数学中两平面垂直的判定
直线与平面垂直的判定与性质(共26张PPT)
目 录
• 直线与平面垂直的判定 • 直线与平面垂直的性质 • 直线与平面垂直的证明 • 直线与平面垂直的应用 • 总结与展望 • 参考文献
01
直线与平面垂直的判定
直线与平面垂直的定义
01
直线与平面垂直是指直线与平面 内的任意一条直线都垂直。
02
如果一条直线与平面内的任意一 条直线都垂直,则这条直线与该 平面垂直。
建筑设计
在建筑设计中,直线与平面垂直的应用非常重要, 如确定建筑物的垂直度和水平面等。
机械制造
在机械制造中,直线与平面垂直的应用可以帮助 制造出精确的机械部件。
道路建设
在道路建设中,直线与平面垂直的应用可以帮助 确保道路的平直度和坡度等。
05
总结与展望
总结直线与平面垂直的判定与性质
判定方法 通过直线与平面内两条相交直线垂直来判定直线与平面垂直。
通过直线与平面内无数条直线垂直来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
• 通过直线与平面垂直的性质定理来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
01
性质定理
02
03
04
直线与平面垂直,则该直线与 平面内任意一条直线都垂直。
直线与平面垂直,则该直线所 在的所有直线都与该平面垂直
证明
假设有一条直线l与平面α垂直,那么直线l与平面α内的任意一条直线m都垂直。 由于直线l与平面α内的直线m都垂直,所以它们之间的夹角为90°,即直线l与平 面α内的任意一条直线都垂直。
直线与平面垂直的性质推论
推论1
证明
推论2
证明
如果一条直线与平面内的两 条相交直线都垂直,那么这
【数学课件】两个平面垂直的判定和性质
面面垂直
线面垂直
两个平面平行的判定定理: 如果一个平面经过另一个平面的一条
垂线,那么这两个平面相互垂直。
β A
B
α
a
? 思考题
已知:ABCD为正方形,SD⊥平面AC, 问:图中所示的7个平面中,共有多少个平面互相平行?
1.平面SAD⊥平面ABCD 2.平面SBD⊥平面ABCD 3.平面SCD⊥平面ABCD 4.平面SAD⊥平面SCD 5.平面SBC⊥平面SCD 6.平面SAB⊥平面SAD 7.平面SAC⊥平面SBD
S
D O
A
C B
两个平面垂直的性质定理:
如果两个平面垂直,那么在第一个平 面内垂直于它们交线的直线垂直于另一个 平面的直线。
β
A
B
α
a
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α. 证明:设α ∩ β= c,过点P在平面α内 作直线b⊥ c,根据上面的定理有b⊥β.
因为经过一点只能有
一条直线与平面β垂直,
所以直线a应与b直线
重合.
β
所以a α.
α
P
a
b
c
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α.
如果两个平面垂直,那么经过 第一个平面内的一点垂直于第二 个平面的直线,再第一个平面 。
α
P
a
β
例2 求证:垂直于同一平面的两平面 的交线垂直于这个平面。 已知:α⊥γ,β ⊥γ,α ∩ β= а, 求证: a⊥γ.
证法三:
设α⊥γ于b,β ⊥γ于c.
在α内作 b′ ⊥ b, 所以 b′ ⊥ γ.
同理在β内作c′ ⊥ c,有c ′ ⊥ γ,
高中数学总结归纳 点击面面垂直的判定与性质
点击面面垂直的判定与性质一、面面垂直的判定与性质1.两个平面垂直的定义:如果两个平面所成的二面角是直二面角,那么这两个平面互相垂直.2.两个平面垂直的判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面垂直.3.两个平面垂直的性质定理:如果两个平面垂直,那么过其中一个平面内的一点作它的交线的垂线与另一个平面垂直.二、证明面面垂直的基本方法有:(1)利用定义证明,即利用两平面相交成直二面角来证明;(2)利用面面垂直的判定定理证明,即若a ⊥β,a α⊂,则α⊥β在证明两平面垂直时,一般方法是先从现有的直线中寻找平面的垂线,若没有这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论根据并且要有利于证明,不能随意添加.在有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直.解决这类问题的关键是熟练掌握“线线垂直”“线面垂直”“面面垂直”间的转化条件和转化应用.三、典例选析例1.如下图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC.剖析:本题是面面垂直的证明问题.一条是从定义出发的思路,即先证明其中一个平面经过另一个平面的一条垂线.但图中似乎没有现成的这样的直线,故作辅助线.根据已知条件的特点,取BC 的中点O ,连结AO 、SO ,既可证明AO ⊥平面BSC ,又可证明SO ⊥平面ABC.另一条是从定义出发的思路,即证明两个平面所成的二面角是直二面角,注意到∠AOS 是二面角A —BC —S 的平面角,转化为证明∠AOS 是直角.证法一:取BC 的中点O ,连结AO 、SO.∵AS=BS=CS ,SO ⊥BC , 又∵∠ASB=∠ASC=60°,∴AB=AC ,从而AO ⊥BC. 设AS=a ,又∠BSC=90°,则SO=22a.又AO=22BO AB -=2221a a -=22a , ∴AS 2=AO 2+SO 2,故AO ⊥OS.从而AO ⊥平面BSC ,又AO ⊂平面ABC ,∴平面ABC ⊥平面BSC. 证法二:同证法一证得AO ⊥BC ,SO ⊥BC ,∴∠AOS 就是二面角A —BC —S 的平面角.再同证法一证得AO ⊥OS ,即∠AOS=90°. ∴平面ABC ⊥平面BSC.点评:本题揭示的是证面面垂直常用的两种方法.