磁介质中的环路定理

合集下载

3磁介质中的安培环路定理

3磁介质中的安培环路定理
单位: T m A-1
在均匀的磁介质
B
(非铁磁质)中
M
磁场强度与磁感
H
应强度成正比,
Is
同向。
Ic
§3.磁介质中安培环路定理 / 三、几个结论
4.结论4
磁介质(非铁磁介质)中,磁化强度 与磁场强度具有线性关系。
M
κ m
H
κ 为磁化率。 m
电介质中 P κ 0E
5.结论5
相对磁导率与磁化率之间的关系
§3.磁介质中安培环路定理 / 二、环路定理
H B M
0
H dl Ic
②. H 既与磁感应强度 B 有关,又与磁化
强度 M 有关,所以 H 又是混合物理量。
③.磁场强度的单位与 M 相同,
安培/米,A/m
④.若 H d l 0 不一定环路上各点的
H 为 0,因为 H 是环路内、外电流共同 产生的。
R
由螺线管的磁场
r
B
分布可知,管内 的场各处均匀一
H
致,管外的场为0;
I
§3.磁介质中安培环路定理 / 四、解题方法
1.介质内部
作 abcda 矩形回路,回 路内的传导电 流代数和为:
B
a
b
H
d
cI
I c n ab I 在环路上应用介质中的环路定理:
H dl
H dl H dl H dl H dl
第三节
磁介质中的 安培环路定理
一、问题的提出
在真空中的安培环路定理中:
B dl 0 I
将其应用在磁介质中时,I为所有电流的
代数和;
B dl 0 (I c I s )
如果求 B
B = Bo + B’

磁介质中的安培环路定理

磁介质中的安培环路定理



L
L

B M dl I L 0 B M 定义“磁场强度” H

L
M dl I s
o
1
磁化率
实验指出: M m H
均匀的各向同性的磁介质
系数m称为“磁化率”。
H
B
解:

L
H dl I
ab H n ab I
则:H nI
B
a
d
. . .
× × ×
I
b
B o r H nI
c
5
均匀的各向同性的磁介质
2
例题1
一半径为R1的无限长圆柱形直导线,外面包一层半 径为R2,相对磁导率为r 的圆筒形磁介质。通过导 线的电流为I0 。求磁场强度和磁感应强度的分布。 解: 0 r R1 H dl 2π rH
L
r
r
R1
R2
I0
I 2 π r 2 π R1
R1 r R2 r R2
H dl H 2π r I
L
Ir H 2 π R12
B 0 H
0 Ir
2πR12
B 0 H
0 I
2π r
B 0 r H
0 r I
2π r
例题2
有两个半径分别为R1和R2的“无限长”同轴圆筒形 导体,在它们之间充以相对磁导率为μr 的磁介质。 当两圆筒通有相反方向的电流I时,试求磁感强度。 解: d R1 , B 0 R1 d R2 H dl I
0
M
B

磁介质中的高斯定理和安培环路定理

磁介质中的高斯定理和安培环路定理

求 H; 求 B;
B
0 由 M js

M H
求 M;
求 js; 求 Is;
I s js L 或由 I s ( r 1)I c
求 Is;
9
例1:长直螺线管半径为 R ,通有电流 I,线圈密度 为 n , 管内插有半径为 r ,相对磁导率为 r 磁介质, 求介质内和管内真空部分的磁感应强度 B 。 R 解:由螺线管的磁场分布 B r a 可知,管内的场各处均匀 b H 一致,管外的场为0; 1.介质内 c I d 作 abcda 矩形回路。 部 回路内的传导电流代数和为: I c nab I
H dl
在环路上应用介质中的环路定理:
ab bc cd
H dl H dl H dl H dl
da
∵在bc和da段路径上 H dl , cos 0
10
bc
H dl H dl 0
L
(
L
B
0
M ) dl I
L
L
L
B H M
0
3

0 H d l I
L
(
B
M ) dl I
L
定义:磁场强度
B H M
0
L
L
磁介质中的环路定理
H的环流仅与传导电流 I 有关,与介质无关。(当 I相同 时,尽管介质不同, H 在同一点上也不相同,然而环 流却相同。因此可以用它求场量 H ,就象求D那样。
3.明确几点: H 是一辅助物理量,描述磁场的基本物理量仍然 ①. 是 B。 是为消除磁化电流的影响而引入的, H B 和H 的名字张冠李戴了。

