小车、弹簧和滑块组成的系统,根据动量守恒和机械能守恒的条件可知,撤去推力后该系统动量守恒,机械能不守恒,故选项B正确。
(含答案)碰撞现象的特点和规律
碰撞现象的特点和规律一、基础知识1、碰撞的种类及特点2、碰撞现象满足的规律(1)动量守恒定律. (2)机械能不增加. (3)速度要合理:①若碰前两物体同向运动,则应有v 后>v 前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v 前′≥v 后′.②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.3、弹性碰撞的规律两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律.以质量为m 1,速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有m 1v 1=m 1v 1′+m 2v 2′12m 1v 21=12m 1v 1′2 +12m 2v 2′2 解得v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2结论:1.当两球质量相等时,v 1′=0,v 2′=v 1,两球碰撞后交换速度.2.当质量大的球碰质量小的球时,v 1′>0,v 2′>0,碰撞后两球都向前运动.3.当质量小的球碰质量大的球时,v 1′<0,v 2′>0,碰撞后质量小的球被反弹回来. 二、练习1、质量是10 g 的子弹,以300 m/s 的速度射入质量是24 g 、静止在光滑水平桌面上的木块,并留在木块中,子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块打穿,子弹穿过后的速度为100 m/s ,这时木块的速度又是多大? 答案 88.2 m/s 83.3 m/s解析 子弹质量m =10 g =0.01 kg ,子弹速度v 0=300 m/s ,木块质量M =24 g =0.024 kg ,设子弹射入木块中以后木块的速度为v ,则子弹速度也是v ,以子弹初速度的方向为正方向,由动量守恒定律得m v 0=(m +M )v ,解得v =m v 0m +M =0.01×3000.01+0.024 m/s =88.2 m/s. 若子弹穿出后速度为v 1=100 m/s ,设木块速度为v 2,仍以子弹初速度方向为正方向,由动量守恒定律得mv 0=mv 1+Mv 2.代入数据解得v 2=83.3 m/s.2、如图所示,光滑水平面上有质量均为2m 的木块A 、B ,A 静止,B 以速度v 06水平向左运动,质量为m的子弹以水平向右的速度v 0射入木块A ,穿出A 后,又射入木块B 而未穿出,A 、B 最终以相同的速度向右运动.若B 与A 始终未相碰,求子弹穿出A 时的速度.答案1115v 0解析 以子弹、木块A 组成的系统为研究对象,由动量守恒定律得 m v 0=2m v A +m v以子弹及木块A 、B 组成的系统为研究对象,由动量守恒定律得 m v 0-2m ×v 06=5m v A解得v =1115v 03、A 球的质量是m ,B 球的质量是2m ,它们在光滑的水平面上以相同的动量运动.B 在前,A 在后,发生正碰后,A 球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比v A ′∶v B ′为( ) A.12B.13C .2D.23答案 Dword 格式-可编辑-感谢下载支持解析 设碰前A 球的速率为v ,根据题意,p A =p B ,即m v =2m v B ,得碰前v B =v 2,碰后v A ′=v2,由动量守恒定律,有m v +2m v 2=m v 2+2m v B ′,解得v B ′=34v ,所以v A ′v B ′=v234v =23.4、(2012·山东理综·38(2))如图所示,光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在 一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小. 答案 65v 0解析 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得 对A 、B 木块:m A v 0=m A v A +m B v B ① 对B 、C 木块:m B v B =(m B +m C )v ② 由A 与B 间的距离保持不变可知 v A =v ③联立①②③式,代入数据得 v B =65v 0.5、如图所示,物体A 静止在光滑平直轨道上,其左端固定有轻质弹簧,物体B 以速度v 0=2.0 m/s 沿轨道向物体A 运动,并通过弹簧与物体A 发生相互作用,设A 、B 两物体的质量均为m =2 kg ,求当物体A 的速度多大时,A 、B组成的系统动能损失最大?损失的最大动能为多少?答案 1.0 m/s 2 J解析 当两物体速度相等时,弹簧压缩量最大,系统损失的动能最大. 由动量守恒定律知m v 0=2m v 所以v =v 02=1.0 m/s损失的动能为ΔE k =12m v 20-12×2m ×v 2=2 J.6、如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =2m 、m B =m ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同.求B 与C 碰撞前B 的速度.答案 95v 0解析 A 、B 被弹开的过程二者动量守恒,当B 、C 二者相碰并粘在一起,二者动量也守恒.设三者最终的共同速度为v ,A 与B 分开后,B 的速度为v B ,由动量守恒定律得 (m A +m B )v 0=m A v +m B v B ① m B v B =(m B +m C )v ②联立①②式,得B 与C 碰撞前B 的速度 v B =95v 07、质量为m 1=1 kg 和m 2(未知)的两个物体在光滑的水平面上正碰,碰撞时间不计,其x -t (位移—时间)图象如图所示,试通过计算回答下列问题:(1)m 2等于多少?(2)碰撞过程是弹性碰撞还是非弹性碰撞?解析 (1)碰撞前m 2是静止的,m 1的速度为v 1=4 m/s 碰撞后m 1的速度v 1′=-2 m/s m 2的速度v 2′=2 m/s 根据动量守恒定律有 m 1v 1=m 1v 1′+m 2v 2′ 解得m 2=3 kg (2)碰撞前系统总动能 E k =E k1+E k2=8 J 碰撞后系统总动能 E k ′=E k1′+E k2′=8 J碰撞前后系统总动能相等,因而该碰撞是弹性碰撞. 答案 (1)3 kg (2)弹性碰撞8、如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s ,则( )A .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5 B .