此外,本题中证明∠AOS=90°的方法较为特殊,即通过“算”,定量地证得直角,而不是通过位置关系定性地推理出直角,这也是立体几何中证明垂直的一种重要方法.例3.已知正三棱柱ABC —A 1B 1C 1,若过面对角线AB 1与另一面对角线BC 1平行的平面交上底面A 1B 1C 1的一边A 1C 1于点D .(1)确定D 的位置,并证明你的结论;(2)证明:平面AB 1D ⊥平面AA 1D ;(3)若AB ∶AA 1=2,求平面AB 1D 与平面AB 1A 1所成角的大小.分析:本题的结论是“开放性”的,点D 位置的确定如果仅凭已知条件推理难以得出. 由于AB 1与BC 1这两条面对角线是相邻二侧面上的异面直线,于是可考虑将BC 1沿BA 平行移动,BC 1取AE 1位置,则平面AB 1E 1一定平行BC 1,问题可以解决.(1)解:如下图,将正三棱柱ABC —A 1B 1C 1补成一直平行六面体ABCE —A 1B 1C 1E 1,由AE 1∥BC 1,AE 1⊂平面AB 1E 1,知BC 1∥平面AB 1E 1,故平面AB 1E 1应为所求平面,此时平面AB 1E 1交A 1C 1于点D ,由平行四边形对角线互相平行性质知,D 为A 1C 1的中点.(2)证明:连结AD ,从直平行六面体定义知AA 1⊥底面A 1B 1C 1D 1,且从A 1B 1C 1E 1是菱形知,B 1E 1⊥A 1C 1,据三垂线定理知,B 1E 1⊥AD .又AD ∩A 1C 1=D ,所以B 1E 1⊥平面AA 1D ,又B 1E 1⊂平面AB 1D ,所以平面AB 1D ⊥平面AA 1D .(3)解:因为平面AB 1D ∩平面AA 1D =AD ,所以过A 1作A 1H ⊥AD 于点H .作HF ⊥AB 1于点F ,连结A 1F ,从三垂线定理知A 1F ⊥AB 1.故∠A 1FH 是二面角A 1—AB 1—D 的平面角.设侧棱AA 1=1,侧棱AB =2.于是AB 1=22)2(1+=3.在Rt △AB 1A 1中,A 1F =1111AB B A AA ⨯=321⋅=36,在Rt △AA 1D 中,AA 1=1,A 1D =21A 1C 1=22,AD =2121D A AA +=26.则A 1H =ADD A AA 11⨯=33. 在Rt △A 1FH 中,sin ∠A 1FH =F A H A 11=22,所以∠A 1FH =45°. 因此可知平面AB 1D 与平面AB 1A 1所成角为45°或135°.点评:本题主要考查棱柱的性质,以及面面关系、二面角的计算,同时考查空间想象能力和综合运用知识解决问题的能力. 立体几何的计算并非单纯的数字计算,而是与作图和证明相结合的.立体几何计算题的主要步骤可以归纳为画—证—算三步.“画”是画图,添加必要的辅助线,或画出所要求的几何量,或进行必要的转化;“证”是证明,用三段论的方法证明你所画的几何量即为所求,然后进行最后一步计算.这三步之间紧密相连,环环相扣,互相制约,形成了解决立体几何计算题的思维程序,是综合考查学科能力的集中体现.例3.如下图,正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别为棱AB 、BC 的中点,EF ∩BD=G.(1)求证:平面B 1EF ⊥平面BDD 1B ;(2)求点D 1到平面B 1EF 的距离d ;(3)求三棱锥B 1—EFD 1的体积V.(1)证法一:如下图,连结AC.∵正四棱柱ABCD —A 1B 1C 1D 1的底面是正方形, ∴AC ⊥BD.又AC ⊥D 1D ,故AC ⊥平面BDD 1B 1. ∵E 、F 分别为AB 、BC 的中点,故EF ∥AC.∴EF ⊥平面BDD 1B 1.∴平面B 1EF ⊥平面BDD 1B 1. 证法二:∵BE=BF ,∠EBD=∠FBD=45°,∴EF ⊥BD. 又EF ⊥D 1D ,∴EF ⊥平面BDD 1B 1. ∴平面B 1EF ⊥平面BDD 1B 1.(2)解:在对角面BDD 1B 1中,作D 1H ⊥B 1G ,垂足为H. ∵平面B 1EF ⊥平面BDD 1B 1,且平面B 1EF ∩平面BDD 1B 1=B 1G , ∴D 1H ⊥平面B 1EF ,且垂足为H.∴点D 1到平面B 1EF 的距离d=D 1H.在Rt △D 1HB 1中,D 1H=D 1B 1·sin ∠D 1B 1H.∵D 1B 1=2A 1B 1=2·22=4,sin ∠D 1B 1H=sin ∠B 1GB=11GB B B =22144+=174,∴d=D 1H=4·174=171716. (3)解:V=V 11EFD B -=V EF B D 11-=31·d ·S EF B 1∆=31·1716·21·2·17=316. 点评:近几年立体几何的解答题一般都是一题多问,环环相扣.如本题的三小问便是如此.本题主要考查正四棱柱等基本知识,考查逻辑推理能力及空间思维能力.。
【高职数学课件】两平面垂直
α A
D
β
E B C
问题 发现 猜想 证明 证明 过程 结论 注
退出
9.6.2 平面与平面垂直的判定定理和性质定理(二)
引入 判定定理 性质定理 课后思考 应用 小结 作业
已知:平面 ⊥平面β,平面 ∩平面β=CD, A平面 , AB⊥CD且AB交CD于B。
求证:直线AB⊥平面β。 证明:在平面β内过B点作BE⊥CD,
已知:直线AB平面,直线AB平面。求证:平面 平面。
证明:设 β=CD,则AB β=B ,在平面β内过B点作BE⊥CD。
AB β
CD β
AB
BE
CD
C D
ABE是 二 面 角 α CD β 的平面角
α A
D
AB BE
β β
AB
B
E
ABE 90
β
E 二 面 角 α C D β 为 直 二 面 角。
判定定理
另一个平面的一条垂线。 (线面垂直面面垂直)
证明 证明过程 判定定方方法法
退出
9.6.2 平面与平面垂直的判定定理和性质定理(二)
引入 判定定理 性质定理 课后思考 应用 小结 作业
现在你知道用一端系有铅锤的线来检查所砌的 墙面是否和地面垂直的道理了吗?