§7.6.2 磁介质中的安培环路定理

§7.6.2 磁介质中的安培环路定理

Chapter 7.6. 磁场中的磁介质

L
(
B
0

M ) dl

I0i
( L内 )
令: H

B
0

M
称作磁场强度 ( A·m-1 )

H dl L

I0i
( L内 )

H
的安培环路定理。
§7.6 磁介质中的安培环路定理
即沿任一闭合路径磁场
强度的环路积分等于该 闭合路径所包围的自由 电流代数和。
M ?
js M eˆ n
js ?
·9 ·
Chapter 7.6. 磁场中的磁介质
§7.6 磁介质中的安培环路定理
1. H 的安培环路定理:

H L
dl

I0i
( L内 )
2. H、B、M 间的关系:

Mp

m r 0

B,
B


H,

Mp


mH
( The end ) · 10 ·
H dl H 2 r I I
L
H 0
0 I 2 R12
r
( r R1 )
I
I 2 r
(R1 r R2 )
BH
R32 r 2 R32 R22

0 2
I r
(R2 r R3)
0
(r R3)
I
磁介质内:
H

I
2
r
M
p

m H

·4 ·
Chapter 7.6. 磁场中的磁介质

磁介质中的高斯定理和安培环路定理.

磁介质中的高斯定理和安培环路定理.


B 0(H M ) 0(H mH) 0(1 m)H
在各B向0H同r0H性r H介质r中H10B.rH为m磁相关导对系 率磁:B导 率。0D r电H介0质rHE中

E
在真空 中 r 1, B0 0H
3.明确几点:
①. H 是 一辅助物理量,描述磁场的基本物理量仍然
是 B。H是 为消除磁化电流的影响而引入的,
B 和H 的名字张冠李戴了。
4



②. H 既与磁感应强度B 有关,又与磁化强度M 有
关,所以H 又是混合物理量。
③.磁场强度 的单 位与磁化强度相同,安培/米,A/m
④.若 H dl 0不一定环路内无电流。
或由 I s (r 1)I c
求 Is;
9
例1:长直螺线管半径为 R ,通有电流 I,线圈密度 为 n , 管内插有半径为 r ,相对磁导率为 r 磁介质, 求介质内和管内真空部分的磁感应强度 B 。
解: 由螺线管的磁场分布 可知,管内的场各处均匀
R
r
a Bb
一致,管外的场为0;
H
1.介质内
10

H dl H dl 0
bc
da
因为 cd 段处在真空中,真
a
B ab H b
空中的 M = 0;B = 0 ,
有 H dl 0
d
c d
Ic
cd H dl

H dl
Hdl cos H dl H ab I c
§12.2 磁介质中的高斯定理和安培环路定理
1
一、磁介质中的高斯定理
磁介质放在磁场中,磁介质受到磁场的作用要产

12 有磁介质时的安培环路定理 磁场强度

12 有磁介质时的安培环路定理  磁场强度

r B0
对于各向同性的均匀介质,介质内部各分子电 流相互抵消,而在介质表面,各分子电流相互叠加, 在磁化圆柱的表面出现一层电流,好象一个载流螺 线管,称为磁化面电流(或束缚面电流)。
v B
=
v B0
+
v B
'
磁介质中的 总磁感强度
真空中的 介质磁化后的 磁感强度 附加磁感强度
顺磁质 抗磁质 铁磁质
§11-11 有磁介质时的安培环路定理 磁场强度
1. 磁介质 若磁场中有实物物质存在,由于物质的分子或
原子中都存在着运动的电荷,所以当物质放入磁场 中,其中的运动电荷将受到磁力的作用而处于一种 特殊的状态,又会反过来影响磁场的分布,这时的 物质统称为磁介质。
磁 化:磁场对磁场中的物质的作用称为磁化。
对于各向同性的磁介质:
磁场强度
v H
=
Bv
= Bv
μ0μr μ
单位:A/m.
μ : 磁介质的磁导率



r H

r dl
=

I
有磁介质时的 安培环路定理
表明:磁场强度矢量的环流和传导电流 I 有关, 而在形式上与磁介质的磁性无关。
r 例: 有两个半径分别为R 和 的“无限长”同
轴圆筒形导体,在它们之间充以相对磁导率为μr 的
B
r ⋅ dl
=
μ0
(
I0 + Is)
一般来说,自有电流可以由人们主动控制,束
缚电流比较复杂
由Bv
v
=
μv r
r B0
B = B0
∫L
∫ ∫ Bv
μ0μr

