中考实数复习经典真题集锦

合集下载

(专题精选)初中数学实数真题汇编附答案解析

(专题精选)初中数学实数真题汇编附答案解析

(专题精选)初中数学实数真题汇编附答案解析一、选择题1.计算9的结果为( )A.3 B.3-C.3±D.4.5【答案】A【解析】分析:本题只需要根据算术平方根的定义,求9的算术平方根即可.详解:9=3.故选A.点睛:本题考查了算术平方根的运算,比较简单.2.4的平方根是( )A.2 B.2C.±2 D.±2【答案】D【解析】【分析】先化简4,然后再根据平方根的定义求解即可.【详解】∵4=2,2的平方根是±2,∴4的平方根是±2.故选D.【点睛】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.3.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示15﹣1的点是()A.点M B.点N C.点P D.点Q【答案】D【解析】【分析】15151的范围,即可得出答案.【详解】<<,解:∵3.5154∴2.51513<-<, ∴表示151-的点是Q 点,故选D .【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.4.在-3.5,227,0,2π,-2,-30.001,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】∵-3.5是有限小数,−30.001=-0.1,∴-3.5、-30.001是有理数;∵227=22÷7=3.142857&&是循环小数, ∴227是有理数; ∵0是整数,∴0是有理数;∵2π,-2,0.161161116…都是无限不循环小数, ∴2π,-2,0.161161116…都是无理数, ∴无理数有3个:2π,-2,0.161161116…. 故选C .【点睛】 此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.5.估计的值在( ) A .0到1之间B .1到2之间C .2到3之间D .3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】 =﹣2.因为9<11<16,所以3<<4. 所以1<﹣2<2. 所以估计的值在1到2之间. 故选:B .【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.6.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是( )A .2个B .3个C .4个D .5个 【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a 的算术平方根是a ,③错误;算术平方根不可能是负数,④正确;()24π-的算术平方根是4-π,⑤正确.所以不正确的个数为3个,选B .【点睛】掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.7.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-8.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.9.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5,22 1.⎡⎦=⎤⎣=按照此规定, 101⎡⎤⎣⎦的值为( )A 101B 103C 104D 101+ 【答案】B【解析】【分析】根据310<410的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.【详解】解:由3104,得410+1<5. 1010103-,故选:B .【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.10.在实数范围内,下列判断正确的是()A m=n B.若22>,则a>ba bC2=,则a=b D=a=b【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.11.若a=3,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5【答案】B【解析】【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【详解】∵25<30<36,∴56,∴5−33<6−3,即23<3,∴a的值所在的范围是2<a<3.故选:B.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1 B.3 C.4 D.9【答案】D【解析】∵一正数的两个平方根分别是2a −1与−a +2,∴(2a −1)+(−a +2)=0,解得a =−1.∴−a +2=1+2=3,∴这个正数为32=9.故选:D.13.下列运算正确的是( )A =-2B .|﹣3|=3C =± 2 D【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 2=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.14.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.15.下列说法中,正确的是( )A .-2是-4的平方根B .1的立方根是1和-1C .-2是(-2)2的算术平方根D .2是(-2)2的算术平方根【答案】D【解析】【分析】根据平方根、算术平方根、立方根的定义进行解答即可.【详解】A . -4没有平方根,故A 错误;B . 1的立方根是1,故B 错误;C . (-2)2的算术平方根是2,故C 错误;D . 2是(-2)2的算术平方根,故D 正确故选:D【点睛】本题主要考查的是算术平方根与平方根\立方根,掌握算术平方根与平方根\立方根的定义是解题的关键.16.如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】直接利用数轴结合,A B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:2故选:D.【点睛】此题主要考查了实数轴,正确应用数形结合分析是解题关键.17.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;18.实数a、b满足1a++4a2+4ab+b2=0,则b a的值为()A.2 B.12C.﹣2 D.﹣12【答案】B【解析】【分析】【详解】解:化简得1a++(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=12.故选:B.【点睛】本题考查非负数的性质.19.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是3和﹣1,则点C所对应的实数是( )A.3B.3C.3 1 D.3【答案】D【解析】【分析】【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 1-,解得.故选D.20.+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 【答案】B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.。

中考数学复习《实数》专项测试卷(带答案)

中考数学复习《实数》专项测试卷(带答案)

中考数学复习《实数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.与2(9)-结果相同的是( )A.3±B.|3|C.23D.方程281x =的解2.下列说法正确的是( )A.81-平方根是-B.81的平方根是9C.平方根等于它本身的数是1和0D.21a +一定是正数3.一个正方体的棱长为a ,体积为b ,则下列说法正确的是( )A.b 的立方根是a ±B.a 是b 的立方根C.a b =D.b a =4.下列关于5说法错误的是( ) A.5是无理数 B.数轴上可以找到表示5的点C.5相反数是5-D.53>5.估计11832的运算结果介于( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.若实数a ,b 满足13a b +=( )A.a ,b 都是有理数B.a b -的结果必定为无理数C.a ,b 都是无理数D.a b -的结果可能为有理数7.如图,在ABC △中90ACB ∠=︒,AC=3,BC=1,AC 在数轴上,点A 所表示的数为1,以点A 为圆心,AB 长为半径画弧,在点A 左侧交数轴于点D ,则点D 表示的数是( )10 B.10- C.110-1018.若1014M -=,12N =则M ,N 的大小关系是( )A.M N <B.M N =C.M N >D.无法比较9.已知实数tan30sin 45cos60a b c =︒=︒=︒,,,则下列说法正确的是( )A.b a c >>B.a b c >>C.b c a >>D.a c b >>10.定义运算:若,则,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A.1-B.2C.1D.411.在下列计算中,正确的是( )A.()56+-=-B.122=C.()26⨯-=D.3sin 30︒= 12.式子52的倒数是( ) A.52 B.52- C.25+ D.52213.对于实数a 、b ,定义22()*2()a b ab a b a b ab a b a b +-≥⎧=⎨--<⎩,则结论正确的有( )①5*31=;②22272(1)*(21)451(1)m m m m m m m m ⎧-+-<-=⎨-+≥⎩; ③若1x ,2x 是方程2560x x --=的两个根,则12*16x x =或17-;④若1x ,2x 是方程210x mx m +--=的两个根12*4x x =,则m 的值为3-或.A.1个B.2个C.3个D.4个二、填空题14.在实数: 中无理数有______个.15a 是一个无理数,且13a <<,请写出一个满足条件的a 值_____.16.011|3|(3π)()tan 45162--+-+-+︒+=______. 17.若m 为7的整数部分,n 为7的小数部分,则)7m n =______. 18.实数a ,b ,c 在数轴上的点如图所示,化简222()()a a b b c +-=____________.三、解答题19.计算m a b =log (0)a b m a =>6-(1)11233- (2)12632322⨯- (3)2245tan 30cos60︒+⋅︒︒20.计算:)102cos6031(16)27--︒-+-. 21.设5a 是一个两位数,其中a 是十位上的数字(9a ≤≤).例如,当a =时5a 表示的两位数是45.尝试:①当1a =时2152251210025=⨯⨯+=;①当2a =时2256252310025==⨯⨯+;①当3a =时2351225==______;…… 归纳:()25a 与()100125a a ++有怎样的大小关系? 验证:请论证“归纳”中的结论正确.22.若正整数a 是4的倍数,则称a 为“四倍数”,例如:8是4的倍数,所以8是“四倍数”.(1)已知p 是任意三个连续偶数的平方和,设中间的数为2n (n 为整数),判断p 是不是“四倍数”,并说明理由;(2)已知正整数k 是一个两位数,且10k x y =+(19x y ≤<≤,其中x ,y 为整数),将其个位上的数字与十位上的数字交换,得到新数m .若m 与k 的差是“四倍数”,求出所有符合条件的正整数k . 参考答案1.答案:C 解析:2(9)819-==33=239=方程281x =的解为9x =±. 故选C.2.答案:D解析:A 、81-是负数,负数没有平方根,不符合题意;B 、819= 9的平方根是3±,不符合题意;C 、平方根等于它本身的数是0,1的平方根是1±,不符合题意;D 、21>0a + 正数的算术平方根大于0,符合题意.故选:D.3.答案:B 解析:一个正方体的棱长为a ,体积为b∴3b a =,即:3a b =∴a 是b 的立方根故选:B.4.答案:D 解析:①5 2.2365857......≈属于无限不循环小数 ①5是无理数,故A 选项正确;①数轴上可以表示任意实数 ①数轴上可以找到表示5的点,故B 选项正确;①5相反数是5,故C 选项正确; ①5 2.2365857......≈①53<,故D 选项错误,符合题意故选:D.5.答案:C 解析:1183232223=+33=+; 132<<4335∴<<;故选:C.6.答案:D解析:A 、当2a =时13213b ==--a 是有理数,b 是无理数,故A 错误;B 、当1322a b ==-,那么0a b -=,所以B 错误; C 、当2a =时13b =-,a 是有理数,故选项C 错误;D 、当1322a b ==-,那么0a b -=,所以选项正确,D 正确. 故选:D.7.答案:C 解析:在Rt ABC △中3AC =,BC=1 22223110AB AC BC ∴=++=∴点D 表示的数为:110故选:C.8.答案:C 解析:1014M -=12= 1011103424M N ∴-=-=103> 0M N ∴->M N ∴>.故选C.9.答案:A 解析:321tan 30sin 45cos 602a b c =︒==︒==︒= 132232<< ∴b a c >> 故选:A.10.答案:A解析:35125= 4381=5log 1253∴= 3log 814=53log 125log 81∴-34=-1=-.故选:A.11.答案:A解析:A 、5(6)561+-=-=-正确,符合题意; B 、1222=原计算错误,不符合题意; C 、3(2)6⨯-=-原计算错误,不符合题意;D 、1sin 302=︒原计算错误,不符合题意. 故选: A.12.答案:A 解析:()()1521 52525252⨯==--+式子5的倒数是52式子5的倒数是52,故选:A.13.答案:C 解析:①5*32523531=⨯+⨯-⨯=,故①正确;②当21m m ≥-时即1m ≤时()()()22*212221212422272m m m m m m m m m m m m -=+---=+--+=-+-当21m m <-时即1m >时 ()()()22*21221214221451m m m m m m m m m m m m -=----=---+=-+()()222721*21451(1)m m m m m m m m ⎧-+-≤∴-=⎨-+>⎩,故②错误; ③1x ,2x 是方程2560x x --=的两个根 125x x ∴+= 126x x =-当12x x ≥时()()121212*225616x x x x x x =+-=⨯--= 当12x x <时()()121212*226517x x x x x x =-+=⨯--=-,故③正确;④1x ,2x 是方程210x mx m +--=的两个根12x x m ∴+=- 121x x m =--当12x x ≥时()()121212*22114x x x x x x m m m =+-=----=-+= 解得:3m =-当12x x <时()()121212*221()24x x x x x x m m m =-+=⨯----=--=解得:6m =-综上可知:①③④正确 故选:C.14.答案:4 解析:3644= 其中8 ⋯ π -2是无理数,共4个 故答案为:4.15.答案:2解析:2123<< 2a ∴=.故答案:2(答案不唯一).16.答案:7 解析:0113(3π)()tan 45162-+-+-+︒+31(2)14=++-++7=.17.答案:3 解析:479<<273∴<2m ∴= 72n = )7(72)(72)743m n ==-=∴故答案为3.18.答案:0解析:由数轴可知0b c a <<<则0a b +< 0b c -<222()||()a a b c b c +---()()a a b c b c =-+++-a abc b c =--++-0=.故答案为:0.19.答案:(1)1(2)5 (3)76解析:(1)(133********===; (2)12632322⨯- 22126322⨯=+632=-+5=;(3)2245tan 30cos60︒+⋅︒︒2312222=+⨯⎝⎭ 21113=+⨯ 76=. 20.答案:532 解析:)102cos6031(16)27--︒-+- 1113133222=-+=53.21.答案:尝试3410025⨯⨯+ 归纳()()25100125a a a =++ 验证:见解析解析:尝试:当3a =时2351225==3410025⨯⨯+; 归纳:()()25100125a a a =++; 验证:等号左边222(5)(105)10010025a a a a =+=++ 等号右边2100(1)2510010025a a a a ++=++ 所以,等号左边=等号右边,等式成立,即证.22.答案:(1)p 是“四倍数”;理由见解析(2)15,19,26,37,48,59解析:(1)p 是“四倍数”,理由如下:①()()()22222222p n n n ++=+-()22128432n n =+=+①p 是“四倍数”;(2)由题意得10m y x =+,则()()10109m k y x x y y x -=+-+=-. ①19x y ≤<≤,其中x ,y 为整数①18y x ≤-≤.若()9y x -.是4的倍数,则4y x -=或8y x -=.当4y x -=时符合条件的k 是15,26,37,48,59; 当8y x -=时符合条件的k 是19.①所有符合条件的正整数k 是15,19,26,37,48,59.。

实数(优选真题80题)-三年(2021-2023)中考数学真题分项汇编【全国通用】(原卷版)

实数(优选真题80题)-三年(2021-2023)中考数学真题分项汇编【全国通用】(原卷版)

三年(2021-2023)中考数学真题分项汇编【全国通用】实数(优选真题80题)一、单选题A.2023B.−2023 A.b>−2B.|b|>A.点M B.点NA.2cm B.3cm 28.(2022·重庆·统考中考真题)对多项式化简,称之为“加算操作”,例如:二、填空题33.(2021·山东潍坊·统考中考真题)若x<2,且1+|x−2|+x−1x−240.(2022·西藏·统考中考真题)已知41.(2023·四川广安·统考中考真题)53.(2022·广西贺州·统考中考真题)若实数n=__________.54.(2022·贵州黔东南·统考中考真题)若55.(2022·湖北荆州·统考中考真题)若是______.三、解答题76.(2023·山东枣庄·统考中考真题)对于任意实数a,b,定义一种新运算:a※b={a−b(a≥2b)a+b−6(a<2b),例如:3※1=3−1=2,5※4=5+4−6=3.根据上面的材料,请完成下列问题:(1)4※3=___________,(−1)※(−3)=___________;(2)若(3x+2)※(x−1)=5,求x的值.77.(2022·浙江嘉兴·统考中考真题)设a5̅̅̅̅是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,a5̅̅̅̅表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:a5̅̅̅̅2与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若a5̅̅̅̅2与100a的差为2525,求a的值.78.(2021·江苏盐城·统考中考真题)如图,点A是数轴上表示实数a的点.(1)用直尺和圆规在数轴上作出表示实数的√2的点P;(保留作图痕迹,不写作法)(2)利用数轴比较√2和a的大小,并说明理由.79.(2021·四川凉山·统考中考真题)阅读以下材料,苏格兰数学家纳皮尔(J.Npler,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler.1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地.若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log39可以转化为指数式32= 9.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n.∴M⋅N=a m⋅a n=a m+n.由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N.根据上述材料,结合你所学的知识,解答下列问题:l =________;(1)填空:①log232=___________;②log327=_______,③log7(2)求证:log a M=log a M−log a N(a>0,a≠1,M>0,N>0);N(3)拓展运用:计算log5125+log56−log530.80.(2021·重庆·统考中考真题)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”例如:m=3507,因为3+7=2×(5+0),所以3507是“共生数”:m=4135,因为4+5≠2×(1+3),所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9.求满足F(n)各数位上的数字之和是偶数的所有n.整除时,记F(n)=n3。