问题 发现 猜想 证明 证明 过程 结论 注
线 线
A A
B B
平 平
面 β 面 α
平
面
α
平
面
β
。
再选取两个条件作为前提,另一个条件作为结论构造命题,即
平 直
面 线
α 平 面 β AB 平 面 β
直
线
A
B
平面垂直的判定及其性质
立体几何综合复习一、直线与平面垂直1.定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.记作:l⊥α.2.直线与平面垂直的判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.简记为:线线垂直⇒线面垂直数学描述:l⊥a,l⊥b,a⊂α,b⊂α,a b P=⇒l⊥α3.直线与平面垂直的性质定理垂直于同一个平面的两条直线平行.简记为:线面垂直⇒线线平行数学描述:abαα⊥⎫⎬⊥⎭⇒a b∥4.直线与平面所成的角(1)定义:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足.过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角..,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,我们说它们所成的角等于90;一条直线和平面平行,或在平面内,我们说它们所成的角等于0.因此,直线与平面所成的角.........α.的范围是....π[0,]2.5.常用结论(熟记)(1)若两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则这条直线垂直于这个平面内任何一条直线.(3)过空间任一点有且只有一条直线与已知平面垂直.(4)过空间任一点有且只有一个平面与已知直线垂直.二、平面与平面垂直1.定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α与平面β垂直,记作αβ⊥.2.平面与平面垂直的判定定理文字语言一个平面过另一个平面的垂线,则这两个平面垂直.简记为:线面垂直⇒面面垂直图形语言符号语言l⊥α,lβ⊂⇒α⊥β作用判断两平面垂直3.平面与平面垂直的性质定理文字语言两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.简记为:面面垂直⇒线线平行图形语言=laaa lαβαββα⎫⎪⎪⇒⎬⊂⎪⎪⊥⎭⊥⊥4.二面角(1)二面角的定义:平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角....这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)二面角的平面角的定义:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做这个二面角的平面角.(3)二面角的范围:[0,π].三、垂直问题的转化关系考向一线面垂直的判定与性质典例1如图所示,和都是以为直角顶点的等腰直角三角形,且,下列说法中错误的是A.平面B.平面C.平面D.平面1.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 分别是棱BC 、1CC 的中点,P 是底面ABCD 上(含边界)一动点,且满足1A P EF ⊥,则线段1A P 长度的取值范围是A .51,⎡⎤⎢⎥⎣⎦B .53,2⎡⎤⎢⎥⎣⎦C .1,3⎡⎤⎣⎦D .2,3⎡⎤⎣⎦典例2 如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.()求证:平面; ()求证:直线平面;2.如图1所示,在Rt ABC △中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将ADE △沿DE 折起到1A DE △的位置,使A 1F ⊥CD ,如图2所示.(1)求证:1A F BE ⊥;(2)线段1A B 上是否存在点Q ,使1A C ⊥平面DEQ ?说明理由.考向二面面垂直的判定与性质判定面面垂直的常见策略:(1)利用定义(直二面角).(2)判定定理:可以通过直线与平面垂直来证明平面与平面垂直.(3)在运用面面垂直的性质定理时,若没有与交线垂直的直线,则一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样就把面面垂直转化为线面垂直,进而转化为线线垂直.典例4 如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)证明:平面平面.考向三 线面角与二面角求直线与平面所成的角的方法: (1)求直线和平面所成角的步骤: ①寻找过斜线上一点与平面垂直的直线;②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角; ③把该角归结在某个三角形中,通过解三角形,求出该角. (2)求线面角的技巧:在上述步骤中,其中作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,射影一般都是一些特殊的点,比如中心、垂心、重心等. 求二面角大小的步骤:简称为“一作二证三求”.作平面角时,一定要注意顶点的选择.典例5 正三棱柱111ABC A B C 的所有棱长都相等,D 是11A C 的中点,则直线AD 与平面1B DC 所成角的正弦值为 A .35 B .45 C .34D .55典例6 如图,直三棱柱111ABC A B C -的底面是边长为2的正三角形,,E F 分别是1,BC CC 的中点. (1)证明:平面AEF ⊥平面11B BCC ;(2)若直线1A C 与平面11A ABB 所成的角为45°,求三棱锥F AEC -的体积.4.如图,四边形为矩形,四边形为直角梯形,.(1)求证:; (2)求证:平面; (3)若二面角的大小为,求直线与平面所成的角.1.下列命题中不正确的是A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ2.设a,b,c表示三条直线,α,β表示两个平面,则下列命题中不正确的是A.ccαβαβ⊥⎫⇒⊥⎬⎭∥B.a bb b cc aββ⊥⎫⎪⊂⇒⊥⎬⎪⎭是在内的射影C.b cb ccααα⎫⎪⊂⇒⎬⎪⊄⎭∥∥D.abb aαα⎫⇒⊥⎬⊥⎭∥3.如图,在三棱锥中,⊥底面,,则直线与平面所成角的大小为A .B .C .D .4.如图,三条相交于点P的线段P A,PB,PC两两垂直,P在平面ABC外,PH⊥平面ABC于H,则垂足H是△ABC的A.外心B.内心C.垂心D.重心5.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=,等边三角形ADB以AB为轴旋转,当平面ADB⊥平面ABC时,CD=A.B.2C.D.16.如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论正确的是A.PB⊥AD B.平面PAB⊥平面PBCC.直线BC∥平面PAE D.直线PD与平面ABC所成的角为45°7.《九章算术》卷五《商功》中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?