左方是A 球,碰撞后A 、B 两球速度大小之比为1∶10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10 答案 A解析 由m B =2m A ,知碰前v B <v A若左为A 球,设碰后二者速度分别为v A ′、v B ′ 由题意知p A ′=m A v A ′=2 kg·m/s p B ′=m B v B ′=10 kg·m/s由以上各式得v A ′v B ′=25,故正确选项为A.若右为A 球,由于碰前动量都为6 kg·m/s ,即都向右运动,两球不可能相碰.9、A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5 kg·m/s ,B 球的动量是7 kg·m/s.当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值分别是( )A .6 kg·m/s,6 kg·m/sB .3 kg·m/s,9 kg·m/sC .-2 kg·m/s,14 kg·m/sD .-5 kg·m/s,15 kg·m/s 答案 BC解析 两球组成的系统动量守恒,A 球减少的动量等于B 球增加的动量,故D 错.虽然碰撞前后的总动量相等,但A 球的动量不可能沿原方向增加,故A 错,选B 、C.10、如图所示,木板A 质量m A =1 kg ,足够长的木板B 质量m B =4 kg ,质量为m C =4 kg 的木块C 静置于木板B 上,水平面光滑,B 、C 之间有摩擦.现使A 以v 0=12 m/s 的初速度向右运动,与B 碰撞后以4 m/s 的速度弹回.求:(1)B 运动过程中的最大速度大小;(2)C运动过程中的最大速度大小.答案(1)4 m/s(2)2 m/s解析(1)A与B碰后瞬间,B速度最大.由A、B组成的系统动量守恒(取向右为正方向)有:m A v0=-m A v A+m B v B,代入数据得:v B=4 m/s.(2)B与C共速后,C速度最大,由B、C组成的系统动量守恒有:m B v B=(m B+m C)v C,代入数据得:v C=2 m/s.。
1.3动量守恒定律在碰撞中的应用(几种常见模型分析)
4
①、②相减得:
fd=12mv20-12(M+m)v2=2MM+mmv20③
即 f=2dMMm+v20m s2=12Mv2/f=Mm+dm.
从能量角度分析:损失 的动能转化为内能
所以:Q=f阻力d相对
2021/10/10
5
练习:子弹以一定的初速度射入放在光滑水平面上的 木块中,并共同运动下列说法中正确的是:(ACD) A、子弹克服阻力做的功等于木块动能的增加与摩
结论: 人船对地位移为将二者相对位移按质量反比分配关系
2021/10/10
s人
M mM
L
s船
m mM
L
10
练习: 质量为m的人站在质量为M,长为L的静止小船 的右端,小船的左端靠在岸边。当他向左走到船的左端 时,船左端离岸多远?
解:先画出示意图。人、船系统动量守恒,总动
量始终为零,所以人、船动量大小始终相等。从
S1
2021/10/10
9
m M
S2
S1
条件: 系统动量守衡且系统初动量为零.
处理方法: 利用系统动量守衡的瞬时性和物体间作用的
等时性,求解每个物体的对地位移.
m v1 = M v2
m v1 t = M v2 t
m s1 = M s2
---------------- ①
s1 + s2 = L
-----------②
开
转化为弹性势能
始 (2)何时两物体相距最近,即弹簧最短
时
v
处
于
原
长
两物体速度相等时弹簧最长,且损失的动能
2021/10/10 转化为弹性势能
14
弹簧弹力联系的“两体模型”
动量守恒定律,碰撞知识点
动量守恒定律1.守恒条件(1)系统不受外力或所受外力的合力为零,则系统动量守恒.(2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.几种常见表述及表达式(1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).(2)Δp=0(系统总动量不变).(3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反).其中(1)的形式最常用,具体到实际应用时又有以下三种常见形式:①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统).②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与各自质量成反比).③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非弹性碰撞).3.理解动量守恒定律:矢量性、瞬时性、相对性、普适性.4.应用动量守恒定律解题的步骤:(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.碰撞现象2.弹性碰撞的规律两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律.在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与m2发生弹性正碰。
则由动量守恒定律和动能守恒可以列出以下方程利用(3)式和(4)式,可讨论以下两种特殊情况:A.如果两物体质量相等,即m1=m2,则可得B.如果一个物体是静止的,例如质量为m2的物体在碰撞前是静止的,即v2=0,则可得这里又可有以下几种情况:a.b.质量较大的物体向前运动。
动量守恒定律的典型模型及其应用+课件
动能损失为
E=12m1v12012m2v22012 m1m2v2
m1m1
2m1 m2
v10v20 2
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则
二. 能量不增加的原则
三. 物理情景可行性原则
例如: 追赶碰撞:
碰撞前: V追赶 V被追
碰撞后:
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
2 特例: 质量相等的两物体发生弹性正碰
v1
m1 m2 v10 2m2v20 m1 m2
v2
m2 m1 v20 2m1v10 m1 m2
碰后实现动量和动能的全部转移 (即交换了速度) 第219页2题
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m 1 v 1 0 m 2 v 2 0 m 1 m 2 v
ABD
• 图中,轻弹簧的一端固定,另一端与滑块B相连,B静 止在水平直导轨上,弹簧处在原长状态。另一质量与B 相同滑块A,从导轨上的P点以某一初速度向B滑行,当 A滑过距离l1时,与B相碰,碰撞时间极短,碰后A.B紧
贴在一起运动,但互不粘连。已知最后A恰好返回出发
点P并停止,滑块A和B与导轨的滑动摩擦因数都为
高三物理重点专题
动量守恒定律的典型模型 及其应用
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)反冲运动、爆炸模型
(三)子弹打木块类的问题:
(四)人船模型: 平均动量守恒
• (1)在弹性形变增大的过程中,系统中两物 体的总动能减小,弹性势能增大,在系统形变 量最大时,两物体速度相等. 在形变减小(恢 复)的过程中,系统的弹性势能减小,总动能 增大.