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。

专题01 实数-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)

专题01 实数-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)

专题01 实数一、单选题1.(2022·湖北鄂州)实数9的相反数等于( )A.﹣9B.+9C.19D.﹣19【答案】A【解析】【分析】根据相反数的定义:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,进行求解即可.【详解】解:实数9的相反数是-9,故选A.【点睛】本题主要考查了相反数的定义,熟知相反数的定义是解题的关键.2.(2022·湖南永州)如图,数轴上点E对应的实数是( )A.2-B.1-C.1D.2【答案】A【解析】【分析】根据数轴上点E所在位置,判断出点E所对应的值即可;【详解】解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.3.(2022·0,1-,2这四个实数中,最大的数是()A.0B.1-C.2D【答案】C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵20>-1,∴0,-1,2这四个实数中,最大的数是2.故选:C .【点睛】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.4.(2022·黑龙江绥化)下列计算中,结果正确的是( )A .22423x x x +=B .()325x x =C 2=-D 2=±【答案】C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,即可一一判定.【详解】解:A.22223x x x +=,故该选项不正确,不符合题意;B.()326x x =,故该选项不正确,不符合题意;2=-,故该选项正确,符合题意;2=,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,熟练掌握和运用各运算法则是解决本题的关键.5.(2021·A .±3B .3C .±9D .9【解析】【分析】【详解】解:,9的平方根是±3,±3,故选:A .【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.6.(2021·广西河池)下列4个实数中,为无理数的是( )A .-2B .0CD .3.14【答案】C【解析】【分析】根据无理数的定义,无限不循环小数是无理数,即可解答.【详解】解:-2,0是整数,属于有理数;3.14是有限小数,属于有理数C 符合题意.故选:C .【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.7.(2021·贵州毕节)下列运算正确的是( )A .()031p -=-B 3=±C .133-=-D .()236a a -=【答案】D【分析】直接计算后判断即可.【详解】()031p -=3=;1133-=;()236a a -=.故选D 【点睛】本题考查了零指数幂、算数平方根,负整数指数幂和幂的运算,关键是掌握概念和运算规则.8.(2020·贵州黔南)已知1a ,a 介于两个连续自然数之间,则下列结论正确的是( )A .12a <<B .23a <<C .34a <<D .45a <<【答案】C【解析】【分析】的范围,即可得出答案.【详解】解:∵45<<,∴314<,1在3和4之间,即34a <<.故选:C .【点睛】9.(2020·山东东营)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( )A .2-B .2C .2±D .4【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.=,2故选:B.【点睛】本题主要考查了算术平方根的求解方法,考生需要将其与平方根进行对比掌握.10.(2022·的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】=,从而判定即可.6【详解】=6,∴43,∴910<,故选:B.【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.+W的“W”中添上一种运算符号(在+,-,×,÷中选择)后,11.(2020·湖北荆州)若x为实数,在)1x其运算的结果是有理数,则x不可能的是()A1B1C.D.1【答案】C【解析】【分析】根据题意填上运算符计算即可.【详解】A.))110-=,结果为有理数;B.))112×= ,结果为有理数;C.无论填上任何运算符结果都不为有理数;D.)(112+=,结果为有理数;故选C .【点睛】本题考查实数的运算,关键在于牢记运算法则.12.(2022·广东广州)实数a ,b 在数轴上的位置如图所示,则 ( )A .a b=B .a b >C .a b<D .a b>【答案】C【解析】【分析】根据数轴上点的位置,可得11a b -<<<,进而逐项分析判断即可求解.【详解】解:根据数轴上点的位置,可得11a b -<<<,\a b <,故选C .【点睛】本题考查了实数与数轴,根据数轴上点的位置判断实数的大小,数形结合是解题的关键.13.(2022·广东广州)下列运算正确的是( )A 2=B .11a a a a +-=(0a ≠)C =D .235a a a ×=【答案】D 【解析】根据求一个数的立方根,分式的加减,二次根式的加法,同底数幂的乘法运算,逐项分析判断即可求解.【详解】A. 2=-,故该选项不正确,不符合题意;B.111aa a+-=(0a≠),故该选项不正确,不符合题意;C. =D.235a a a×=,故该选项正确,符合题意;故选D【点睛】本题考查了求一个数的立方根,分式的加减,二次根式的加法,同底数幂的乘法运算,正确的计算是解题的关键.14.(2021·的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】直接利用估算无理数的方法分析得出答案.【详解】解:∵16<17<25,∴4<5,的值应在4和5之间.故选:C.【点睛】的取值范围是解题关键.15.(2021·之间的是()A.3B.4C.5D.6【答案】C【分析】=,即可得出结果.>>5=<<6【详解】Q<<5=,45\<<,又Q<<6=,\56<<,\<<<<,456故选:C.【点睛】本题考查了估算无理数的大小,立方根,解决本题的关键是用有理数逼近无理数,求无理数的近似值.16.(2021·山东日照)下列命题:的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;②天气预报说明天的降水概率是95%,则明天一定会下雨;④若一个多边形的各内角都等于108°,则它是正五边形,其中真命题的个数是( )A.0B.1C.2D.3【答案】B【解析】【分析】利用算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识分别判断后即可确定正确的选项.【详解】解:,故原命题错误,是假命题;②菱形既是中心对称图形又是轴对称图形,正确,是真命题;②天气预报说明天的降水概率是95%,则明天下雨可能性很大,但不确定是否一定下雨,故原命题错误,是假命题;④若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故原命题错误,是假命题;真命题有1个,【点睛】本题考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识,难度不大.17.(2020·广西贵港)下列命题中真命题是( )A 2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形【答案】B【解析】【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)°´-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是2222216(22)(02)(32)(22)(32)55éù-+-+-+-+-=ëû,故B 正确;C. 正六边形的内角和为180(62)720°´-=°,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础18.(2020·内蒙古赤峰)估计( ( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】A【解析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(=,∵4<6<9,∵<3,∴<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.19.(2020·山东烟台)利用如图所示的计算器进行计算,按键操作不正确的是()A.按键即可进入统计计算状态BC.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为13时,若按键,则结果切换为小数格式0.333333333【答案】B 【解析】【分析】根据计算器的按键写出计算的式子.然后求值.【详解】解:A 、按键即可进入统计计算状态是正确的,故选项A 不符合题意;B ,故选项B 符合题意;C 、计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果是正确的,故选项C 不符合题意;D 、计算器显示结果为13时,若按键,则结果切换为小数格式0.333333333是正确的,故选项D 不符合题意;故选:B .【点睛】本题考查了科学计算器,熟练了解按键的含义是解题的关键.20.(2020·湖北荆州)定义新运算a b *,对于任意实数a ,b 满足()()1a b a b a b *=+--,其中等式右边是通常的加法、减法、乘法运算,例如43(43)(43)1716*=+--=-=,若x k x *=(k 为实数) 是关于x 的方程,则它的根的情况是( )A .有一个实根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根【答案】B【解析】【分析】将x k *按照题中的新运算方法展开,可得()()1x k x k x k *=+--,所以x k x *=可得()()1x k x k x +--=,化简得:2210x x k ---=,()()222141145k k D =--´×--=+,可得0D >,即可得出答案.【详解】解:根据新运算法则可得:()()2211x k x k x k x k *=+--=--,则x k x *=即为221x k x --=,整理得:2210x x k ---=,则21,1,1a b c k ==-=--,可得:()()222141145k k D =--´×--=+20k ³Q ,2455k \+³;0\D >,\方程有两个不相等的实数根;故答案选:B.【点睛】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.21.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A .0B .1C .2D .3【答案】D【解析】【分析】给x y -添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵()x y z m n x y z m n----=----∴①说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号,无法使得x 的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴③说法正确∴正确的个数为3故选D .【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.22.(2021·广东)设6a ,小数部分为b ,则(2a b 的值是( )A .6B .C .12D .【答案】A【解析】【分析】的整数部分可确定a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34<,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b +=´+=+=-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.23.(2021·湖北鄂州)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( )A .23-B .13C .12-D .23【答案】D【解析】【分析】当13a =时,计算出23421,,3,32a a a ==-=××××××,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=××××××,会发现是以:213,,32-,循环出现的规律,202136732=´+Q ,2021223a a \==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.24.(2020·四川巴中)定义运算:若am =b ,则log ab =m (a >0),例如23=8,则log 28=3.运用以上定义,计算:log 5125﹣log 381=( )A .﹣1B .2C .1D .44【答案】A【解析】【分析】先根据乘方确定53=125,34=81,根据新定义求出log 5125=3,log 381=4,再计算出所求式子的值即可.【详解】解:∵53=125,34=81,∴log 5125=3,log 381=4,∴log 5125﹣log 381,=3﹣4,=﹣1,故选:A .【点睛】本题考查新定义对数函数运算,仔细阅读题目中的定义,找出新定义运算的实质,掌握新定义对数函数运算,仔细阅读题目中的定义,找出新定义运算的实质,解题关键理解新定义就是乘方的逆运算.25.(2021·湖北荆州)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=´+´=※.若关于x 的方程[]21,52,0x x k k éùëû+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠B .54k £C .54k £且0k ≠D .54k ³【答案】C【解析】【分析】按新定义规定的运算法则,将其化为关于x 的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.【详解】解:∵[x 2+1,x ]※[5−2k ,k ]=0,∴()()21520k x k x ++-=.整理得,()2520kx k x k +-+=.∵方程有两个实数根,∴判别式0³V 且0k ≠.由0³V 得,()225240k k --³,解得,54k £.∴k 的取值范围是54k £且0k ≠.