问题中“刍甍”指的是底面为矩形的屋脊状的几何体,如图1,该几何体可由图2中的八边形沿,向上折起,使得与重合而成,设网格纸上每个小正方形的边长为1,则此“刍甍”中与平面所成角的正弦值为A.B.C.D.8.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D 重合于点F,此时二面角E-BC-F的余弦值为(1)(2)A.34B.7C.23D.59.已知α,β是平面,m、n是直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中命题正确的是__________.10.如图,三棱锥,平面平面,若,则△的形状为__________.11.在四面体中,平面,,,,,为棱上一点,且平面平面,则__________.12.如图,在三棱锥P-ABC中,P A⊥底面ABC,∠BAC=90°,F是AC的中点,E是PC上的点,且EF⊥BC,则PEEC________.中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当13.如图所示,在四棱锥P ABCDDM⊥________时,平面MBD⊥平面PCD.14.四棱锥中,,且平面是棱的中点.(1)证明:平面;(2)求三棱锥的体积.。
面面垂直的判定公开课课件
方法2:利用面面平行的性质判定面面垂直
总结词
通过证明两个平面平行,然后利用面面平行的性质判定两个平面垂直
详细描述
首先证明两个平面平行,然后利用面面平行的性质,即如果两个平面平行,那么其中一个 平面内的任意一条直线都与另一个平面垂直,从而得出两个平面垂直的结论。
证明过程
利用三垂线定理证明一个平面内的两 条相交直线分别与另一个平面垂直, 从而得出两个平面垂直的结论。
要点三
证明过程
设直线a、b为平面α内的两条相交直 线,直线c为平面β外的一条直线,我 们需要证明直线a、b与平面β垂直, 进而证明平面α与平面β垂直。根据三 垂线定理,如果直线c与平面β的斜线 c'在点A处相交,那么c'在点A处的垂 足d在直线a、b上,且直线c、a、b 都与直线d垂直。由此可知,直线a、 b与平面β垂直。由此可知,平面α与 平面β垂直。
设平面α与平面β平行,直线a在平面α内,我们需要证明直线a与平面β垂直。由于平面α 与平面β平行,根据面面平行的性质,平面α内的任意一条直线都与平面β垂直。因此,直 线a与平面β垂直。由此可知,平面α与平面β垂直。
方法3:利用三垂线定理判定面面垂直
要点过三垂线定理证明两个平面垂直
面面垂直的判定公开课课件
$number {01}
目录
• 面面垂直的判定定理 • 面面垂直的性质 • 面面垂直的判定方法 • 面面垂直的实例分析 • 面面垂直的习题与解答
01
面面垂直的判定定理
判定定理的陈述
• 判定定理:如果一个平面内的一条直线与另一个平面垂直,那么这两个平面互 相垂直。
判定定理的证明
• 证明:假设平面α内有直线l,且l与平面β垂直。为了证明平面α 与平面β垂直,我们需要证明平面α上的任意一条直线m都与平 面β垂直。设直线m在平面α上并与直线l相交于点P。由于l与β 垂直,根据直线与平面垂直的性质定理,l与β上的任意一条直 线(包括m)都垂直。因此,m与β也垂直。由于m是平面α上 的任意一条直线,所以我们可以得出结论:平面α与平面β垂直 。
【高中数学】高中数学知识点:平面与平面垂直的判定与性质
【高中数学】高中数学知识点:平面与平面垂直的判定与性质
平面和平面垂直的定义:
如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是
直二面角(平面角是直角),就说这两个平面垂直。
如图,
面面垂直的判定定理:
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
(线面垂直
面面垂直)
面面垂直的性质定理:
如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
(面面垂直
线面垂直)
性质定理符号表示:
线线垂直、线面垂直、面面垂直的转化关系:
证明面面垂直的方法:
证明两个平面垂直,通常是通过证明线线垂直、线面垂直来实现的,在关于垂直问题
的论证中要注意三者之间的相互转化,必要时可添加辅助线,如:已知面面垂直时,一般
用性质定理,在一个平面内作出交线的垂线,使之转化为线面垂直,然后转化为线线垂直,故要熟练掌握三者之间的转化条件及常用方法.线面垂直与面面垂直最终归纳为线线垂直,证共面的两直线垂直常用勾股定理的逆定理、等腰三角形的性质;证不共面的两直线垂直
通常利用线面垂直或利用空间向量.
常用结论:
(1)如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直
线在第一个平面内,此结论可以作为性质定理用,
(2)从该性质定理的条件看出:只要在其中一个平面内通过一点作另一个平面的垂线,那么这条垂线必在这个平面内,点的位置既可以在交线上,也可以不在交线上,如图.
感谢您的阅读,祝您生活愉快。
两平面垂直的判定与性质
05
两平面垂直的实例分析
实例一:简单的几何图形
总结词
通过观察几何图形,可以直观地判断两平面是否垂直。
详细描述
在平面几何中,常见的图形如矩形、正方形和正六面体等,它们的相对面都是垂直的。通过观察这些图形的角和 边,可以直观地判断两平面是否垂直。
பைடு நூலகம்
实例二:建筑模型的分析
总结词
建筑模型中的墙面和地面通常都是垂直的。
判定定理的应用
应用场景
判定两平面是否垂直,特别是在几何、工程和物理学等领域中,两平面垂直的判 定定理具有广泛的应用价值。
实际应用
在建筑学中,为了确保结构的稳定性和安全性,需要判定各个平面是否垂直;在 机械工程中,判定两平面是否垂直对于零件的设计和制造至关重要;在物理学中 ,两平面垂直的判定定理可用于研究物体的运动轨迹和力的分布。
判定定理的证明
• 证明过程:设两平面分别为α和β,且α内的两条相交直线a和b 分别与β垂直。在直线a上任取一点A,由于a与β垂直,作直线c 平行于a且在β内,使得A落在c上。同理,在直线b上任取一点B, 作直线d平行于b且在β内,使得B落在d上。由于a和b相交,所 以点A和B确定了一个平面γ。由于c和d都在β内,且c与d相交, 所以β包含在γ内。又因为α与γ内的两条相交直线a和b都垂直, 所以α与γ垂直。由此可知,α与β垂直。
详细描述
在建筑领域,墙面和地面通常都是垂直的。这是因为垂直的 平面能够提供更好的支撑和稳定性。通过观察建筑物的结构 和设计,可以分析出两平面是否垂直。
实例三:物理实验的现象分析
总结词
物理实验中经常涉及到两平面垂直的情 况,如重力的方向与地面垂直。
VS
详细描述
在物理实验中,很多现象都涉及到两平面 垂直的情况。例如,在研究重力时,重力 的方向总是垂直于地面向下。通过分析这 些实验的现象和结果,可以深入理解两平 面垂直的性质和应用。
高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)