v dl
=

§7.7磁介质中的安培环路定理

§7.7磁介质中的安培环路定理
Chapter 7.
作者:杨茂田
§7. 7 磁介质中的安培环路定理
§ 11.2 磁介质中的安培环路定理 § 7.7 磁介质中的安培环路定理
卵磷脂
Chapter 7.
作者:杨茂田
§7. 7 磁介质中的安培环路定理
一、磁场强度H的安培环路定理
B dl 0 ( I s
L
( L内)
0
( r R3 )
r
磁介质内: H I 2 r
I
M m H ( 1) I 0 2 r
(解毕)
R3
R2 R1
Chapter 7.
作者:杨茂田
§7. 7 磁介质中的安培环路定理
有磁介质时求磁场问题的一般方法:
自由电流(传导电流)I0i 分布
H dl
I 0i )
L
I 0i
r
Is:被L包围的总磁化电流; I0i:被L包围的自由电流;
B
Is=
m M B r 0
is
L
dI s n Sdl cos is
S

dl
B, M
Chapter 7.
作者:杨茂田
§7. 7 磁介质中的安培环路定理
pm dN pm M lim n pm V 0 V dV
( L)
B
L
I0 dl i ) I 0 i ) B dl 0 ( I s M
L

is
L
L
( L内)
( L内)
S

dl
B, M
Chapter 7.
作者:杨茂田

磁介质中的环路定理

磁介质中的环路定理

∫ H ⋅ dl H= 2πr
= nI
r
O
B = µH = µ0µr H
例2:一无限长载流圆柱体,通有电流I,设电流I均匀 一无限长载流圆柱体, 分布在整个横截面上. 分布在整个横截面上.柱体的磁导率为μ,柱外为真 空.求:柱内外各区域的磁场强度和磁感应强度。 柱内外各区域的磁场强度和磁感应强度。 解:
Is = ML = ∫ M ⋅ dl
L
∫l B ⋅ dl
l
= µ 0 ( NI + ∫ M ⋅ dl )
l
l
∫(
l
B
µ0
− M ) ⋅ dl = NI = ∑ I
∫ H ⋅ dl = ∑I

( H磁场强度)
磁介质中的安培环路定理 磁介质中的安培环路定理 中的安培环路
∫ H ⋅ dl = ∑I
l

注意: 各向同性磁介质 注意 各向同性磁介质
充满各向同性介质的磁场
与介质有关的磁化电流产生 与介质有关的磁化电流产生 磁化电流 顺磁质 抗磁质 铁磁质
B = µr B0
介质的相对磁导率
µ r ≥1 µr ≤1 µr>> 1
二、磁介质的磁化 分子圆电流和磁矩 顺 磁 质 的 磁 化 磁 磁
I0 Is
m
I
Is
B0
磁质

B = B0 + B '
无外磁场时抗磁质分子磁矩为零 无外磁场时抗磁质分子磁矩为零 抗 磁 质 的 磁 化
H = B
磁化率) M = κH κ(磁化率)
µ0
−M =
B
µ0
− κH
B = µ0 (1 + κ ) H

12-2 磁介质中的安培环路定理

12-2  磁介质中的安培环路定理
§12-2 磁介质中的安培环路定理
一、 安培环路定理
在磁介质中,安培环路定理应写为 式中, Io内和 I´内分别是闭合路径l所包围的传导电 流和磁化电流的代数和。 由于:
l
I ) ( I B dl 内 o o 内
l
M dl I
l

(
B
o
M ) dl I o内

a
H
P

B b
c
L H dr ab H dr Hl
环路定理
d
l
nlI
B H 0 r nI
H nI
dI d r 1 H j M d r M dr dr
I I o·a · c ·b
I c I b
a
上页
下页
解 由安培环路定理:
H dl I
l
o内
I
o内
2r I H dl H· I 及 B= H H
l
o内
r<a:
I 2 r 2 Ir a H= 2 2 a 2r o Ir B o H 2 2a
在国际单位制中,磁场强度的单位为安/米(A/m)。
上页 下页
例1 一根长直同轴线由半径 a的长导 线和套在它外面的内半径为b、外半 径为c的同轴导体圆筒组成。中间充 满磁导率为的各向同性均匀非铁磁 绝缘材料,如图所示。由圆筒向下流 回,设电流在截面上都是均匀分布的。 求同轴线内外的磁场强度H和磁感应 强度B的分布。
2r
I r I o· · a r· c b
r c:H

磁介质中的安培环路定理

磁介质中的安培环路定理

产生磁场:

I
Bdl o I o I
有磁介质
B
C
的总场 传导电流 分布电流
分子磁矩 m I 'π r 2
A LD
n(单位体积分子磁矩数)
I n π r2LI ' nmL
M m nm
V
I ML BC M dl
I'
r
Cr
l M dl l B dl 0 ( I l M dl )
第二节 磁介质中的安培环路定理 磁场强度
一、有介质时的高斯定理
介质中的磁感应强度:
B B外 B
无论是什么电流激发的磁场,其磁力线均是无头
无尾的闭合曲线。
∴ 通过磁场中任意闭合曲面的磁通量为零。

即: BdS 0
二、有介质时的安培环路定理
在有介质的空间,传导电流与磁化电流共同
例:长直螺线管ห้องสมุดไป่ตู้充满均匀磁介质r单位长度上
的匝数为n,通有电流I 。求管内的磁感应强度。
解:管外磁场为零,取图示的回路
L H dl Ii
L
ab H n ab I
B
I
...
则:H nI
B or H nI
B
a
b
× × × ×M
d c nˆ
相对磁导率 r 1 磁 导 率 0r
1 顺磁质
r 1 抗磁质
1 铁磁质
(非常数)
各向同性磁介质


B 0r H H
H和 B的区别: B是描述磁场作为物质与其它物质交换动量的物理量;
H是描述磁场能量传输的物理量;

磁介质中安培环路定理

磁介质中安培环路定理
5)求出Fx Fx dF sin
b I2
力的方向向右
(1)Fx
dF sin
0
0I1I2 sin Rd 0 2R sin
0I1I2
2
(2)Fx
2
dF sin
0
2 0I1I2 sin Rd 0 2R sin
0I1I2
AB C
dFA
3106 N / cm
___________,
dFB
_____0_______,
dl
dl
dFC _3__1_0__6_N__/_c_m.
dl
(0 4 107 )
IA
IB
IC
dFA I ABAdl
BA
BAB
BCA
0IB 2d
0IC 2 2d
dd
dFA 30I 2 dl 4d
4) r>c
I I I 0
B0
例7 一无限长圆柱形铜导体(磁导率0),半径为R, 通有均匀分布的电流I,导体外充满相对磁导率r的磁
介质。今有一矩形平面S(长1m,宽2R),位置如右 图中画斜线部分所示,求通过该矩形平面的磁通量.
解:
r
R
:
B1
0 Ir 2R 2
r
R
:
B2
0r I 2r
2R R 2R
0I 0I 30 I
H dl
I I 3I
例4 如图,电荷q (>0)均匀地分布在一个半径为R的薄 球壳外表面上,若球壳以恒角速度 0绕Z轴转动,则 沿着Z轴从-到+ 磁感应强度的线积分
q00
B dl ___2___
B dl
B dl
L

二磁介质中的安培环路定理传导电流磁化电流

二磁介质中的安培环路定理传导电流磁化电流
第 15 章
磁介质
(Magnetism medium)
(4)
1
§15-1 磁介质的分类
1.磁介质的种类
在考虑物质与磁场的相互影响时,我们把所有的物 质都称为磁介质。
电场中,电介质极化后,在均匀电介质表面出现 极化电荷,于是电介质中的电场为
与此类似E,磁Eo场中E, 磁E介ro 质磁化后,在均匀磁介
en
M
a
b
l
图15-6
M dl Mab Jab I内 (15-5) l Jab 闭合路径l所包围的磁化电流的代数和
可见,磁化强度的环流(磁化强度沿闭合路径l的线 积分)等于该闭合路径l所包围的磁化电流的代数和。
11
§15 -3 磁介质中的磁场 磁场强度 一.磁介质中的磁场
顺磁质分子的固有磁矩pm虽不为零,但由于分子 的热运动,分子磁矩取每一个方向的概率是一样的, 因
此对一块顺磁质来说,分子磁矩的矢量和为零,故也不
显磁性。
4
电子进动与附加磁矩
在外磁场Bo作用下, 分子中的电子受到洛仑兹 力的作用,除了绕核运动和自旋外,还要附加一个以外 磁场方向为轴线的转动,从而形成进动。
图15-5
JLS=| pmi| =磁介质中分子磁矩的矢量和
按磁化强度的定义 ,有
M
pmi J
V
(15-3)
即磁化电流面密度J 等于磁化强度M的大小 。
10
一般情况下, J=M可 写成下面的矢量式:
J M en (15-4)
取如图15-6所示的 矩形闭合路径l, 则磁化 强度的环流为
B=Bo+B =rBo (15-1)
传导 磁化 电流 电流
二.磁介质中的安培环路定理