故选:C【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点,正确理解新定义的运算法则是解题的基础,熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制,要引起高度重视.26.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为()A.2cm B.3cm C.4cm D.5cm【答案】B【解析】【分析】由圆锥的圆锥体底面半径是6cm,高是6cm,可得CD=DE,根据园锥、圆柱体积公式可得液体的体积为63πcm3,圆锥的体积为72πcm3,设此时“沙漏”中液体的高度AD=x cm,则DE=CD=(6-x)cm,根据题意,列出方程,即可求解.【详解】解:如图,作圆锥的高AC,在BC上取点E,过点E作DE⊥AC于点D,则AB=6cm,AC=6cm,∴△ABC为等腰直角三角形,∵DE∥AB,∴△CDE∽△CAB,∴△CDE 为等腰直角三角形,∴CD =DE ,圆柱体内液体的体积为:233763cm p p ´´=圆锥的体积为2316672cm 3p p ´´=,设此时“沙漏”中液体的高度AD =x cm ,则DE =CD =(6-x )cm ,∴21(6)(6)72633x x p p p ×-×-=-,∴3(6)27x -=,解得:x =3,即此时“沙漏”中液体的高度3cm .故选:B .【点睛】本题考查圆柱体、圆锥体体积问题,解题的关键是掌握圆柱体、圆锥体体积公式,列出方程解决问题.27.(2020·湖南长沙)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④【答案】A【解析】【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②p 是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A.【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.二、填空题28.(2022·1-,p,0,3这五个数中随机抽取一个数,恰好是无理数的概率是__.【答案】25##0.4【解析】【分析】先确定无理数的个数,再除以总个数.【详解】,p是无理数,P(恰好是无理数)25 =.故答案为:25.【点睛】本题主要考查了概率公式及无理数,熟练掌握概率公式及无理数的定义进行计算是解决本题的关键.29.(2022·山东威海)按照如图所示的程序计算,若输出y的值是2,则输入x的值是_____.【答案】1【解析】【分析】根据程序分析即可求解.【详解】解:∵输出y 的值是2,∴上一步计算为121x=+或221x =-解得1x =(经检验,1x =是原方程的解),或32x =当10x =>符合程序判断条件,302x =>不符合程序判断条件故答案为:1【点睛】本题考查了解分式方程,理解题意是解题的关键.30.(2021·______.【答案】10【解析】【分析】根据1011【详解】解:即1011,10,故答案为:10.【点睛】本题主要考查无理数的估算,解题的关键是确定无理数位于哪两个整数之间.31.(2021·()10120213p -æö-+-=ç÷èø___________.【答案】-4【解析】【分析】根据立方根、零指数幂、负整数指数幂的运算法则即可求解.【详解】解:原式=()213-++-51=-+4=-.故答案为:-4【点睛】本题考查了立方根、零指数幂、负整数指数幂、实数的混合运算等知识点,熟知上述的各种运算法则是解题的基础.32.(2020·青海)(-3+8)的相反数是________________.【答案】 5- 2±【解析】【分析】第1空:先计算-3+8的值,根据相反数的定义写出其相反数;第2【详解】第1空:∵385-+=,则其相反数为:5-第2空:4=,则其平方根为:2±故答案为:5-,2±.【点睛】本题考查了相反数,平方根,熟知相反数,平方根的知识是解题的关键.33.(2020·四川遂宁)下列各数3.1415926 1.212212221…,17,2﹣π,﹣2020数有_____个.【答案】3【解析】【分析】根据无理数的三种形式:①开不尽的方根,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数即可.【详解】解:在所列实数中,无理数有1.212212221…,2﹣π这3个,故答案为:3.【点睛】本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.34.(2022·四川广安)若(a ﹣3)2,则以a 、b 为边长的等腰三角形的周长为________.【答案】11或13##13或11【解析】【分析】根据平方的非负性,算术平方根的非负性求得,a b 的值,进而根据等腰三角形的定义,分类讨论,根据构成三角形的条件取舍即可求解.【详解】解:∵(a ﹣3)2,∴3a =,5b =,当3a =为腰时,周长为:26511a b +=+=,当5b =为腰时,三角形的周长为231013a b +=+=,故答案为:11或13.【点睛】本题考查了等腰三角形的定义,非负数的性质,掌握以上知识是解题的关键.35.(2022·四川内江)对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x 的值为 _____.【答案】56【解析】【分析】根据题意列出方程,解方程即可求解.【详解】解:由题意得:11212x --=1,等式两边同时乘以2(21)x -得,2212(21)x x -+=-,解得:56x=,经检验,x=56是原方程的根,∴x=56,故答案为:56.【点睛】本题考查了解分式方程,掌握分式方程的一般解法是解题的关键.36.(2022·湖北随州)已知m为正整数,是整数,==可知m有最小值3721´=.设n1的整数,则n的最小值为______,最大值为______.【答案】 3 75【解析】【分析】根据n为正整数,1的整数,先求出n的值可以为3、12、75,3001的整数来求解.=1的整数,∵n为正整数∴n的值可以为3、12、75,n的最小值是3,最大值是75.故答案为:3;75.【点睛】本题考查了无理数的估算,理解无理数的估算方法是解答关键.37.(2021·安徽)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1,它介于整数n和1n+之间,则n的值是______.【答案】1【解析】【分析】1即可完成求解.【详解】解:2.236»;1 1.236»;因为1.236介于整数1和2之间,所以1n =;故答案为:1.【点睛】该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.38.(2021·内蒙古呼和浩特)若把第n 个位置上的数记为n x ,则称1x ,2x ,3x ,…,n x 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:1y ﹐2y ,3y …n y 其中n y 是这个数列中第n 个位置上的数,1n =,2,…k 且111101n n n n n x x y x x -+-+=ì=í≠î并规定0n x x =,11n x x +=.如果数列A 只有四个数,且1x ,2x ,3x ,4x 依次为3,1,2,1,则其“伴生数列”B 是__________.【答案】0,1,0,1【解析】【分析】根据定义先确定x 0=x 4=1与x 5=x 1=3,可得x 0,1x ,2x ,3x ,4x , x 5依次为1,3,1,2,1,3,根据定义其“伴生数列”B 是y 1, y 2, y 3, y 4;依次为0, 1, 0, 1即可.【详解】解:∵1x ,2x ,3x ,4x 依次为3,1,2,1,∴x 0=x 4=1,x 5=x 1=3,∴x 0,1x ,2x ,3x ,4x , x 5依次为1,3,1,2,1,3,∵x 0=2x =1,y 1=0;x 1≠x 3,y 2=1;2x =4x =1,y 3=0;3x ≠x 5,y 4=1;∴其“伴生数列”B 是y 1, y 2, y 3, y 4;依次为0, 1, 0, 1.故答案为:0, 1, 0, 1.【点睛】本题考查新定义数列与伴生数列,仔细阅读题目,理解定义,抓住“伴生数列”中y n 与数列A 中11,n n x x -+关系是解题关键.39.(2020·上海)已知f (x )=21x -,那么f (3)的值是____.【答案】1.【解析】【分析】根据f (x )=21x -,将3x =代入即可求解.【详解】解:由题意得:f (x )=21x -,∴将3x =代替表达式中的x ,∴f (3)=231-=1.故答案为:1.【点睛】本题考查函数值的求法,解答本题的关键是明确题意,利用题目中新定义解答.40.(2020·浙江衢州)定义a ※b =a (b +1),例如2※3=2×(3+1)=2×4=8.则(x ﹣1)※x 的结果为_____.【答案】x 2﹣1【解析】【分析】根据规定的运算,直接代值后再根据平方差公式计算即可.【详解】解:根据题意得:(x ﹣1)※x =(x ﹣1)(x +1)=x 2﹣1.故答案为:x 2﹣1.【点睛】本题考查了平方差公式,实数的运算,理解题目中的运算方法是解题关键.41.(2020·青海)对于任意不相等的两个实数a ,b ( a > b )定义一种新运算,如12※4=______【解析】【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.42.(2022·这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=L _______.【答案】5050【解析】【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解:=1ab =\,1112211112a b a b a b b b a b S a a ++++=+===+++++++Q ,222222222222222222221112a b a b S a b a b a b a b++++=+=´=´=+++++++,…,10010010010010010010010010010010011100100111a b S a b a b a b +++=+=´=+++++\12100S S S +++=L 121005050++¼¼+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.43.(2021·内蒙古鄂尔多斯)下列说法不正确的是___________ (只填序号)①724.②外角为60°且边长为2③把直线23y x =-向左平移1个单位后得到的直线解析式为22y x =-.④新定义运算:2*21m n mn n =--,则方程1*0x -=有两个不相等的实数根.【答案】①③④【解析】【分析】①;先判断出正多边形为正六边形,再求出其内切圆半径即可判断②;根据直线的平移规律可判断③;根据新定义运算列出方程即可判断④.【详解】解:①∵161725<<,∴45<∴54-<<-∴273<∴72,小数部分为5①错误;②外角为60°的正多边形的边数为:36060=6°¸°∴这个正多边形是正六边形,设这个正六边形为ABCDEF ,如图,O 为正六边形的中心,连接OA ,过O 作OG ⊥AB 于点G ,∵AB =2,∠BAF =120°∴AG =1,∠GAO =60°∴OG =,即外角为60°且边长为2②正确;③把直线23y x =-向左平移1个单位后得到的直线解析式为2(1)321y x x =+-=-,故③错误;④∵新定义运算:2*21m n mn n =--,∴方程21*(1)210x x x -=-´--=,即2210x x ++=,∴2=24110D -´´=∴方程1*0x -=有两个相等的实数根,故④错误,∴错误的结论是①③④帮答案为①③④.【点睛】此题主要考查了无理数的估算,正多边形和圆,直线的平移以及根的判别式,熟练掌握以上相关知识是解答此题的关键.44.(2021·湖北随州)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率p 精确到小数点后第七位的人,他给出p 的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有bd x a c <<,其中a ,b ,c ,d 为正整数),则b d a c++是x 的更为精确的近似值.例如:已知15722507p <<,则利用一次“调日法”后可得到p 的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457p »<,再由17922577p <<,可以再次使用“调日法”得到p 的更为精确的近似分数……现已知7352<<,则使用两次“调日法”______.【答案】1712【解析】【分析】根据“调日法”的定义,第一次结果为:107,所以71057<<,根据第二次“调日法”进行计算即可.【详解】解:∵7352<<∴第一次“调日法”,结果为:7+310=5+27∵10 1.42867»>∴71057<< ∴第二次“调日法”,结果为:7+1017=5+712 故答案为:1712【点睛】本题考查无理数的估算,根据定义,严格按照例题步骤解题是重点.45.(2020·湖南邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.【答案】【解析】【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是,即可求解.【详解】解:由题意可知,第一行三个数的乘积为:2=设第二行中间数为x ,则16´´=x x设第三行第一个数为y ,则3´=y ,解得y =∴2个空格的实数之积为xy ==故答案为:.【点睛】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.三、解答题46.(2022·北京)计算:0(1)4sin 45p -+o 【答案】4【解析】【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解.【详解】解:0(1)4sin 45p -+o=143+=4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.47.(2022·江苏宿迁)计算:112-æö-ç÷èø4sin 60°.【答案】2【解析】【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:114sin 602-æöç÷°ç÷èø4´2=+2=【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.48.(2021·湖南张家界)计算:2021(1)2-+-°+【解析】【分析】先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.【详解】解:2021(1)2-+-°11222=-+-´+=【点睛】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键.49.(2020·山东济南)计算:0112sin 3022p -æöæö-°ç÷ç÷èøèø.【答案】4【解析】【分析】分别计算零指数幂,锐角三角函数,算术平方根,负整数指数幂的运算,再合并即可得到答案.【详解】解:原式112222=-´++。