第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥PABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥PABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A BCB 1=V B 1ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCDA1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCDA1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABCA1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABCA1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥PABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥PNBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P NBM =V M PNB =23V C PNB =23×13×32×2=23.10.如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。
面面垂直的判定公开
几何问题解决的实例解析
例1
一个正方形ABCD中,E为CD的中点,F为AD的中 点,求证:平面ABE垂直于平面BCF。
例2
一个圆柱体中,底面半径为r,高为h,求证:底面 与顶面垂直。
分析
要证明两个平面垂直,我们需要证明一个平面内 的一条直线与另一个平面垂直。在这个例子中, 我们可以选择AB作为平面ABE内的直线,然后证 明它与平面BCF垂直。
判定定理
如果两个平面内分别有一条直线相互垂直,那么这两个平面相互垂直。
符号表示
如果直线a在平面α内,直线b在平面β内,且a⊥b,则α⊥β。
判定定理的证明
• 证明:假设两个平面α和β相交,且在α内有直线a与β相交于点 A,在β内有直线b与α相交于点B。如果a⊥b,那么线段AB是 两个平面的交线。由于a⊥b,所以a与b的夹角为90°。因此, 平面α与平面β的夹角也为90°,即α⊥β。
03 面面垂直的判定方法
判定方法的分类
定义法
根据面面垂直的定义,如果两个 平面内各有一条直线互相垂直,
则这两个平面垂直。
判定定理法
利用面面垂直的判定定理,如果一 个平面内的两条相交直线与另一个 平面垂直,则这两个平面垂直。
三垂线定理法
三垂线定理指出,如果一个平面内 的一条直线与另一个平面的一条斜 线在平面内射影垂直,则这两个平 面垂直。
判定方法的步骤
第一步,在其中一个 平面内取一条直线。
第三步,根据三垂线 定理得出结论。
第二步,判断这条直 线是否与另一个平面 的斜线在平面内射影 垂直。
判定方法的实例解析
定义法实例
三垂线定理法实例
4.4.3两平面垂直.
角的平面角,并测量其大小是否为 .除此之外,还有什么方法呢?
我们知道,利用直线与直线垂直可以判定直线与平面垂直.
类似地,也可以利用直线与平面垂直来判定平面与平面垂直.
如图所示, 直线 ⊥平面, 垂足为 , ⊆平面.
设 ∩ = , 则 ∈ .在内过点作 ⊥ .
故 ⊥
例7 己知平面 ⊥平面,点 ∈ ,且 ⊥ ,垂足是. 求证: ⊆ .
证明
如图所示,设 ∩ = ,假设 ⊈ .
在平面内过点作 ⊥ ,垂足为
则与相交
∵⊥
∴ ⊥
∵ ⊥
∴ //
这与 、 相交矛盾
∴ ⊥ .
例6 如图所示,己知∠ = °,是平面 外一点,且 ⊥平面,
求证: 平面 ⊥平面.
证明
∵ ∠ = °
∴ ⊥ .
∵ ⊥平面, ⊆平面
∴ ⊥ .
∵ ∩ =
∴ ⊥平面.
故假设不成立
∴ ⊆ .
1.判断下列命题的真假.
(1).如果 ⊥ , ⊆ ,那么 ⊥ ;
真命题
(2).如果 ⊆ , ⊆ ,且 ⊥ 那么 ⊥ ;
(3).如果 ⊆ , ⊥ ,那么 ⊥ ;
真命题
(4).如果 ⊥ , ∩ = , ⊥ ,那么 ⊥ .
棍紧靠壁放在地上,并让木棍与墙角线垂直,再把镜框下沿放到木棍上.
试说明这一方法据的数学原理是什么.
本 节 课 你 有 什 么 收 获?
线段在上的射影的长度为, 如图所示.求 的长.
解
∵ ⊥ , ∩ = , ⊆ , ⊥ .
∴ ⊥
∵ ⊆
∴ ⊥
∴ =
平面与平面垂直的判定定理
2023年度:平面与平面垂直的判定定理一、定义在三维空间中,如果两个平面之间的夹角为90度,则称这两个平面是垂直的。
二、定理两个平面垂直的充分必要条件是:它们的法向量互相垂直。
证明:设两个平面分别为平面P1和平面P2,它们的法向量分别为n1和n2,夹角为α。
则有:cosα = n1·n2 / |n1||n2|其中,·表示向量的点积,|n1|和|n2|表示向量n1和n2的模。
当两个平面垂直时,α=90°,则有:cos90°=0即:n1·n2 = 0即两个平面的法向量互相垂直。
反之,若两个平面的法向量互相垂直,则有:n1·n2 = 0即:cosα = n1·n2 / |n1||n2| = 0 / (|n1||n2|) = 0即两个平面的夹角为90度,证毕。
三、应用该定理可以用来解决以下问题:1. 判断两个平面是否垂直。
给定两个平面的法向量,在计算它们的点积和模的前提下,判断它们是否垂直即可。
2. 求两个平面的交线。
对于两个不相交的平面,它们的交线可以通过它们的法向量和一个公共点求解得到。
3. 求一个平面在另一个平面上的投影。
将需要投影的平面的法向量沿着另一个平面的法向量分解,得到该平面在另一个平面上的投影向量。
4. 计算两个平面的夹角。
给定两个平面的法向量,在计算它们的点积和模的前提下,计算它们的夹角即可。
总结1. 本文档所涉及简要注释如下:- 平面:指在三维空间中,由无数个相互平行的直线组成的集合。
- 夹角:指两条直线或两个平面之间的夹角。
- 法向量:指垂直于平面的向量,其长度等于平面到原点的距离。
2. 本文档所涉及的法律名词及注释:- 三维空间:指以任意三个互不共线的点为基准点所构成的空间。
- 点积:指向量的数量积,是指两个向量对应分量的乘积之和。
- 模:指向量的长度,是指向量末尾点到原点的距离。
- 公共点:指两个平面的交线上的任意一个点。
面面垂直的判定方法
面面垂直的判定方法面面垂直判定方法什么是面面垂直判定?面面垂直判定是指在二维平面上判断两条直线是否垂直的方法。
垂直是指两条直线的斜率乘积为-1。
在图形学、几何学和物理学等领域中,面面垂直判定是一个基础且重要的概念。
基本原理判断两条直线是否垂直,可以通过比较它们的斜率来进行。
如果两条直线的斜率乘积为-1,则它们是垂直的。
具体来说,斜率可以通过两点之间的纵坐标差除以横坐标差来计算。
面面垂直判定方法汇总以下是常见的面面垂直判定方法:1.斜率法–计算两条直线的斜率,若斜率乘积为-1,则它们垂直。
–注意处理斜率为无穷大的情况,即直线与坐标轴垂直。
2.向量法–求出两条直线的向量方向,若两向量的点积为0,则它们垂直。
–向量法可以应用于三维空间中的垂直判定。
3.公式法–利用两条直线的一般式或截距式方程进行比较,若方程中所含的系数乘积为-1,则它们垂直。
–常用的一般式方程是 Ax + By + C = 0,而截距式方程是y = mx + c。
4.几何法–判断两条直线的几何关系,如:直角相交、棱形相交等,可以判断它们是否垂直。
–几何法适用于直观的图形判断。
结论通过上述不同的面面垂直判定方法,我们可以准确地判断两条直线是否垂直。