专题37 动量守恒定律、在碰撞问题中应用动量守恒定律(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题37 动量守恒定律、在碰撞问题中应用动量守恒定律导练目标导练内容目标1动量守恒定律内容、条件、四性目标2弹性碰撞目标3非弹性碰撞和完全非弹性碰撞目标4类碰撞模型一、动量守恒定律内容、条件、四性1.动量守恒定律内容及条件(1)内容:如果系统不受外力,或者所受外力的合力为零,这个系统的总动量保持不变。
(2)表达形式:m1v1+m2v2=m1v1′+m2v2′。
(3)常见的几种守恒形式及成立条件:①理想守恒:系统不受外力或所受外力的合力为零。
①近似守恒:系统所受外力虽不为零,但内力远大于外力。
③分动量守恒:系统所受外力虽不为零,但在某方向上合力为零,系统在该方向上动量守恒。
2.动量守恒定律的“四性”(1)矢量性:表达式中初、末动量都是矢量,需要首先选取正方向,分清各物体初末动量的正、负。
(2)瞬时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。
(3)同一性:速度的大小跟参考系的选取有关,应用动量守恒定律时,各物体的速度必须是相对同一参考系的速度。
一般选地面为参考系。
(4)普适性:动量守恒定律不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
【例1】A 、B 两物体质量之比mA ∶mB =3∶2,原来静止在平板小车C 上,A 、B 间有一根被压缩的弹簧,地面水平光滑。
当两物体被同时释放后,则( )A .若A 、B 与平板车上表面间的动摩擦因数相同,A 、B 组成系统的动量守恒 B .若A 、B 与平板车上表面间的动摩擦因数相同,A 、B 、C 组成系统的动量守恒 C .若A 、B 所受的摩擦力大小相等,A 、B 组成系统的动量守恒D .若A 、B 所受的摩擦力大小相等,A 、B 、C 组成系统的动量守恒 【答案】BCD【详解】A .若A 、B 与平板车上表面间的动摩擦因数相同,由于A 、B 两物体质量之比为A m :3B m =:2,由f mg μ=可知弹簧释放时,小车对A 、B 的滑动摩擦力大小之比为3:2,所以A 、B 组成的系统合外力不等于零,系统的动量不守恒,A 错误;B .对于A 、B 、C 组成的系统,由于地面光滑,系统的合外力为零,则系统动量守恒,B 正确;C .若A 、B 所受的摩擦力大小相等,方向又相反,所以A 、B 组成的系统合外力为零,A 、B 组成的系统动量守恒,C 正确;D .对于A 、B 、C 组成的系统,系统的合外力为零,则系统动量守恒,D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正碰的分类及特点
1.完全弹性碰撞
特点:系统动量守恒,机械能守恒.
设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则有 动量守恒:221101v m v m v m +=
动能守恒:
222212*********v m v m
v m += 所以01212
1v v m m m m +-= 022211
v v m m m +=
(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒)
[讨论]
①当m l =m 2时,v 1=0,v 2=v 0(速度互换)
②当m l <<m 2时,v 1≈-v 0,v 2≈O(速度反向)
③当m l >m 2时,v 1>0,v 2>O(同向运动)
④当m l <m 2时,v 1<O ,v 2>O(反向运动)
⑤当m l >>m 2时,v1≈v,v 2≈2v 0 (同向运动)
2.非弹性碰撞
特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:
m 1v 1+m 2v 2= m 1v 1′+m 2v 2′
机械能的损失:
)()(2
2221211212222121121'+'-+=∆v m v m v m v m E 3.完全非弹性碰撞
特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒.
用公式表示为:
m 1v 1+m 2v 2=(m 1+m 2)v
动能损失: 221212
222121121)()(v m m v m v m E k +-+=∆。