中考数学专题练习 实数(含解析)

中考数学专题练习 实数(含解析)

实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简: = .12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b= .14.已知互为相反数,则a:b= .15.若的值在x与x+1之间,则x= .16.,则x y= .17.计算: = .18.化简二次根式: = .19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解: =2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a >﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简: = .【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b= .【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x= 2 .【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算: = .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式: = ﹣2 .【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解: =3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2013÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2013÷3=671,∴x2013=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。

实数的有关概念与计算(53题)2023年中考数学真题分项汇编(全国通用)(解析版)

实数的有关概念与计算(53题)2023年中考数学真题分项汇编(全国通用)(解析版)

实数的有关概念与计算(53题)一、单选题【答案】C【分析】根据相乘等于1的两个数互为倒数,即可求解.【详解】解:2023−的倒数是12023−, 故选:C .【点睛】本题考查了倒数,掌握倒数的定义是解题的关键.【答案】A【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8−,故选:A .【答案】C【分析】首先化简绝对值,然后把选项中的4个数按从小到大排列,即可得出最大的数.【详解】∵11−=, ∴3012−<<−<,∴最大的数是2.故选:C .【点睛】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.4.(2023·四川南充·统考中考真题)如果向东走10m 记作10m +,那么向西走8m 记作( )A .10m −B .10m +C .8m −D .8m + 【答案】C【分析】根据具有相反意义的量即可得.【详解】解:因为向东与向西是一对具有相反意义的量,所以如果向东走10m 记作10m +,那么向西走8m 记作8m −,故选:C .【点睛】本题考查了具有相反意义的量,熟练掌握具有相反意义的量是解题关键.【答案】B【详解】2的相反数是-2.故选:B.【答案】D 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选:D .【点睛】本题考查相反数,题目简单,熟记定义是关键.【答案】A【分析】根据相反数的定义即可求解.【详解】解:5−的相反数是5,故选:A .【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.8.(2023·浙江嘉兴·统考中考真题)﹣8的立方根是( )A .±2B .2C .﹣2D .不存在 【答案】C【分析】根据立方根的定义进行解答.【详解】∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故选:C .【点睛】本题主要考查了立方根,解决本题的关键是数积立方根的定义. 9.(2023·浙江金华·统考中考真题)某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是20−℃,10−℃,0℃,2℃,其中最低气温是( )A .20−℃B .10−℃C .0℃D .2℃ 【答案】A【分析】根据有理数的大小比较,即可作出判断.【详解】解:201002−<−<<, 故温度最低的城市是哈尔滨,故选:A .【点睛】本题考查了有理数的大小比较的知识,解答本题的关键是掌握有理数的大小比较法则.【答案】A【分析】根据相反数相加为0判断即可.【详解】解:∵5(5)0+−=,∴“□”内应填入的运算符号为+, 故选:A .【点睛】题目主要考查有理数的加法运算,熟练掌握运算法则是解题关键.【答案】D【分析】根据相反数的意义,相反数是只有符号不同的两个数,改变6−前面的符号,即可得6−的相反数.【详解】解:6−的相反数是6.故选:D.【点睛】本题考查了相反数.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.【答案】B【分析】根据倒数的概念,乘积为1的两个数互为倒数,由此即可求解.【详解】解:12−的倒数是2−,故选:B.【点睛】本题主要考查求一个数的倒数,掌握倒数的概念是解题的关键.13.(2023·浙江宁波·统考中考真题)在2,1,0,π−−这四个数中,最小的数是() A.2−B.1−C.0D.π【答案】A【分析】根据负数小于0小于正数,负数的绝对值大的反而小,进行判断即可.【详解】解:∵21−>−,∴210π−<−<<,∴最小的数是2−;故选:A.【点睛】本题考查比较实数的大小.熟练掌握负数小于0小于正数,负数的绝对值大的反而小,是解题的关键.14.(2023·江西·统考中考真题)下列各数中,正整数是()A.3B.2.1C.0D.2−【答案】A【分析】根据有理数的分类即可求解.【详解】解:3是正整数,2.1是小数,不是整数,0不是正数,2−不是正数,故选:A.【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选:A.16.(2023·甘肃武威·统考中考真题)9的算术平方根是()A.3±B.9±C.3D.3−【答案】C=,可得9的算术平方根.【分析】由239【详解】解:9的算术平方根是3,故选:C.【点睛】本题考查的是算术平方根的含义,熟练的求解一个数的算术平方根是解本题的关键.【答案】D【分析】根据数轴及有理数的加法可进行求解.−+=;【详解】解:由数轴可知点A表示的数是1−,所以比1−大3的数是132故选:D.【点睛】本题主要考查数轴及有理数的加法,熟练掌握数轴上有理数的表示及有理数的加法是解题的关键.−A.2023B.2023【答案】B【分析】根据数轴的定义求解即可.=,【详解】解;∵数轴上点A表示的数是2023,OA OBOB,∴=2023−,∴点B表示的数是2023故选:B.【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.−的结果是()19.(2023·浙江绍兴·统考中考真题)计算23A.1−B.3−C.1D.3【答案】A【分析】根据有理数的减法法则进行计算即可.−=−,【详解】解:231故选:A.【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.【答案】C【分析】由2=【详解】解:∵2>>,∴a b c故选:C.【点睛】本题考查了实数的大小比较,算术平方根.解题的关键在于对知识的熟练掌握.【答案】A【分析】根据绝对值的概念,可得3−的绝对值就是数轴上表示3−的点与原点的距离.进而得到答案.【详解】解:3−的绝对值是3,故选:A.【点睛】本题考查绝对值的定义,正确理解绝对值的定义是解题的关键.22.(2023·重庆·统考中考真题)4的相反数是()A.14B.14−C.4D.4−【答案】D【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【详解】解:4的相反数是4−,故选:D.【点睛】本题考查相反数的概念,关键是掌握相反数的定义.【答案】A【分析】根据立方根、无理数与有理数的概念即可得.【详解】解:A2=,是有理数,则此项符合题意;B、3.232232223⋅⋅⋅是无限不循环小数,是无理数,则此项不符合题意;C、π3是无理数,则此项不符合题意;D是无理数,则此项不符合题意;故选:A.【点睛】本题考查了立方根、无理数与有理数,熟记无理数与有理数的概念是解题关键.【答案】A【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得17039−<<<,∴最大的数是:3;故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【答案】A【分析】根据正数0>>负数,即可进行解答.【详解】解:∵469<<∴23<<∴1133π<<∴比1小的正无理数是.故选:A .【点睛】本题主要考查了比较实数是大小,无理数的估算,解题的关键是掌握正数0>>负数.【答案】B【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6.故选:B .【答案】A【分析】先根据实数的大小比较法则比较数的大小,再求出最小的数即可.【详解】1502−<<<∴最小的数是:5−故选:A .【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键.【答案】C【分析】根据无理数的估算可得答案.【详解】解:∵3=4==91316<<,∴大小在3与4故选:C.【点睛】本题考查了无理数的估算,熟练掌握基础知识是解题的关键.29.(2023·浙江台州·统考中考真题)下列各数中,最小的是().A.2B.1C.1−D.2−【答案】D【分析】根据正数大于零,零大于负数,两个负数,绝对值大的反而小判断即可.【详解】解:∵2,1是正数,1−,2−是负数,∴最小数的是在1−,2−里,又11−=,22−=,且12<,∴21−<−,∴最小数的是2−.故选:D.【点睛】本题主要考查了有理数大小比较,解答此题的关键是掌握有理数大小比较法则.二、填空题【答案】4(答案不唯一)【分析】根据算术平方根的意义求解.【详解】解:∴由1623<即4<故答案为:4(答案不唯一).【点睛】本题考查算术平方根和无理数的估算,熟练掌握基本知识是解题关键.31.(2023·四川泸州·统考中考真题)8的立方根为______.【答案】2【分析】根据立方根的意义即可完成.【详解】∵328=∴8的立方根为2故答案为:2.【点睛】本题考查了立方根的意义,掌握立方根的意义是关键.【答案】2023 【分析】负数的绝对值是它的相反数,由此可解.【详解】解:2023−的相反数是2023,故20232023−=,故答案为:2023.【点睛】本题考查求一个数的绝对值,解题的关键是掌握负数的绝对值是它的相反数.【答案】±2【详解】解:±2.故答案为:±2.34.(2023·重庆·统考中考真题)计算1023−+=_____.【答案】1.5 【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023−+=11=1.52+. 故答案为:1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.【答案】6【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516−+=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.【分析】根据零指数幂、二次根式的性质进行计算即可.【详解】()3.14π−11=【点睛】本题考查了实数的混合运算,二次根式的性质等知识,掌握任何一个不为零的数的零次幂都是1是解题的关键.【答案】31=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.38.(2023·江苏连云港·统考中考真题)如图,数轴上的点A B 、分别对应实数a b 、,则a b +__________0.(用“>”“<”或“=”填空)【答案】<【分析】根据数轴可得0,a b a b<<>,进而即可求解. 【详解】解:由数轴可得0,a b a b<<>∴a b +0<故答案为:<.【点睛】本题考查了实数与数轴,有理数加法的运算法则,数形结合是解题的关键.【答案】5【分析】根据二次根式的性质即可求解.【详解】解:2=5故答案为:5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.三、解答题【答案】7【分析】根据零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义,计算即可.【详解】解:原式112252=+−⨯+1215=+−+7=.【点睛】本题考查了零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义.本题的关键是【答案】2−【分析】先化简绝对值,零指数幂,有理数的乘方,再进行计算即可求解.【详解】解:02|3|1)2−−−314=−−2=−.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂,有理数的乘方是解题的关键.【答案】3【分析】根据负整数指数幂和零指数幂运算法则,特殊角的三角函数值,进行计算即可.【详解】解:)012312sin303−⎛⎫++︒−− ⎪⎝⎭11212323=++⨯+121133=+++3=.【点睛】本题主要考查了实数混合运算,解题的关键是熟练掌握负整数指数幂和零指数幂运算法则,特殊角的三角函数值,准确计算.【答案】2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的意义分别化简,再利用有理数的加减运算法则计算得出答案. 【详解】原式111222=++=.【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,绝对值的意义,掌握这些知识并正确计算是解题关键.【答案】2【分析】先计算有理数的乘方、零指数幂、特殊角的余弦值、化简绝对值,再计算乘法与加减法即可得.【详解】解:原式111232−+−⨯+=13=−+2= 【点睛】本题考查了零指数幂、特殊角的余弦值、实数的混合运算,熟练掌握各运算法则是解题关键.【答案】3【分析】根据化简绝对值,零指数幂以及负整数指数幂进行计算即可求解. 【详解】解:原式4123=+−=.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂以及负整数指数幂是解题的关键.【答案】6【分析】先计算零指数幂,负整数指数幂和特殊角三角函数值,再根据实数的混合计算法则求解即可.【详解】解:原式)1134=−++114=6=. 【点睛】本题主要考查了实数的混合计算,特殊角三角函数值,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键.【答案】6【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:121|1|(2)(1)tan 453π−⎛⎫−+−−−+− ⎪⎝⎭︒14131=+−+−6=. 【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.【答案】18−【分析】先计算负整数指数幂、算术平方根、零指数幂、减法运算,再进行加减混合运算即可.【详解】解:()101121sin 451(1)3−⎛⎫−+︒−−− ⎪⎝⎭1213311=−+−++18=− 【点睛】此题考查了实数混合运算,熟练掌握相关运算法则是解题的关键.【答案】【分析】利用二次根式的混合运算法则计算即可.===【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.【答案】2【分析】根据绝对值的性质和算术平方根分别进行化简,再按照有理数加减混合运算即可求出答案.【详解】解: 223+−435=+−2=.【点睛】本题考查了实数的运算,解题的关键在于熟练掌握绝对值的性质、算术平方根,乘方的相关运算.【答案】1【分析】先化简绝对值及算术平方根,计算零次幂的运算,然后进行加减法即可.【详解】解:|2|2023−+212=+− =1. 【点睛】题目注意考查实数的混合运算,熟练掌握运算法则是解题关键.【答案】6−【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=−+6=−.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.【答案】1−【分析】根据特殊角的三角函数值,零指数幂,幂的运算法则计算即可.【详解】()()20232sin 3021π︒−+−()122112=⨯−++−12=−1=−.是解题的关键.。

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

2023-2024学年九年级中考数学复习《实数》考题汇集专项练附答案解析

2023-2024学年九年级中考数学复习《实数》考题汇集专项练附答案解析

2023-2024学年九年级中考数学复习《实数》考题汇集专项练【满分100分】一、选择题(每小题3分,共36分)1.在-711,√93,√949,-√273,0,π2,-√10,0.3·,0.616 116 111 6…(相邻两个6之间依次多一个1)中,有无理数( C ) A.2个B.3个C.4个D.5个2.(2021鄂尔多斯)在实数0,π,|-2|,-1中,最小的数是( C ) A.|-2|B.0C.-1D.π3.(-5)2的平方根是( C ) A.5 B.-5C.±5D.√54.下列运算中正确的是( D )A.√16=±4B.√-83=2 C.√(-2)2=-2 D.√(-3)33=-35.估计5√6-√24的值应在( C )A.5和6之间B.6和7之间C.7和8之间D.8和9之间6.用数学教材上使用的某种计算器进行计算,则按键的结果为( D )A.21B.15C.84D.677.已知a,b 为实数,且√2a +6+|b-√2|=0,则a+b 的绝对值为( A ) A.3-√2 B.√2-3 C.-3+√2 D.3+√2 8.下列说法正确的是( D ) A.125的立方根是±5B.-18没有立方根 C.立方根等于本身的数是0 D.√-273=-√2739.如图所示,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上表示的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E,点E 表示的实数是( B ) A.√5+1 B.√5-1 C.√5D.1-√5第9题图10.如图所示,在数轴上表示1,√2的点分别为A,B,点B 关于点A 的对称点为C,则C 点所表示的数是( C )A.√2-1B.1-√2C.2-√2D.√2-2第10题图11.已知:√23.63=2.868,-√a 3=28.68,则a 等于( D ) A.2 360 B.-2 360C.23 600D.-23 60012.请你观察、思考下列计算过程:因为112=121,所以√121=11; 因为1112=12 321,所以√12 321=111;…,由此猜想√12 345 678 987 654 321等于( D ) A.111 111B.1 111 111C.11 111 111D.111 111 111二、填空题(每小题3分,共18分)13.√81的平方根是 ±3 ,92的平方根是 ±9 ,-5是 -125 的立方根. 14.写出一个比2大比3小的无理数(用含根号的式子表示): √5(答案不唯一) . 15.若一个正数的两个平方根分别是m+2和3m-1,则这个正数 为4916.16.已知m 是√133的整数部分,n 是√13的小数部分,则m-n 的值 为 5-√13 .17.(2021广元)如图所示,实数-√5,√15,m 在数轴上所对应的点分别为A,B,C,点B 关于原点的对称点为D.若m 为整数,则m 的值为 -3 .18.观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,…,根据你发现的规律,若式子√x +1y =13√1y (x,y 为正整数)符合以上规律,则√x +y = √26 . 三、解答题(共46分)19.(8分)(1)已知8x 3=27,求x 的值; (2)计算:√(-3)2+√-643-|1-√3|.解:(1)因为8x 3=27, 则x 3=278. 解得x=32.(2)√(-3)2+√-643-|1-√3|=3-4-(√3-1) =-1-√3+1 =-√3.20.(8分)把下列各数填入相应的集合内:-27,√363,-π+2 010,√9,3. 141 5926,-|-√100|,0,√2-1,√32,-√8.整数集合:{ …}; 分数集合:{ …};无理数集合:{ …}. 解:整数集合:{√9,-|-√100|,0,…}. 分数集合:{-27,3.141 592 6,…}.无理数集合:{√363,-π+2 010,√2-1,√32,-√8,…}.21.(8分)已知2a-1的平方根是±3,3a+b+10的立方根是3. (1)求a,b 的值; (2)求a+b 的算术平方根.解:(1)因为3和-3是2a-1的平方根,所以2a-1=9,解得a=5. 因为3a+b+10的立方根是3,所以3a+b+10=27, 把a=5代入,得3×5+b+10=27, 解得b=2,故a=5,b=2.(2)因为a=5,b=2,所以a+b=7,所以√a +b =√7, 即 a+b 的算术平方根是√7.22.(10分)学校计划围一个面积为50 m 2的长方形场地,一边靠旧墙(墙长为10 m),另外三边用篱笆围成,并且它的长与宽之比为5∶2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地.”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么? 解:说法都不正确.理由如下: 设长方形场地的长为5x m,宽为2x m, 根据题意,得5x ·2x=50. 解得x=√5.所以长为5√5 m,宽为2√5 m. 因为2<√5<3, 所以2√5<6,5√5>10.若长与墙平行,墙长只有10 m,故不能围成满足条件的长方形场地; 若宽与墙平行,则能围成满足条件的长方形场地. 即只有以墙长为宽时,才能围成. 所以他们的说法都不正确.23.(12分)甲同学用如图所示的方法作出C 点,表示数√13.在△OAB 中,∠OAB=90°,OA=2,AB=3,且点O,A,C 在同一数轴上,OB=OC. (1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在数轴上描出表示-√29的点.解:(1)在Rt△AOB中,根据勾股定理,有OA2+AB2=OB2,所以OB=√OA2+AB2=√22+32=√13.因为OC=OB=√13,所以点C表示的数为√13.(2)如图所示,取OB′=5,过点B′作B′C′⊥OB′,取B′C′=2.在Rt△OB′C′中,根据勾股定理,有OB′2+B′C′2=OC′2,所以OC′=√OB'2+B'C'2=√52+22=√29.因为OA′=OC′=√29.所以点A′表示的数为-√29.。

中考数学总复习第1课 实数

中考数学总复习第1课 实数
2.在做实数运算题时,要先理清运算顺序再计算,在计 算的过程中要注意各项符号的处理.
【精选考题 6】 (2013·浙江衢州) 4-23÷|-2|×(-7+ 5).
点评:(1)本题考查实数的运算,难度较小. (2)熟练掌握实数的运算法则是解题的关键.
解析: 4-23÷|-2|×(-7+5) =2-8÷2×(-2) =2+8=10.

【解析】 原式=3×9.42-3×9.42=0.
【答案】 0
考点剖析
考点一 实数的分类
知识清单
正整数 自然数 整数 0
负整数
有理数
正分数 有限小数或无
实数
分数 负分数 限循环小数
正无理数 无理数 负无理数 无限不循环小数
根据需要,我们也可以按符号进行分类,如:
正实数
实数 零
负实数
考点点拨
1.实数的概念及分类常以选择题和填空题的形式出现,题目 难度一般较小.对于实数的分类,应用较多的为按正、负 分类,在分类讨论及探索性问题中也常常涉及实数分类的 知识.
真题体验
1.(2013·浙江金华)在数 0,2,-3,-1.2 中,属于负整
数的是
()
A.0
B.2
C.-3
D.-1.2
【解析】 本题易错选 D,需注意读题,本题题干中要选
的是负整数,所以应满足两个条件:(1)负数:(2)整数,只
有-3 符合,故选 C.
【答案】 C
2.(2013·浙江宁波)-5 的绝对值为
值永远是非负的,绝对值的非负性往往也是题中的隐 含条件.数轴上 a,b 所表示的两个点之间的距离即为 |a-b|.
【精选考题 3】 (2013·浙江舟山)-2 的相反数是 ( )

中考数学专题复习《实数》检测题真题(含答案)

中考数学专题复习《实数》检测题真题(含答案)

中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。

2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。

3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。

若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。

5、倒数: 没有倒数。

正数的倒数是正数,负数的倒数是负数。

若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。

7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。

在a n中,a 叫做 ,n 叫做 。

8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。

a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。

10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。

a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。

11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。

3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。

知识回顾12、无理数:像2、33、……这样的 。

13、实数: 和 统称为实数。

实数与数轴上的点 。

1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

初中数学中考复习——实数专题(含答案)

初中数学中考复习——实数专题(含答案)