在实际应用中,根据具体问题的需求和数据的提供形式,选择合适的判定方法,可以提高判断的准确性和效率。
面面垂直判定不仅仅是学术研究领域中的问题,也广泛应用于工程、建筑、制图等行业中。
了解不同的判定方法,可以帮助我们更好地理解直线的关系,并在实际问题中应用垂直性的概念。
面面垂直判定涉及到各种数学知识和几何概念,在学习和应用过程中需要多加练习和实践,以提高对垂直关系的理解和运用能力。
高中数学线面、面面垂直的判定与性质
线面、面面垂直的判定与性质知识回顾1.直线与平面垂直的判定(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α垂直,记作l ⊥α.(2)判定定理文字表述:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号表述:⎭⎪⎬⎪⎫l ⊥a l ⊥b⇒l ⊥α. 2.直线与平面垂直的性质文字表述:垂直于同一个平面的两条直线平行。
符号表述:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒ a ∥b 3. 直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.4.平面与平面的垂直的判定(1)定义:如果两个平面相交,且它们所成的二面角是直角,就说这两个平面互相垂直.(2)面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符号表示:⎭⎪⎬⎪⎫a ⊥β⇒α⊥β. 5.平面与平面垂直的性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号表示为:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 6.二面角二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,在半平面α和β内分别作垂直于棱l的射线OA和OB,则∠AOB叫做二面角的平面角.题型讲解题型一例1、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是()A.垂直且相交 B.相交但不一定垂直C.垂直但不相交 D.不垂直也不相交答案:C例2、如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.1答案:A例3、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.证明在平面B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE,又AB⊥平面B1BCC1,CF⊂平面B1BCC1,∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.题型二例4、若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( ) ①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒M ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α.A .1B .2C .3D .4答案:C例5、如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1. ∵A 1D∩CD =D ,∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC . ∴ON12CD 12AB , ∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.题型三例6、直线a 与平面α所成的角为50°,直线b ∥a ,则直线b 与平面α所成的角等于( )A .40°B .50°C .90°D .150°答案:B例7、在正方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与平面ABCD 所成的角是________; (2)直线A 1B 与平面ABC 1D 1所成的角是________; (3)直线A 1B 与平面AB 1C 1D 所成的角是________. 答案:(1)45° (2)30° (3)90° 题型四例6、在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( ) A .13 B .12 C .223 D .32答案:B [如图所示,由二面角的定义知∠BOD 即为二面角的平面角. ∵DO =OB =BD =32, ∴∠BOD =60°.]例7、过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是________.答案:45° 题型五例8、下列命题中正确的是()A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC.若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β答案:C例9、如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.9.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解由(1)知,BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.在Rt△PAB中,tan∠PBA=PAAB=3,则∠PBA=60°.故二面角A—BE—P的大小是60°.题型六例10、平面α⊥平面β,直线a∥α,则()A.a⊥β B.a∥βC.a与β相交 D.以上都有可能答案:D例11、如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD 是等边三角形,已知BD=2AD=8,AB=2DC=45.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.11.(1)证明在△ABD中,∵AD=4,BD=8,AB=45,∴AD2+BD2=AB2.∴AD⊥BD.又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD⊂面ABCD,∴BD⊥面PAD,又BD⊂面BDM,∴面MBD⊥面PAD.(2)解过P作PO⊥AD,∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO为四棱锥P—ABCD的高.又△PAD是边长为4的等边三角形,∴PO=23.在底面四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.在Rt△ADB中,斜边AB边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=163.跟踪训练1.正方体A 1B 1C 1D 1-ABCD 中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值等于( )A .33B .22C . 