初中数学中考复习——实数专题选择题下列各数中,绝对值最小的是()A. -3B. 2C. 0D. π如果一个实数的相反数是它本身,那么这个数一定是()A. 正数B. 负数C. 零D. 无法确定一个数的平方根是它本身的数有()A. 0B. 1C. -1D. A和B实数-5和7在数轴上对应的点之间的距离是()A. 2B. 12C. 10D. 14利用科学记数法表示的数,下列哪个选项是错误的()A. 350 = 3.5 × 10²B. 0.05 = 5 × 10⁻²C. 500 = 5 × 10²D. 0.0006 = 6 × 10⁻⁴下列哪个数不是无理数()A. πB. √2C. 0.333...(3无限重复)D. 22/7如果a和b是两个实数,且a的绝对值大于b的绝对值,那么|a| - |b|的值()A. 一定为正B. 一定为负C. 可能是正数或负数D. 无法确定对于实数x,以下哪个条件可以保证x² - 4x + 4 = 0()A. x = 2B. x = -2C. x = 0D. x = 4下列哪个表达式的结果不是实数()A. √16B. √(-1)C. -√(-4)D. √9如果一个数的立方根是2,那么这个数是()A. 6B. 8C. -8D. 4正确答案:CCDCBCAABC填空题实数包括有理数和无理数,其中有限小数和无限循环小数属于______。

一个数的相反数是与它符号相反的数,例如,数-7 的相反数是______。

一个数的绝对值是它到原点的距离,因此,|-5| 等于______。

如果一个数的平方根是4,则这个数的算术平方根是______。

立方根的定义是,如果一个数的立方等于a,则这个数叫做 a 的立方根。

例如,3 的立方根是______。

在实数大小比较中,数轴上右边的数总是比左边的数大。

因此,在数轴上,5 大于______。

中考复习专题实数

中考复习专题实数

专题01实数【命题点一】实数的分类【典例1】【2019•玉林】下列各数中,是有理数的是( )A .πB .1.2C 2D 33【变式训练】152,0,–1,其中负数是( )A 5B .2C .0D .–12.下列各数是正数的是( )A .0B .5C .12-D .23. 下列各数:-2,0,31,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .1【命题点二】数轴【典例2】实数a 、b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A .a –5>b –5B .6a >6bC .–a >–bD .a –b >0【变式训练】3.实数a ,b 在数轴上的对应点的位置如图所示.下列结论正确的是( )A .a >bB .a >–bC .–a >bD .–a <b4.实数a 、b 、c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( )A .B .C .D .【命题点三】比较大小【典例3】在–42、0、4这四个数中,最小的数是( )A .4B .0C 2D .–4【变式训练】5.下列四个数:–3,–0.5,235 ) A .–3 B .–0.5C .23D 56.下列各数中,小于–2的数是( )A 5B 3C 2D .–1【命题点四】相反数、倒数、绝对值 【典例4】–7的相反数是( )A .–7B .–17C .7D .1【变式训练】7.–8的绝对值是( )A .8B .18C .–8D .–188.23的倒数是( ) A .32B .–32C .–23D .23【典例5】计算:()22223tan 3032018--⨯--+=【变式训练】1.–2×327-+|1–3|–(12)–2 2.8+0(2018)--4sin45°+2-【命题点六】科学记数法【典例6】天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m ,约为149 600 000 km .将数149 600 000用科学记数法表示为( )A .14.96×107B .1.496×107C .14.96×108D .1.496×108【变式训练】1.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A .2.748×102 B .274.8×104C .2.748×106D .0.2748×1072. 2019年6月9日中央电视台新闻报道,端午节期间天猫网共计销售粽子123 000000个,将数据123 000 000用科学记数法表示为( ) A .12.3×107B .1.23×108C .1.23×109D .0.123×109专题2整式与因式分解一、选择题1.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块矩形.若拿掉边长为2b 的小正方形后,将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A.32a b +B. 34a b +C. 62a b +D. 64a b +2.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共10份意大利面,x 杯饮料,y 份沙拉,则他们点了A 餐的份数为( )A 餐:一份意大利面B 餐:一份意大利面加一杯饮料C 餐:一份意大利面加一杯饮料与一份沙拉A. 10x -B. 10y -C. 10x y -+D. 10x y -- 3.如果12a xy +与21b x y -是同类项,那么ab的值是( ) A.12 B. 32C. 1D. 3 4.下列各式中,与233x y 是同类项的是( ) A. 52x B. 323x y C. 2312x y -D. 2312x y - 5.如果213m ab -与19m ab+是同类项,那么m 的值为( )A. 2B. 1C. −1D. 0 6.已知12a b +=,则代数式223a b +-的值是( ) A.2 B. −2 C. −4 D. 132-7.若231a b -=-,则代数式2463a ab b -+的值为( )A. −1B. 1C. 2D. 3 8.化简1(93)2(1)3x x --+的结果是( )A. 22x -B.1x +C. 53x +D. 3x - 9.下列运算正确的是( )A. 3226()ab a b = B. 235a b ab +=C. 22532a a -=D. 22(1)1a a +=+ 10.计算()a a -⋅3的结果是( )A. 2aB.2a -C. 4aD. 4a - 11.下列运算正确的是( )A.32a a a =⋅B. 623a a a ÷=C. 2222a a -=D. 224(3)6a a = 12.计算23()a b 的结果是( )A. 23a bB. 53a bC. 6a bD. 63a b 13.计算3(2)a -的结果是( )A. 38a -B. 36a -C. 36aD. 38a 14. 下列运算正确的是( )A. 43a a a =⋅B. 33(2)6a a =C. 632a a a ÷=D. 2332()()0a a --= 15.计算()422a a ⋅-的结果是( )A. 64a -B. 64aC. 62a -D. 84a-16. 下列运算正确的是( )A. 2325x x x += B. 32x x x -= C. 2523a a a =⋅ D. 2323x x ÷= 17. 下列计算正确的是( )A. 222623a a a =⋅B. 2242(3)6a b a b -= C. 222()a b a b -=- D. 2222a a a -+=18. 下列计算正确的是( )A. 325a b ab +=B. 326()a a =C. 632a a a ÷=D. 222()a b a b +=+ 19.分解因式: 2ab b += .21.分解因式: ab a -= .20.分解因式: 2x xy -= .23.分解因式: 21x -= . 21.分解因式224x y -的结果是 .22. 分解因式: 22x y xy y ++= .26. 分解因式: 29am a -= . 23.若2a b =+,则代数式222a ab b -+的值为 .24.已知m +n =12,m -n =2,则m 2-n 2=_______________. 25.如果20a b --=,求代数式122a b +-的值.26.已知:x ²-y ²=12,x +y =3,求2x ²-2xy 的值. 专题3分式与二次根式1.若分式12x +在实数范围内有意义,则实数x 的取值范围是( )A .x >﹣2B .x <﹣2C .x=﹣2D .x ≠﹣22.若分式||11x x -+的值为零,则x 的值是( ) A .1 B .-1 C . 1± D .2 3.若分式的值为0,则x 的值为( )A .3B .﹣3C .3或﹣3D .04.若分式的值为0,则x的值为 .5.二次根式2+x 中x 的取值范围是( ).A .x <-2B .x ≤-2C .x >- 2D .x ≥-2 6.若式子21+x 有意义,则实数x 的取值范围是 . 7. 若式子xx 2+有意义,则实数x 的取值范围是 . 8. 若式子21+x 有意义,则实数x 的取值范围是 . 9.先化简,再求值: 2221(1)21x x x x x x --÷+++,其中114sin 45()2x -=+.10.先化简,再求值:,其中a=.11.先化简)111(11222+-+-÷-+-x x x x x x ,然后从55<<-x 的范围内选取一个合适的整数作为x 的值代入求值.12.先化简,再求值:(1+)÷,其中x 满足x 2﹣2x ﹣5=0.13.先化简,再求值:221(1)11x x x ÷+--),其中x 为整数且满足不等式15221x x -≥⎩--⎧⎨> 53(2)224a a a a ---÷++011(3)()4π--+专题3一元一次不等式(组)及其应用1. (2019山西百校联考一)已知a<b ,下列四个不等式中,正确的是( ) A .-a<-bB .-2a<-2bC .a -2>b -2D .2-a>2-b2. (2019河北)语句“x的18与x 的和不超过5”可以表示为( )A. x8+x≤5 B. x8+x≥5 C. 8x +5≤5D.8x+x =5 3. (2019凉山州)不等式1-x≥x-1的解集是( ) A. x ≥1 B. x ≥-1C. x ≤1D. x ≤-14. (2019衡阳)不等式组⎩⎪⎨⎪⎧2x>3x ,x +4>2的整数解是( )A. 0B. -1C. -2D. 15. (2019威海)解不等式组⎩⎪⎨⎪⎧3-x≥4, ①23x +1>x -23②时,不等式①②的解集在同一条数轴上表示正确的是( )6. (2019云南)若关于x 的不等式组⎩⎪⎨⎪⎧2(x -1)>2,a -x<0的解集为x>a ,则a 的取值范围是( )A. a<2B. a ≤2C. a>2D. a ≥27. (2019海南)解不等式组⎩⎪⎨⎪⎧x +1>0,x +4>3x ,并求出它的整数解.8. (2019江西)解不等式组⎩⎪⎨⎪⎧2(x +1)>x ,1-2x ≥x +72.并在数轴上表示它的解集.9. (2019无锡)某工厂为了要在规定期限内完成加工2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为( )A. 10B. 9C. 8D. 7专题4一元二次方程及其应用1.一元二次方程x 2+2x +1=0的解是( )A. x 1=1,x 2=-1B. x 1=x 2=1C. x 1=x 2=-1D. x 1=-1,x 2=22.关于x 的一元二次方程x 2-2x +m =0无实数根,则实数m 的取值范围是( )A. m<1B. m ≥1C. m ≤1D. m>13. (2019遂宁)已知关于x 的一元二次方程(a -1)x 2-2x +a2-1=0有一个根为x =0,则a 的值为( )A. 0B. ±1C. 1D. -14. (2019新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为( )A. 12x(x -1)=36 B. 12x(x +1)=36 C. x(x -1)=36D. x(x +1)=365. x =1是关于x 的一元二次方程x 2+ax +2b =0的解,则2a +4b =( )A. -2B. -3C. 4D. -66. (2019遵义)新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x ,可列方程为( )A. 50.7(1+x)2=125.6 B. 125.6(1-x)2=50.7 C. 50.7(1+2x)=125.6 D. 50.7(1+x 2)=125.6 7. (2019广西北部湾经济区)扬帆中学有一块长30 m ,宽20 m 的矩形空地,计划在这块空地上划出四分之一的区域种花.小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为x m ,则可列方程为( )A. (30-x)(20-x)=34×20×30B. (30-2x)(20-x)=14×20×30C. 30x +2×20x=14×20×30D. (30-2x)(20-x)=34×20×308.若关于x 的一元二次方程(x +3)2=c 有实数根,则c 的值可以为________(写出一个即可).9. (2019山西百校联考二)解方程:3x(x -4)=4x(x -4).10. (2019北京)关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.11.如图,设计修建一个矩形花坛,已知花坛长150米,宽80米.设计在花坛中修建一条横向通道和两条纵向通道,各通道的宽度相等且为x 米.(1)用含x 的式子表示横向通道的面积;(2)当三条通道的面积是矩形面积的八分之一时,求通道的宽.12. 霍州烧饼是山西传统的特色小吃,某烧饼店每天可卖出300个烧饼,卖出1个烧饼的利润是1元,经调查发现,零售单价每降0.1元,平均每天可多卖出100个,为了使每天获得的利润更多,该店决定把零售单价降低m(0<m<1)元.(1)零售单价降低后,该店平均每天可卖出多少个烧饼;(2)在不考虑其他因素的条件下,当m 定为多少时,才能使该店每天获取的利润是420元且卖出的烧饼更多.专题4分式方程及其应用1. (2019益阳)解分式方程x 2x -1+21-2x =3时,去分母化为一元一次方程,正确的是( )A. x +2=3B. x -2=3C. x -2=3(2x -1)D. x +2=3(2x -1)2. (2019海南)分式方程1x +2=1的解是( )A. x =1B. x =-1C. x =2D. x =-23. (2019广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A. 120x =150x -8B. 120x +8=150xC. 120x -8=150xD. 120x =150x +84. (2019十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成,现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务,设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A. 6000x -6000x +20=15B. 6000x +20-6000x =15C. 6000x -6000x -15=20D. 6000x -15-6000x=205. (2019绵阳)一艘轮船在静水中的最大航速为30 km/h ,它以最大航速沿江顺流航行120 km 所用时间,与以最大航速逆流航行60 km 所用时间相同,则江水的流速为________km/h.6. (2019泰州)解方程 :2x -5x -2+3=3x -3x -2.7.(2019毕节)解方程1-x -32x +2=3xx +1.8.(2019南京)解方程xx-1-1=132x.13. (2019黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动,全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.14. 端午节与春节、清明节、中秋节并称为我国四大传统节日,是中国首个入选世界非物质文化遗产的佳节.全国各地在端午节这天都会有丰富多彩的节庆活动,沿袭至今端午节有食粽、佩香囊、赛龙舟、挂荷包等习俗.某商家在端午节前购进了一批香囊和荷包,香囊比荷包每件进价少3元,用500元购进香囊数量是用400元购进荷包数量的2倍.(1)香囊和荷包的进价分别是每件多少元?(2)已知香囊每件售价为10元,荷包每件售价为16元.若商场购进香囊数量比购进荷包数量的2倍少20件,将购进的香囊和荷包全部售出后,商场至少获利980元,则购进的荷包数量至少为多少件?。

九年级数学 实数 中考考点复习 练习题及答案

九年级数学 实数 中考考点复习 练习题及答案
原式=3×[ (1×2×3-0×1×2)+ (2×3×4-1×2×3)+ (3×4×5-2×3×4)+…+ (99×100×101-98×99×100)]=3× (1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4+…+99×100×101-98×99×100)=99×100×101-0×1×2=99×100×101.
实数
中考考点复习练习题
考点1实数的有关概念
温故而知新:
1.实数的分类
按定义分类:
__正整数__
__整数__ ___0___
__负整数__
__有理数__ __正分数__
实数分数有限小数或无限循环小数
__负分数__
正无理数
_无理数_无限不循环小数
负无理数
按正负分类:
正有理数___正整数___
正实数___正分数___
师:回顾完平方根、算术平方根与立方根的概念,接下来我们来看几道相关例题.
例1(-2)2的算术平方根是()
A.2 B.±2 C.-2 D.
解析:(-2)2=4,4的算术平方根为2.
答案:ABiblioteka 小结:(1)求一个数的平方根、算术平方根、立方根通常利用开方与乘方互为逆运算的关系求解.
(2)正数有两个平方根,它们互为相反数,负数没有平方根;一个正数的算术平方根是平方根中的非负的那一个;只有0的平方根与算术平方根都是0.
解析:156万=1560000=1.56×106≈1.6×106.
考点2实数的大小比较
温故而知新:
正数大于零,负数小于零,正数大于一切负数;
两个正数,绝对值大的较大;
两个负数,绝对值大的反而小.