2D . 3答案:C[解析] 设AC 、BD 交于O ,连A 1O ,∵BD ⊥AC ,BD ⊥AA 1,∴BD ⊥平面AA 1O ,∴BD ⊥A 1O ,∴∠A 1OA 为二面角的平面角. tan ∠A 1OA =A 1AAO=2,∴选C.2.过两点与一个已知平面垂直的平面( ) A .有且只有一个 B .有无数个 C .有且只有一个或无数个 D .可能不存在答案:C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]3.如图,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段 答案:A[解析] ∵DD 1⊥平面ABCD , ∴D 1D ⊥AC ,又AC ⊥BD ,∴AC ⊥平面BDD 1, ∴AC ⊥BD 1.同理BD 1⊥B 1C. 又∵B 1C ∩AC =C , ∴BD 1⊥平面AB 1C.而AP ⊥BD 1,∴AP ⊂平面AB 1C.又P ∈平面BB 1C 1C ,∴P 点轨迹为平面AB 1C 与平面BB 1C 1C 的交线B 1C.故选A. 4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN =________.答案:90°解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M .∴∠C 1MN =90°.5.如图所示,平面α⊥平面β,A ∈α,B ∈β,AA′⊥A′B′,BB′⊥A′B′,且AA′=3,BB′=4,A′B′=2,则三棱锥A -A′BB′的体积V =________.答案: 4[解析] ∵α⊥β,α∩β=A′B′,AA′⊂α,AA′⊥A′B′, ∴AA′⊥β,∴V =13S △A′BB′·AA′=13×(12A′B′×BB′)×AA′=13×12×2×4×3=4.6. 如图所示,已知PA 垂直于⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,过点A 作AE ⊥PC 于点E .求证:AE ⊥平面PBC .证明 ∵PA ⊥平面ABC ,∴PA ⊥BC . 又∵AB 是⊙O 的直径,∴BC ⊥AC . 而PA ∩AC =A ,∴BC ⊥平面PAC . 又∵AE ⊂平面PAC ,∴BC ⊥AE .又∵PC ⊥AE ,且PC ∩BC =C ,∴AE ⊥平面PBC .7.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:平面BCE ⊥平面CDE.证明 取CE 的中点G ,连接FG ,BG ,AF. ∵F 为CD 的中点, ∴GF ∥DE ,且GF =12DE.∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE.则GF ∥AB. 又∵AB =12DE ,∴GF =AB.则四边形GFAB 为平行四边形.于是AF ∥BG. ∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD.∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF. 又∵CD ∩DE =D ,CD ,DE ⊂平面CDE , ∴AF ⊥平面CDE.∵BG ∥AF ,∴BG ⊥平面CDE.∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE.8.如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=2a,求证:(1)PD⊥平面ABCD;(2)平面PAC⊥平面PBD;(3)二面角P-BC-D是45°的二面角.证明(1)∵PD=a,DC=a,PC=2a,∴PC2=PD2+DC2.∴PD⊥DC.同理可证PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.(2)由(1)知PD⊥平面ABCD,∴PD⊥AC.而四边形ABCD是正方形,∴AC⊥BD.又BD∩PD=D,∴AC⊥平面PBD.又AC⊂平面PAC,∴平面PAC⊥平面PBD.(3)由(1)知PD⊥BC,又BC⊥DC,∴BC⊥平面PDC.∴BC⊥PC.∴∠PCD为二面角P-BC-D的平面角.在Rt△PDC中,PD=DC=a,∴∠PCD=45°.∴二面角P-BC-D是45°的二面角.6.如图,在直三棱柱ABC—A1B1C1中,AA1=AC,且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1;(2)若D、E分别是A1C1和BB1的中点,求证:DE∥平面ABC1.11解析: (1)∵直三棱柱ABC -A 1B 1C 1中,AA 1=AC , ∴ACC 1A 1为正方形, ∴A 1C ⊥AC 1.又∵BC 1⊥A 1C ,AC 1∩BC 1=C 1,∴A 1C ⊥平面ABC 1, 又∵A 1C ⊂平面A 1ACC 1, ∴平面A 1ACC 1⊥平面ABC 1.(2)如图,取AA 1的中点F ,连接DF 、EF.∵D 、E 、F 分别为A 1C 1、BB 1、AA 1的中点, ∴DF ∥AC 1,EF ∥AB ,DF∩EF =F , ∴平面DEF ∥平面ABC 1, ∴DE ∥平面ABC 1.。
两个平面垂直的性质定理
定理应用
该定理在三维几何、计算机图形 学等领域有广泛应用,例如在计 算两个平面的夹角、判断两个平 面是否垂直等问题中可以使用该
定理。
对未来研究的展望和建议
深入研究垂直性质
虽然两个平面垂直的性质定理已经得到了广泛应用,但是对于更复杂的几何形状,如曲面 、高维空间中的超平面等,其垂直性质的研究仍然不够深入。因此,未来可以进一步探索 这些复杂形状的垂直性质,并尝试将它们应用到实际问题中。
判定两平面垂直
如果一个平面经过另一个 平面的垂线,则这两个平 面垂直。
求解空间角
利用两个平面垂直的性质 定理,可以求解一些与空 间角相关的问题。
在物理中的应用
力的分解
在物理学中,经常需要将一个力分解 为两个互相垂直的分力,这时可以利 用两个平面垂直的性质定理来求解。
光的反射和折射
当光从一个介质射入另一个介质时, 其反射光线和折射光线分别与入射光 线和法线所在的平面垂直,这也涉及 到了两个平面垂直的性质定理。
两个平面垂直的性质 定理
汇报人:XX
目 录
• 引言 • 两个平面垂直的定义和性质 • 定理的证明和推导 • 定理的应用举例 • 定理的拓展和延伸 • 总结和展望
01
引言
定理的背景和意义
垂直关系的重要性
在几何学中,垂直是一种特殊而重要的位置关系。当两个平面垂直时,它们的交 线具有独特的性质,这些性质在建筑设计、工程绘图和计算机图形学等领域有广 泛应用。
在工程中的应用
建筑设计中
在建筑设计中,为了保证建筑物的稳 定性和安全性,经常需要利用两个平 面垂直的性质定理来设计建筑物的结 构和支撑系统。
机械制造中
航空航天工程中
面面垂直判定定理公式
面面垂直判定定理公式
面面垂直判定定理是初中数学中比较重要的一个定理,它是在平面几何中对于垂直关系的判定定理。
所谓面面垂直,就是指两个平面互相垂直,也可以说是两个面所成的角度为90度。
那么,面面垂直判定定理的公式是怎么样的呢?