专题01 实数-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题01 实数-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题01 实数一.选择题1.(2021·湖南邵阳市·中考真题)3-的相反数是()A.3-B.0C.3D.p【答案】C【分析】根据相反数的概念求解即可.【详解】-(-3)=3,即-3的相反数是3,故选:C.【点睛】本题主要考查相反数.只有符号不同的两个数叫做互为相反数,在任意一个数的前面填上“-”号,新的数就表示原数的相反数.2.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是( )A.4-B.4-C.0D. 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∣﹣4∣=4,4>3>2.8,∴﹣4<﹣3<﹣2.8<0<∣﹣4∣,∴比﹣3小的数为﹣4,故选:A.【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.3.(2021·浙江中考真题)实数2-的绝对值是()A.2-B.2C.12D.12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B.【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.4.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.5.(2021·四川凉山彝族自治州·中考真题)2021-=()A.2021B.-2021C.12021D.12021-【答案】A【分析】根据绝对值解答即可.【详解】解:2021-的绝对值是2021,故选:A.【点睛】此题主要考查了绝对值,利用绝对值解答是解题关键.6(2021·湖南怀化市·中考真题)数轴上表示数5的点和原点的距离是()A.15B.5C.5-D.15-【答案】B【分析】根据数轴上点的表示及几何意义可直接进行排除选项.【详解】解:数轴上表示数5的点和原点的距离是5;故选B.【点睛】本题主要考查数轴上点的表示及几何意义,熟练掌握数轴上点的表示及几何意义是解题的关键.7.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( )A.﹣3B.﹣1C.0D.2【答案】A【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.8.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∴调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∴调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∴调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∴调价后的价格为1.25x ×0.75=0.9375x 元,∵0.90x <0.9025x <0.91x <0.9375x 故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.9.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∴m 和2m +互为相反数,∴m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键.10.(2021·湖南常德市·中考真题)阅读理解:如果一个正整数m 能表示为两个正整数a ,b 的平方和,即22m a b =+,那么称m 为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A .②④B .①②④C .①②D .①④【答案】C【分析】结合题意,根据有理数乘方、有理数加法的性质计算,即可得到答案.【详解】∵716=+或25+或34+ ∴7不是广义勾股数,即①正确;∵22134923=+=+ ∴13是广义勾股数,即②正确;∵22512=+,221013=+,15不是广义勾股数∴③错误;∵22512=+,221323=+,65513=´,且65不是广义勾股数∴④错误;故选:C .【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数乘方、有理数加法的性质,从而完成求解.11.(2021·湖北黄冈市·中考真题)2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A .74710´B .74.710´C .84.710´D .90.4710´【答案】C 【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ´的形式,其中110a £<,n 为整数,这种记数的方法叫做科学记数法,则8470000000 4.710=´,故选:C .【点睛】本题考查了科学记数法,熟记定义是解题关键.12.(2021·天津中考真题)计算()53-´的结果等于()A .2-B .2C .15-D .15【答案】C【分析】根据有理数的乘法法则运算即可求解.【详解】解:由题意可知:()5315-´=-,故选:C .【点睛】本题考查了有理数的乘法法则,属于基础题,运算过程中注意符号即可.13.(2021·新疆中考真题)下列实数是无理数的是( )A .2-B .1C D .2【答案】C【分析】无理数是指无限不循环小数,据此判断即可.为无理数,2-,1,2均为有理数,故选:C .【点睛】本题考查无理数的辨别,理解无理数的定义以及常见形式是解题关键.14.(2021·湖南长沙市·中考真题)下列四个实数中,最大的数是()A .3-B .1-C .p D .4【答案】D【分析】根据实数的大小比较法则即可得.【详解】解: 3.14p »Q ,314p \-<-<<,即这四个实数中,最大的数是4,故选:D .【点睛】本题考查了实数的大小比较法则,熟练掌握实数的大小比较法则是解题关键.15.(2021·湖南岳阳市·-1,0,2中,为负数的是()A B .-1C .0D .2【答案】B【分析】利用负数的定义即可判断.【详解】解:A 是正数;B 、1是正数,在正数的前面加上“-”的数是负数,所以,-1是负数;C 、0既不是正数,也不是负数;D 、2是正数.故选:B【点睛】本题考查了实数的分类的知识点,熟知负数的定义是解题的关键.16.(2021·浙江台州市·之间的整数有()A .0个B .1个C .2个D .3个【答案】B的值,即可求解.【详解】解:∵12<<,23<<,∴2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.17.(2021·浙江金华市·中考真题)实数12-,,2,3-中,为负整数的是( )A .12-B .C .2D .3-【答案】D【分析】按照负整数的概念即可选取答案.【详解】解:12-是负数不是整数;2是正数;3-是负数且是整数,故选D .【点睛】本题考查了实数的分类,比较简单.18.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( )A .b c a<<B .b a c <<C .a c b <<D .a b c <<【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∴a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.19.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是()A .2,1--B .1-,0C .0,1D .1,2【答案】C1-的范围即可得到答案.【详解】解:Q 12,<<\ 011,<-<0,1,a b \== 故选:.C 【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.20.(2020·四川攀枝花市·中考真题)下列说法中正确的是( ).A .0.09的平方根是0.3B 4=±C .0的立方根是0D .1的立方根是±1【答案】C【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A 、0.09的平方根是±0.3,故选项错误;B 4=,故选项错误;C 、0的立方根是0,故选项正确;D 、1的立方根是1,故选项错误;故选C.【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.21.(2020·四川达州市·中考真题)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A .10B .89C .165D .294【答案】D 【分析】类比十进制“满十进一”,可以表示满5进1的数从左到右依次为:2×5×5×5,1×5×5,3×5,4,然后把它们相加即可.【详解】依题意,还在自出生后的天数是:2×5×5×5+1×5×5+3×5+4=250+25+15+4=294,故选:D .【点睛】本题考查了实数运算的实际应用,解答的关键是运用类比的方法找出满5进1的规律列式计算.22.(2020·山东菏泽市·中考真题)下列各数中,绝对值最小的数是( )A .5-B .12C .1-D 【答案】B 【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【详解】解:55-=,1122=,11-=,∵1512>>>,∴绝对值最小的数是12;故选:B .【点睛】本题考查的是实数的大小比较,熟知绝对值的性质是解答此题的关键.23.(2020·江苏宿迁市·中考真题)在△ABC 中,AB=1,下列选项中,可以作为AC 长度的是( )A .2B .4C .5D .6【答案】A【分析】根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC 的长度可以取得的数值的取值范围,从而可以解答本题.【详解】∵在△ABC 中,AB=1,﹣1<AC ,1<2+1,4,5,6,∴AC 的长度可以是2,故选项A 正确,选项B 、C 、D 不正确;故选:A .【点睛】本题考查了三角形三边关系以及无理数的估算,解答本题的关键是明确题意,利用三角形三边关系解答.24.(2020·四川攀枝花市·中考真题)实数a 、b 在数轴上的位置如图所示,化简+-的结果是( ).A .2-B .0C .2a -D .2b【答案】A 【分析】根据实数a 和b 在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.【详解】解:由数轴可知-2<a <-1,1<b <2,∴a+1<0,b-1>0,a-b <0,+-11b a b ++---=()()()11a b a b -++-+-=-2故选A.【点睛】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.25.(2020·湖南株洲市·中考真题)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【分析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】∵|+1.2|=1.2,|-2.3|=2.3, |+0.9|=0.9,|-0.8|=0.8,0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D 中的元件,故选D .【点睛】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.26.(2020·北京中考真题)实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-3【答案】B 【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a \-<-<-2a \<又ab a -<<Q b \到原点的距离一定小于2 观察四个选项,只有选项B 符合,故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.27.(2020·湖南长沙市·中考真题)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④【答案】A 【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②p 是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.28.(2020·黑龙江大庆市·中考真题)若2|2|(3)0x y ++-=,则x y -的值为()A .-5B .5C .1D .-1【答案】A【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可;【详解】∵2|2|(3)0x y ++-=,∴20x +=,30y -=,∴2x =-,3y =,∴235-=--=-x y .故答案选A .【点睛】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键.29.(2020·山东烟台市·中考真题)实数a ,b ,c 在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定【答案】A 【分析】根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.【详解】解:观察有理数a ,b ,c 在数轴上的对应点的位置可知,这三个数中,实数a 离原点最远,所以绝对值最大的是:a .故选:A .【点睛】此题主要考查了绝对值的意义,以及有理数大小的比较,正确掌握绝对值的意义是解题关键.30.(2020·四川乐山市·中考真题)数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-【答案】D 【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B 表示的数是多少即可.【详解】解:点A 表示的数是−3,左移7个单位,得−3−7=−10,点A 表示的数是−3,右移7个单位,得−3+7=4,故选:D .【点睛】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:数轴上的点右移加,左移减.31.(2020·湖南郴州市·中考真题)如图表示互为相反数的两个点是( )A .点A 与点BB .点A 与点DC .点C 与点BD .点C 与点D【答案】B 【分析】根据一个数的相反数定义求解即可.【详解】解:在-3,-1,2,3中,3和-3互为相反数,则点A 与点D 表示互为相反数的两个点.故选:B .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.32.(2019·台湾中考真题)数线上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且5d d c -=-,则关于D 点的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、C 之间 C .介于C 、O 之间D .介于O 、B 之间【答案】D 【分析】根据O 、A 、B 、C 四点在数轴上的位置和绝对值的定义即可得到结论.【详解】解:0c <Q ,5b =,5c <,5d d c -=-,BD CD \=,D ∴点介于O 、B 之间,故选:D .【点睛】本题考查实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.33.(2019·江苏徐州市·中考真题)如图,数轴上有O 、A 、B 三点,O 为O 原点,OA 、OB 分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510´B .710C .7510´D .810【答案】D【分析】用各选项的数分别除以62.510´,根据商结合数轴上AO 、OB 间的距离进行判断即可.【详解】A. (6510´)÷(62.510´)=2,观察数轴,可知A 选项不符合题意;B. 710÷(62.510´)=4,观察数轴,可知B 选项不符合题意;C. 7510´÷(62.510´)=20,观察数轴,可知C 选项不符合题意;D. 810÷(62.510´)=40,从数轴看比较接近,可知D 选项符合题意,故选D .【点睛】本题考查了数轴,用科学记数法表示的数的除法,正确进行运算,结合数轴恰当地进行估算是解题的关键.34.(2019·山东枣庄市·中考真题)点,,,O A B C 在数轴上的位置如图所示,O 为原点,1AC =,OA OB =.若点C 所表示的数为a ,则点B 所表示的数为( )A .()1a -+B .()1a --C .1a +D .1a -【答案】B【分析】根据题意和数轴可以用含 a 的式子表示出点 B 表示的数,本题得以解决.【详解】O Q 为原点,1AC =,OA OB =,点C 所表示的数为a ,\点A 表示的数为1a -,\点B 表示的数为:()1a --,故选B .【点睛】本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.35.(2019·四川中考真题)实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .1m <B .1m 1->C .0mn >D .10m +>【答案】B【分析】利用数轴表示数的方法得到m <0<n ,然后对各选项进行判断.【详解】利用数轴得m <0<1<n ,所以-m >0,1-m >1,mn <0,m+1<0.故选B.【点睛】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.二.填空题1.(2021·重庆中考真题)计算:()031p --=_______.【答案】2.【分析】分别根据绝对值的性质、0指数幂的运算法则计算出各数,再进行计算即可.【详解】解:()031312p --=-=,故答案是:2.【点睛】本题考查的是绝对值的性质、0指数幂,熟悉相关运算法则是解答此题的关键.2.(2021·四川自贡市·中考真题)某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【分析】根据题中密码规律确定所求即可.【详解】5Ä3Ä2=5×3×10000+5×2×100+5×(2+3)=1510259Ä2Ä4=9×2×10000+9×4×100+9×(2+4)=183654,8Ä6Ä3=8×6×10000+8×3×100+8×(3+6)=482472,∴7Ä2Ä5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.3.(2021·云南中考真题)已知a ,b 2(2)0b -=则a b -=_______.【答案】-3【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a +1=0,b -2=0,解得a =-1,b =2,所以,a -b =-1-2=-3.故答案为:-3.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.(2021·湖南怀化市· __________12(填写“>”或“<”或“=”).【答案】>12,结果大于0大;结果小于0,则12大.102-,12>,故答案为:>.【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.5.(2021·山东临沂市·中考真题)比较大小:___5(选填“>”、“ =”、“ <” ).【答案】<【分析】先把两数值化成带根号的形式,再根据实数的大小比较方法即可求解.【详解】解:∵=,5=,而24<25,∴5.故答案为:<.【点睛】此题主要考查了实数的大小的比较,当一个带根号的无理数和一个有理数进行比较时,首选的方法就是把它们还原成带根号的形式,然后比较被开方数即可解决问题.6.(2021·四川自贡市·中考真题)请写出一个满足不等式7x +>的整数解_________.【答案】6(答案不唯一)1.4,再解不等式即可.【详解】解: 1.4»,∴7x >,∴ 5.6x >.所以6是该不等式的其中一个整数解(答案不唯一,所有不小于6的整数都是该不等式的整数解);故答案为:6(答案不唯一).【点睛】本题考查了解一元一次不等式、不等式的整数解、二次根式的值的估算等内容,要求学生在理解相关概念的前提下能灵活运用解决问题,本题答案不唯一,有一定的开放性.7.(2021·湖南邵阳市·中考真题)16的算术平方根是___________.【答案】4【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±= ∴16的平方根为4和-4 ∴16的算术平方根为48.(2020·______.【答案】2(或3)【详解】∵1<2,34,∴2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.9.(2020·|1|0b +=,则2020()a b +=_________.【答案】1【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案.【详解】|1|0b +=∴2a =,1b =-,∴2020()a b +=202011=,故答案为:1.【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键.10.(2020·湖北荆州市·中考真题)若()112020,,32a b c p -æö=-=-=-ç÷èø,则a ,b ,c 的大小关系是_______.(用<号连接)【答案】b a c<<【分析】分别计算零次幂,负整数指数幂,绝对值,再比较大小即可.【详解】解:()20201,a p =-=Q 112,2b -æö=-=-ç÷èø33,c =-=\ b a c <<.故答案为:b a c <<.【点睛】本题考查的是零次幂,负整数指数幂,绝对值的运算,有理数的大小比较,掌握以上知识是解题的关键.11.(2020·内蒙古赤峰市·中考真题)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.【答案】201912【分析】先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=;点2A 表示的数为11111222OA ==点3A 表示的数为22111242OA ==;点4A 表示的数为33111282OA ==归纳类推得:点n A 表示的数为112n -(n 为正整数);则点2020A 表示的数为2020120191122-=,故答案为:201912.【点睛】本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.12.(2019·山东德州市·中考真题)33x x -=-,则x 的取值范围是______.【答案】3x £【分析】根据绝对值的意义,绝对值表示距离,所以30x -³,即可求解;【详解】根据绝对值的意义得,30x -³,3x \£; 故答案为3x £;【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键.三.解答题1.(2021·上海中考真题)计算: 1129|1|2-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】解:1129|1|2-+-(112--´31,=2.【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.2.(2021·新疆中考真题)计算:020211)|3|(1)-+-+-.【答案】0.【分析】第一项根据零指数幂计算,第二项根据绝对值的意义计算,第三项进行立方根运算,第四项进行有理数的乘方运算,最后进行加减运算即可.【详解】解:原式=1+3-3+(-1)=0.【点睛】本题考查了实数的运算,包括零指数幂、绝对值的意义,求一个数的立方根,有理数的乘方运算.正确化简各数是解题的关键.3.(2021·湖南怀化市·中考真题)计算:021(3)()4sin 60(1)3p --+°--【答案】11【分析】根据非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则计算即可.【详解】解:原式=191=11-++.【点睛】本题主要考查非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则,正确掌握每个知识点是解决本题的关键.4.(2021·四川广安市·中考真题)计算:()03.1460p -°.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1460p --°=114-+-+11--+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.5.(2021·湖南岳阳市·中考真题)计算:())02021124sin 30p-+-+°-.【答案】2【分析】分别根据有理数的乘方、绝对值的代数意义、特殊锐角三角函数值和零指数幂的运算法则化简各项后,再进行加减运算即可得到答案.【详解】解:())2021124sin 30p-+-+°--=112412-++´- =1221-++-=2.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则和特殊锐角三角函数值是解答此题的关键.6.(2021·云南中考真题)计算:201tan 452(3)1)2(6)23-°-++--+´-.【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.【详解】解:201tan 452(3)1)2(6)23-°-++--+´-=1191422++--=6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.7.(2021·浙江金华市·中考真题)计算:()202114sin 45+2--°-.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式142=-+-+12=-+-1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.8.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.【答案】(1)输液10分钟时瓶中的药液余量为200毫升;(2)小华从输液开始到结束所需的时间为60分钟.【分析】(1)先求出每分钟输液多少毫升,进而即可求解;(2)先求出输液10分钟时调整后的药液流速,进而即可求解.【详解】(1)解:75÷15=5(毫升/分钟),250-5×10=200(毫升),答:输液10分钟时瓶中的药液余量为200毫升;(2)(200-160)÷10=4(毫升/分钟),160÷4+20=60(分钟),答:小华从输液开始到结束所需的时间为60分钟.【点睛】本题主要考查有理数运算的实际应用,明确时间,流速,输液量三者之间的数量关系,是解题的关键.9.(2020·青海中考真题)计算:101145( 3.14)3p -æö+-°+--ç÷èø【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可。