在空间直角坐标系中,设有两个平面P1和P2,它们的方程分别为:
P1:Ax+By+Cz+D1=0
P2:Ax+By+Cz+D2=0
那么,P1和P2互相垂直的充分必要条件是A、B、C满足:
A1A2+B1B2+C1C2=0
其中,A1、A2分别是P1和P2的法向量在x轴上的分量,B1、B2分别是P1和P2的法向量在y轴上的分量,C1、C2分别是P1和P2的法向量在z轴上的分量。
以上就是面面垂直判定定理的公式,但只有知道公式是不够的,我们还需要了解如何应用这个定理来解决实际问题。
首先,我们可以通过观察两个平面的方程是否满足公式中的条件来判断它们是否垂直。
如果满足条件,那么两个平面就互相垂直。
其次,我们可以应用面面垂直判定定理来解决一些比较常见的几何问题,例如:求空间中一条直线与一个平面的垂线、求平行于某个面的平面、求两个平面的夹角等。
综上所述,面面垂直判定定理是初中数学中比较重要的一个定理,掌握它可以帮助我们解决很多几何问题。
因此,我们在学习数学时要认真理解这个定理的公式,并且多做一些练习题来加深对它的理解。
同时,我们还需要关注一些具体的应用场景,这样才能在实际问题中使用它更加得心应手。
平面和平面垂直的判定定理
平面和平面垂直的判定定理
平面和平面垂直的判定定理是几何学中一个重要的定理,它描述了两个平面是否垂直
的方法。
定理指出,如果两个平面中的任意一个法线与另一个平面中的法线成垂直,则这
两个平面垂直。
这个定理是由正视图学家威尔海姆所建立的,他是17世纪的著名几何学家,对对角
线性质有许多研究和推导,其中最著名的可以说是他提出的“平面和平面垂直判定定理”。
它是一个抽象几何学中重要的な定理之一,而且被许多数学家和几何学家用于求解各种数
学问题。
定理的公式明确指出,如果在两个平面中的任意一个法线都垂直地与另一个平面的法
线上,那么这两个平面就是垂直的。
这个定理可以应用于求解各种数学问题,比如求解平
面的夹角,平面的平行性,折线平面与特定平面的相交情况等等。
此外,这个定理还有许多应用场景,比如工程、机械制造和机械设计就要求精确知晓
平面和平面的夹角,或者剖分几何中对平面的夹角也经常用到它。
最后,实际制图中也用
平面和平面垂直判定定理,比如航空航天和地球物理实验中用到的三维坐标系,就有用到它。
总而言之,平面和平面垂直的判定定理是一个重要的数学定理,它的主要作用在于用
于判断两个平面是否垂直,同时也有许多数学实际应用场景,比如机械设计、航空航天以
及地球物理实验等。
两平面垂直的判定与性质课件
楼梯的斜面
楼梯的斜面与地面垂直, 确保了楼梯的安全和稳定。
梁的支撑
建筑中的梁常常通过与垂 直的柱子相连接来支撑整 个结构。
实例二:机械中的两平面垂直
车床的主轴
车床主轴的轴线与车床的工作平 面垂直,确保了工件的加工精度。
发动机的汽缸
发动机汽缸的轴线与曲轴的旋转平 面垂直,保证了发动机的正常运转。
锤子的打击面
两平面垂直的判定与性质课件
目录
• 两平面垂直的判定 • 两平面垂直的性质 • 两平面垂直的实例 • 两平面垂直的应用
01 两平面垂直的判定
定义与性质
两平面垂直的定义
两平面垂直是指它们之间的夹角 为90度。
性质
两平面垂直时,它们的法向量也 垂直。
判定定理
定理一
如果两平面中的一个平面包含另一个 平面的垂线,则这两个平面垂直。
性质一:垂直平面的性质
两平面垂直,则它们 之间的二面角为直角。
两平面垂直,则它们 的交线与其中任一平 面垂直。
两平面垂直,则它们 的法线互相垂直。
性质二:垂直平行的性质
两平面垂直,则它们之间的任 意直线都与另一平面垂直。
两平面垂直,则它们的法线平 行。
两平面垂直,则它们的交线与 另一平面的任意直线平行。
性质三:垂直平面的应用
在几何学中,两平面垂直的性质 常用于证明定理和推导结论。
在建筑学中,两平面垂直的性质 用于确定建筑物的垂直度和稳定
性。
在物理学中,两平面垂直的性质 用于描述物体的运动轨迹和力的
方向。
03 两平面垂直的实例
实例一:建筑中的两平面垂直
建筑物的墙角
墙角处的两个墙面相互垂 直,这是建筑设计中常见 的垂直关系。
面面垂直的性质定理
面面垂直的性质定理
性质定理∶如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内等。
一、面面垂直
(一)定义
若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
(二)性质定理
1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
3.如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4.如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1的逆定理)
二、线面垂直
(一)定义
如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。
是将“三维”问题转化为“二
维”解决是一种重要的立体几何数学思想方法。
在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的"桥梁"。
(二)判定定理
直线与平面垂直的判定定理(线面垂直定理)∶一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
推论1∶如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
推论2∶如果两条直线垂直于同一个平面,那么这两条直线平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中两平面垂直的判定
判定两平面垂直
1.定义法:如果两个平面所成的二面角为90°,那么这两个平面垂直。
2.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
3.如果一个平面内任意点在另外一个平面的射影均在这两个平面的交线上,那么垂直。
4.如果N个互相平行的平面有一个垂直于一个平面那么其余平面均垂直这个平面。
5.设两平面的方程分别为A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0,则A1A2+B1B2+C1C2=0为两平面垂直的充要条件。
判定两平面平行
1.一个平面内的两条相交直线平行于另一个平面,则这两平面平行。
2.垂直于同一直线的两平面平行。
3.一个平面内的两条相交直线与另一个平面内的两条相交直线平行,则这两个平面平行。
两平面距离公式
两平面的距离当然是指互相平行的两个平面,设两个平面是
ax+by+cz+d=0
ax+by+cz+e=0
距离为|d-e|/√(a²+b²+c²)。