专题01实数(共43题)【解析版】--2023年中考数学真题专题讲解汇总

专题01实数(共43题)【解析版】--2023年中考数学真题专题讲解汇总

专题01实数(共43题)--2023年中考数学专题训练一、单选题1.(2022年云南省中考数学真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10℃D.-20℃【答案】C【解析】【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10°C记作+10°C,则零下10°C可记作:−10°C.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2022年四川省凉山州中考数学真题)−2022的相反数是()A.2022B.−2022C.−12022D.12022【答案】A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.3.(2022年浙江省舟山市中考数学真题)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(2022年安徽省中考数学真题)下列为负数的是()A.−2B.3C.0D.−5【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、−2=2B、3是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.5.(2022年四川省南充市中考数学试卷)下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−−5=−5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.6.(2022年甘肃省中考第三次数学模拟测试题)2的相反数是()A.−12B.12C.2D.−2【答案】D【解析】【分析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.7.(2022年云南省中考数学真题)赤道长约为40000000m,用科学记数法可以把数字40000000表示为()A.4×107B.40×106C.400×105D.4000×103【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成×10的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】解:40000000=4×107,【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.8.(2022年浙江省舟山市中考数学真题)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×109【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为×10,其中1≤<10,是正整数,正确确定的值和的值是解题的关键.9.(2022年江苏省连云港市中考数学真题)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解析】【分析】科学记数法的表现形式为×10的形式,其中1≤<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】解:14600000=1.46×107.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.10.(2022年四川省达州市中考数学真题)2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:26.62亿=2662000000=2.662×109.故选C.【点睛】本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.11.(2022年浙江省金华市中考数学真题)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,×10的形式中a的取值范围必须是1≤<10,10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为1.632×107.故选:B.【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1.12.(2022年安徽省中考数学真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【答案】C【解析】【分析】将3400万写成34000000,保留1位整数,写成×10(1≤<10)的形式即可,n为正整数.【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,因此34000000=3.4×107,故选:C.【点睛】本题考查科学记数法的表示方法,熟练掌握×10(1≤|U<10)中a的取值范围和n的取值方法是解题的关键.13.(2022年四川省凉山州中考数学真题)我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917)A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103【答案】C【解析】【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法,则80917=8.0917×104,故选:C.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.14.(2022年四川省成都市中考数学真题)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解答:解:160万=1600000=1.6×106,故选:C.【点睛】a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2022年四川省泸州市中考数学真题)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【答案】C【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.75500000=7.55×107故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(2022年山东省滨州市中考数学真题)某市冬季中的一天,中午12时的气温是−3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.−10℃C.4℃D.−4℃【答案】B【解析】【分析】根据有理数减法计算−3−7=−10℃即可.【详解】解:∵中午12时的气温是−3℃,经过6小时气温下降了7℃,∴当天18时的气温是−3−7=−10℃.故选B.【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.17.(2022年四川省遂宁市中考数学真题)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学计数法表示为()A.198×103B.1.98×104C.1.98×105D.1.98×106【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:198000=1.98×105.故选:C.本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.18.(2022年浙江省衢州市柯城区九年级第二次模拟考试数学试题)-3的倒数是()A.3B.-3C.13D.−13【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是−13;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022年四川省自贡市中考数学试题)自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为()A.1.8×104B.18×104C.1.8×105D.1.8×106【答案】C【解析】【分析】用移动小数点的方法确定a值,根据整数位数减一原则确定n值,最后写成×10的形式即可.【详解】∵180000=1.8×105,故选C.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a,运用整数位数减去1确定n值是解题的关键.20.(2022年四川省自贡市中考数学试题)下列运算正确的是()A.−12=−2B.323−2=1C.6÷3=2D.−=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.−12=1,故A错误;B.3+23−2=32−22=1,故B正确;C.633,故C错误;D.−=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.21.(2022年山东省淄博市高青县中考二模数学试题)−2的倒数是()A.2B.12C.−2D.−12【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是−12,故D正确.故选:D.【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.22.(2022年四川省达州市中考数学真题)下列四个数中,最小的数是()A.0B.-2C.1D.2【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵−2<0<1<2,∴最小的数是−2,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.23.(2022年浙江省舟山市中考数学真题)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【解析】【分析】【详解】∵4<6<9∴2<6<3故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.(2022年浙江省金华市中考数学真题)在−2,12,3,2中,是无理数的是()A.−2B.12C.3D.2【答案】C【解析】【分析】根据无理数的定义判断即可;【详解】解:∵-2,12,2是有理数,3是无理数,故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.25.(2022年四川省凉山州中考数学真题)化简:(−2)2=()A.±2B.-2C.4D.2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:−22=4=2,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022年山东省滨州市中考数学真题)下列计算结果,正确的是()A.(2)3=5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(2)3=2×3=6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.27.(2022年四川省泸州市中考数学真题)与2+15最接近的整数是()A.4B.5C.6D.7【答案】C【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<15<4,∴5.5<2+15<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.28.(2022年四川省泸州市中考数学真题)−4=()A.−2B.−12C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:−4=-2,【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.29.(2022年重庆市中考数学试卷A卷)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】30.(2022年重庆市中考数学真题(B卷))估计54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【解析】【分析】根据49<54<64,得到7<54<8,进而得到3<54−4<4,即可得到答案.【详解】解:∵49<54<64,∴7<54<8,∴3<54−4<4,即54−4的值在3到4之间,故选:D.此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题31.(2022年重庆市中考数学试卷A卷)计算:−4+3−0=_________.【答案】5【解析】【分析】根据绝对值和零指数幂进行计算即可.【详解】解:−4+3−0=4+1=5,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.32.(2022年四川省南充市中考数学试卷)比较大小:2−2_______________30.(选填>,=,<)【答案】<【解析】【分析】先计算2−2=14,30=1,然后比较大小即可.【详解】解:2−2=14,30=1,∵14<1,∴2−2<30,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.33.(2022年重庆市中考数学真题(B卷))|−2|+(3−5)0=_________.【答案】3【解析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:|−2|+(3−5)0=2+1=3故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.34.(2022年四川省凉山州中考数学真题)计算:-12+|-2023|=_______.【答案】2022【解析】【分析】先计算有理数的乘方、化简绝对值,再计算加法即可得.【详解】解:原式=−1+2023=2022,故答案为:2022.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.三、解答题35.(2022年四川省泸州市中考数学真题)计算:30+2−1+2cos45°−−【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1+12+2−12=2.本题考查了实数的运算,熟练掌握运算法则是解题的关键.36.(2022年浙江省丽水市中考数学真题)计算:9−(−2022)0+2−1.【答案】52【解析】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:9−(−2022)0+2−1=3−1+12=52.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.(2022年江苏省连云港市中考数学真题)计算:(−10)×−−16+20220.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5−4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.(2022年四川省达州市中考数学真题)计算:(−1)2022+|−2|−−2tan45°.【答案】0【解析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.(2022年浙江省金华市中考数学真题)计算:(−2022)0−2tan45°+|−2|+9.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1−2×1+2+3=1−2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.(2022−16+−22.【答案】1【解析】【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】−16+−22=1−4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.(2022−9+3tan30°+2.(2)解不等式组:3(+2)≥2+5 ①2−1<K23 ②.【答案】(1)1;(2)−1≤<2【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(19+3tan30°+2=2−3+3+2−3=−1+3+2−3=1.(2)3(+2)≥2+5 ①2−1<K23 ②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.(2022年四川省德阳市中考数学真题)计算:12+3.14−0−3tan60°+1−+−2−2.【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:12+(3.14−p0−3tan60°+1−+(−2)−2=23+1−33+3−1+14=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.(2022年重庆市中考数学真题(B卷))对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=2147=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且>>.在a,b,c中任选两个组成两位数,其中最大的两位数记为op,最小的两位数记为op,若op+op16为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出++=12,根据>>,是最大的两位数,是最小的两位数,得出+=10+2+10,op+op16=(k为整数),结合++=12得出=15−2,根据已知条件得出1<<6,从而得出=3或=5,然后进行分类讨论即可得出答案.(1)解:∵357÷3+5+7=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷4+4+1=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴++=12,∵>>,∴在a,b,c中任选两个组成两位数,其中最大的两位数=10+,最小的两位数=10+,∴+=10++10+=10+2+10,∵op+op16为整数,设op+op16=(k为整数),则10r2r1016=,整理得:5+5+=8,根据++=12得:+=12−,∵>>,∴12−>,解得<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴>>>0,∴>1,∴1<<6,把+=12−代入5+5+=8得:512−+=8,整理得:=15−2,∵1<<6,k为整数,∴=3或=5,当=3时,+=12−3=9,∵>>>0,∴>3,0<<3,∴=7,=3,=2,或=8,=3,=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当=7,=3,=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当=8,=3,=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当=5时,+=12−5=7,∵>>>0,∴5<<7,∴=6,=5,=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。

2024成都中考数学复习专题 实数(含二次根式) (含答案)

2024成都中考数学复习专题 实数(含二次根式)   (含答案)

2024成都中考数学复习专题 实数(含二次根式)基础题1. (2023江西)下列各数中,正整数...是( ) A. 3 B. 2.1 C. 0 D. -2 2. (2023武汉)实数3的相反数是( )A. 3B. 13C. -13 D. -33. (2023烟台)-23的倒数是( )A. 32B. 23C. -23D. -32 4. (2023大连)-6的绝对值是( )A. -6B. 6C. 16D. -165. (2023舟山)-8的立方根是( ) A. -2 B. 2 C. ±2 D. 不存在6. (2023河南)下列各数中最小的数是( )A. -1B. 0C. 1D. 37. 某段水域水位低于警戒线10 cm ,由于当天晚上下雨,第二天水位上涨了15 cm ,若以警戒线为基准,则第二天水位( ) A. 高于警戒线10 cm B. 高于警戒线15 cm C. 低于警戒线15 cm D. 高于警戒线5 cm8. (北师七上P33习题第5题改编)小红和她的同学共买了4袋标注质量为450 g 的食品,她们对这4袋食品的实际质量进行了检测,检测结果(用正数记超过标注质量的克数,用负数记不足标注质量的克数)如下表:最接近标准质量的是( )A. 第1袋B. 第2袋C. 第3袋D. 第4袋9. (2023广东省卷)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186 000升燃油,将数据186 000用科学记数法表示为()A. 0.186×105B. 1.86×105C. 18.6×104D. 186×10310. “雪龙2”号极地科考破冰船是我国继“向阳红10”号、“极地”号和“雪龙”号之后的第4艘极地科考船,总长122.5米,排水量近1.4万吨,将数据1.4万用科学记数法表示为()A. 1.4×105B. 1.4×104C. 14×103D. 0.14×10611. (2023青羊区模拟)清代诗人袁枚创作了一首诗《苔》:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”歌颂了苔在恶劣环境下仍有自己的生命意向.若苔花的花粉粒直径约为0.000 008 4米,用科学记数法表示0.000 008 4=8.4×10n,则n为()A. -5B. 5C. -6D. 612. (2023包头)定义新运算“⊗”,规定:a⊗b=a2-|b|,则(-2)⊗(-1)的运算结果为()A. -5B. -3C. 5D. 313. (2023江西)若a-4有意义,则a的值可以是()A. -1B. 0C. 2D. 614. (北师七上P74复习题第9题改编)如图,数轴上的单位长度为1,有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()第14题图A. -2B. 0C. 1D. 415. (2023威海)面积为9的正方形,其边长等于()A. 9的平方根B. 9的算术平方根C. 9的立方根D. 9的算术平方根16. (2023扬州)已知a=5,b=2,c=3,则a,b,c的大小关系是()A. b>a>cB. a>c>bC. a>b>cD. b>c>a17. 下列计算正确的是( ) A. 22=2 B. (-2)2=-2 C. 22=±2 D.(-2)2=±218. 下列式子中,属于最简二次根式的是( )A. 4B. 5C. 0.2D. 1319. (2023烟台改编)可以与2合并的是( )A. 4B. 6C. 8D. 12 20. (2023大连)下列计算正确的是( ) A. (2)0= 2 B. 23+33=56 C. 8=4 2 D. 3(23-2)=6-2321. 如图,将一把损坏的刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“3 cm”分别对应数轴上的-3和0,则x 的值可以是( )第21题图A. 2B. 3C. 2D. 5 22. (2023徐州) 2 023的值介于( ) A. 25与30之间 B. 30与35之间 C. 35与40之间 D. 40与45之间23. (2023河北)若a =2,b =7,则14a 2b 2=( ) A. 2 B. 4 C. 7 D. 224. [新考法—结论开放](2023武汉)写出一个小于4的正无理数是________. 25. (2023滨州)计算2-|-3|的结果为________. 26. (2023黄冈)(-1)2+(13)0=________.27. (2023杭州)计算:2-8=________.28. (2023山西)计算:(6+3)(6-3)的结果为________.29. (2023连云港)如图,数轴上的点A ,B 分别对应实数a ,b ,则a +b ________0.(用“>”“<”或“=”填空)第29题图30. (2023营口)若二次根式1+3x 有意义,则x 的取值范围是________. 31. (2023湘潭)已知实数a ,b 满足(a -2)2+|b +1|=0,则a b =________. 32. (2023陕西)计算:5×(-10)-(17)-1+|-23|.33. (2023济宁)计算:12-2cos 30°+|3-2|+2-1.34. 计算:(-1)3+8÷22+|2-1|×22.35. (2023沈阳改编)计算:(π-2 023)0+(-3)2+(13)-2-4sin 30°.拔高题36. (2023河北)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012 km.下列正确的是( ) A. 9.46×1012-10=9.46×1011 B. 9.46×1012-0.46=9×1012 C. 9.46×1012是一个12位数 D. 9.46×1012是一个13位数37. (2023杭州)已知数轴上的点A ,B 分别表示数a ,b ,其中-1<a <0,0<b <1.若a ×b =c ,数c 在数轴上用点C 表示,则点A , B ,C 在数轴上的位置可能是( )A BC D38. (2023重庆A 卷)估计2(8+10)的值应在( ) A. 7和8之间 B. 8和9之间 C. 9和10之间 D. 10和11之间39. (2023黄冈)请写出一个正整数m 的值使得8m 是整数:m =________. 40. (2023包头)若a ,b 为两个连续整数,且a <3<b ,则a +b =________. 41. (2023成都定心卷)比较大小:3-52____38.(填“>”“<”或“=”)第42题图42. (2023兰州)如图,将面积为7的正方形OABC 和面积为9的正方形ODEF 分别绕原点O 顺时针旋转,使OA ,OD 落在数轴上,点A ,D 在数轴上对应的数字分别为a ,b ,则b -a =________.43. (2022随州)已知m 为正整数,若189m 是整数,则根据189m =3×3×3×7m =33×7m 可知m 有最小值3×7=21.设n 为正整数,若300n是大于1的整数,则n 的最小值为________,最大值为________.参考答案与解析1. A2. D3. D4. B5. A【解析】根据立方根的定义,(-2)3=-8,∴-8的立方根是-2.6. A7. D【解析】∵15+(-10)=5(cm),∴第二天水位高于警戒线5 cm.8. D9. B10. B【解析】1.4万=1.4×104 .11. C【解析】0.000 008 4=8.4×10-6,∴n=-6.12. D【解析】由题意可得(-2)⊗(-1)=(-2)2-|-1|=4-1=3.13. D【解析】∵二次根式a-4有意义,∴a-4≥0,解得a≥4,结合选项可知D符合条件.14. C【解析】∵点A,B表示的数互为相反数,故C点左边一个单位处为0点,则点C 对应的数是1.15. B【解析】∵正方形的面积等于边长的平方,∴面积为9的正方形,其边长等于9的算术平方根.16. C【解析】∵3<4<5,∴3<4<5,即3<2<5,则a>b>c.17. A【解析】A.22=|2|=2,符合题意;B.(-2)2=|-2|=2,不符合题意;C.22=|2|=2,不符合题意;D.(-2)2=|-2|=2,不符合题意.18. B【解析】4=2,0.2=55,13=33,只有5为最简二次根式.19. C【解析】∵8=22,与2是同类二次根式,只有同类二次根式才可以合并,故选C.20. D【解析】A.(2)0=1,故该选项不正确,不符合题意;B.23+33=53,故该选项不正确,不符合题意;C.8=22,故该选项不正确,不符合题意;D.3(23-2)=6-23,故该选项正确,符合题意.21. D【解析】结合题图可知,x的值在刻度尺的“5 cm”和“6 cm”之间,即x的值在数轴上的2和3之间,∵(5)2=5,∴(5)2在4和9之间,∴5在2和3之间,则x的值可以是5.22. D【解析】∵252=625,302=900,352=1 225,402=1 600,452=2 025,∴1 600<2 023<2 025,∴ 2 023的值介于40与45之间.23. A 【解析】∵a =2 ,b =7 ,∴14a 2b 2 =14×27=4 =2. 24. 2 (答案不唯一)25. -1 【解析】原式=2-3=-(3-2)=-1. 26. 2 27. -228. 3 【解析】原式=(6 )2-(3 )2=6-3=3.29. < 【解析】由题图知,a <0<b ,且|a |>|b |,∴a +b <0. 30. x ≥-13 【解析】根据题意得1+3x ≥0,∴x ≥-13.31. 12 【解析】∵(a -2)2+|b +1|=0,(a -2)2≥0,|b +1|≥0,∴a -2=0,b +1=0,∴a=2,b =-1,∴a b =2-1=12 .32. 解:原式=-52 -7+|-8| =-52 -7+8 =-52 +1.33. 解:原式=23 -2×32 +2-3 +12=23 -3 +2-3 +12=52. 34. 解:原式=-1+8÷4+1-22=-1+2+1-22=2-22. 35. 解:原式=1+3+9-4×12=1+3+9-2 =11.36. D 【解析】9.46×1012复原后的数有12+1=13位整数.37. B 【解析】∵-1<a <0,0<b <1,a ×b =c ,∴-1<-b <a ×b <0,∴-1<-b <c <0.∵|a ×b |<|a |,∴|c |<|a |,∴点A ,B ,C 在数轴上的位置可能的只有B 选项.38. B 【解析】原式=4+20 ,∵16 <20 <25 ,∴4<20 <5,∴8<4+20 <9.39. 2(答案不唯一) 【解析】当m =2时,8m =16 =4,符合题意,∴m 的值可以为2(答案不唯一).40. 3 【解析】∵1<3<4,∴1<3 <2,∴a =1,b =2,则a +b =1+2=3. 41. > 【解析】∵5 ≈2.236,∴3-52 ≈0.382,38 =0.375,∴3-52 >38.42. 3-7 【解析】∵正方形OABC 的面积为7,∴OA =7 ,∴a =7 .∵正方形ODEF 的面积为9,∴OD =9 =3,∴b =3,∴b -a =3-7 . 43. 3;75 【解析】∵300n=100×3n=103n为整数,且n 为正整数,∴n 的最小值为3.∵300n 是大于1的整数,∴当103n=2时,n 取得最大值,∴3n =15,解得n =75.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考第一轮复习 实数练习题一节课实数讲完了,但是这些基础题,马上跟上一、选择题1. 20100的值是A .2010B .0C .1D .-1 2.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是A .-2B .-1C .2D .3 3.计算 | -1-(-35) |-| -611-67 | 之值为何? (A) -37 (B) -31 (C) 34 (D) 311。

4.计算106⨯(102)3÷104之值为何?(A) 108 (B) 109 (C) 1010 (D) 1012。

6.图(五)数在线的A 、B 、C 三点所表示的数分别为a 、b 、c 。

根据图中各点位置,判断下列各式何者正确? (A) (a -1)(b -1)>0 (B) (b -1)(c -1)>0(C) (a +1)(b +1)<0 (D) (b +1)(c +1)<0 。

7.计算 (– 1)2 + (– 1)3 = A.– 2 B. – 1 C. 0 D. 28. 28 cm 接近于( ▲ )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度9. 2-的3倍是( )A 、 6-B 、1C 、6D 、5-10.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高( )A BC O a bc 0 -1 图(五)A .-10℃B .-6℃C .6℃D .10℃11.下列各式中,运算正确的是 ( )A= B.=C .632a a a ÷=D .325()a a =12.计算()21-的值等于 (A )-1 (B )1(C )-2 (D )213.计算3×(-2) 的结果是A .5B .-5C .6D .-614.下列计算中,正确的是A .020=B .2a a a =+ C3± D .623)(a a =15.下列计算正确的是A)020= (B)331-=-3==16.3)2(-等于A .-6B .6C .-8D .817.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a 18. 计算 -2- 6的结果是( )A .-8B . 8C . -4D . 419.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )A .8人B .9人C .10人D .11人 10 -1 a b BA (第5题图)20. ()()2012321-+-+⎪⎭⎫ ⎝⎛--π的值为( )A .-1B .-3C . 1D . 021. 3x 表示( )(A )3x (B )x x x ++ (C )x x x ⋅⋅ (D )3x +22.温度从-2°C 上升3°C 后是A .1°CB . -1°C C .3°CD .5°C23.下面计算中正确的是A .532=+ B .()111=-- C . ()2010201055=- D . x 32x ∙=x 624.在电子显微镜下测得一个圆球体细胞的直径是5×105-cm.,3102⨯个这样的细胞排成的细胞链的长是 A .cm 210- B .cm 110- C .cm 310-D .cm 410-25.下列运算正确的是A .263-=-B .24±=C .532a a a =⋅D .3252a a a+= 27.下列运算结果等于1的是( )A .)3()3(-+-B .)3()3(---C .)3(3-⨯-D .)3()3(-÷- 29.下列计算正确的是A .(-1)-1=1 B.(-3)2=-6 C.π0=1 D.(-2)6÷(-2)3=(-2)230.下列计算正确的是( )A .a 2·a 3=a 6B .6÷2=3C .(21)-2=-2 D . (-a 3)2=-a 631.下列运算正确的是( )(A .1331-÷=B .a =C . 3.14 3.14ππ-=-D .326211()24a b a b =32.计算(-2)×3的结果是( )(A)-6 (B)6 (C)-5 (D)533.某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( )(A )16℃ (B )20℃ (C )-16℃(D ).-20℃34.如果□,1)23(=-⨯则□内应填的实数是( )A .23- B .32- C .23D .3235.某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高( )A .10℃B .-10℃C .6℃D .-6℃36. 2010)1(-的值是 ( )A .1B .—1C .2010D .—201037.下列结论中不能由0=+b a 得到的是(A )ab a -=2(B )b a =(C )0=a ,0=b (D )22b a = 39. 的结果是)(计算12010)21(1:.1---A. 1B. -1C.0D. 242.计算)3(21-⨯--的结果等于A.5B.5-C.7D.7-43.用0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数(每个数字都只用一次),然后把所得的数相加,它们的和不可能是( )A .36B .117C .115D .15344.观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…A .2B .4C .6D .845.冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )。

A.26℃B.14℃C.-26℃D.-14℃【答案】A46.如图,数轴上A,B 两点分别对应实数a ,b ,则下列结论正确的是( )。

A. |a|>|b|B. a+b>0C. ab<0D. |b|=b47.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )48.观察下列算式:通过观察,用你所发现的规律确定20023的个位数字是( ) A.3 B.9 C.7 D.149.计算:0-12=( ) A. 12 B. -2 C.-12D. 2 50.计算:23-=( )A. 1-B. 1C. 5D. 9二、填空题1.计算-2sin60°+(π-1)2=_____________________。

2.计算:.______32=-6.计算:sin30︒= ,(-3a 2)2= ,= .8. ―五.一‖期间,某服装商店举行促销活动,全部商品八折销售.一件标价为10°元的 运动服,打折后的售价应是 元. 9.计算:12-+= ,2-= ,(2)--= ,34()a = 。

10.计算102)7(-++π=_______.11.计算(-2)2·(-1)0-(13)-1= . 12.观察下列计算:211211-=⨯ 3121321-=⨯ 4131431-=⨯ 5141541-=⨯ … … 从计算结果中找规律,利用规律计算+⨯+⨯+⨯+⨯541431321211…=⨯+201020091 。

【答案】20102009 13.计算:21-+(-2)= .14.某种衬衫每件的标价为150元,如果每件以八折(即按标价的80%)出售,那么这种衬衫每件的实际售价应为元 。

15.计算:2122|21|-+--= 。

16.计算:—3+2= ; (—3)×2= .20.计算:=-0)2010( . 23.计算 -2 +3的结果是_▲_;24. 2010的相反数是 ;4-1= .27.计算:(-3)0+1=_______________.31.计算:=-⨯0)3(218 。

32.计算:20=_______.33.定义运算“@”的运算法则为:x@y =xy -1,则(2@3)@4=__ __.34.计算:(2010-π)0 -1= .35.计算:(-2010)0 +|-1|=_________。

相关文档
最新文档