12-2 磁介质中的安培环路定理

12-2  磁介质中的安培环路定理
0

H 0

B0
例2 在均匀密绕的螺绕环内充满均匀的顺磁介质, 已知螺绕环中的传导电流为 I ,单位长度内匝数 n , 环的横截面半径比环的平均半径小得多,磁介质的 相对磁导率和磁导率分别为 和 r 。求环内的磁 场强度和磁感应强度。
解:在环内任取一点, 过该点作一和环同心、 半径为 r 的圆形回路。
B H M o
通常写成
B 0 ( H M )
M mH
实验证明: 各向同性磁介质
m
只与介质的性质有关称为磁介质的磁化率
M mH
代入
如果介质是均匀介质 如果介质是不均匀的 位置的函数
m m
是常数 是空间
B 0 ( H M )
r
H d l NI
式中 N为螺绕环上线圈的总匝数。由对称性可 知,在所取圆形回路上各点的磁感应强度的大小相 等,方向都沿切线。
H d l NI
H 2r NI
NI H nI 2r
r
当环内是真空时 B0 0 H 当环内充满均匀介质时 B H 0 r H B r B0
12-2 磁场强度
磁介质中的安培环路定理
一.有磁介质时的安培环路定理 无磁介质时的磁场安培环路定理

L
B0 dl 0
(L内)
I
穿过回路 的总电流
0
有磁介质时的磁场安培环路定理
B dl 0 ( I i I S )
L
穿过回路 的总电流
注意!这里 B 是导线中的传导电流激发的磁场和
r 1 r 1 r >>1
顺磁质 抗磁质 铁磁质

物理学下磁介质中的安培环路定理

物理学下磁介质中的安培环路定理

未来研究方向和挑战
复杂磁场下的安培环路定理研究
在实际应用中,磁场往往是非常复杂的,如何准确描述和 计算复杂磁场下的安培环路定理是一个重要的研究方向。
磁化电流的精确测量和控制
磁化电流是磁介质磁化程度的量度,如何精确测量和控制 磁化电流对于理解和应用安培环路定理具有重要意义。
新型磁材料的开发和应用
随着科技的发展,新型磁材料不断涌现,如何将这些新型磁材料应用 于安培环路定理中,发挥其独特优势,是一个具有挑战性的课题。
磁介质性质
磁介质具有磁化性,即在外磁场 作用下,磁介质内部会产生附加 磁场,使原磁场发生变化。
磁化现象与磁化强度
磁化现象
磁介质在外磁场作用下,其内部磁偶 极子会重新排列,产生附加磁场,这 种现象称为磁化。
磁化强度
磁化强度是描述磁介质磁化程度的物 理量,表示单位体积内磁偶极子的磁 矩矢量和。
分类及特点分析
磁感应强度B描述了磁场对磁介质的作用力大小,而磁场强度H则描述了磁场的源强 度。
边界条件对磁场分布影响分析
在两种不同磁介质的分界面上, 磁场的切向分量连续,即磁场线
与分界面平行。
磁场的法向分量在分界面两侧会 发生跃变,跃变的大小与两种磁
介质的磁导率差异有关。
边界条件对磁场分布的影响可以 通过麦克斯韦方程组中的边界条
变压器工作原理简述
变压器基本结构
由铁芯和线圈组成,通过电磁感应实 现电压变换。
工作原理
当原线圈中通入交流电时,会在铁芯 中产生交变磁场,进而在副线圈中感 应出电动势。安培环路定理可用于分 析变压器中的磁场分布和漏磁现象。
其他电磁设备设计优化方向
电磁铁
利用安培环路定理分析电磁铁 的磁场分布和吸力特性,优化

04磁介质的磁化和介质中的安培环路定理

04磁介质的磁化和介质中的安培环路定理

解: 由螺线管的磁场分布 可知,管内的场各处均匀
R
r
a Bb
一致,管外的场为零;
H
1、介质内部
作 abcda 矩形回路。
d Ic
回路内的传导电流代数和为: I c n ab I
在环路上应用介质中的环路定理:

H dl H dl H dl H dl H dl
有半径为 R2的无限长同轴圆柱面,该面也通有电流 I,
圆柱面外为真空,在R1<r<R2区域内,充满相对介质常 数为 r2的 磁介质,且r2 >r1。求B和 H的分布?
解:根据轴对称性,以轴上一点为圆心在
垂直于轴的平面内取圆为安培回路:
r R1
H1
2rH1
I
2R12

I
R12
磁介质的磁化 磁介质中的高斯定 理和安培环路定理
1
一、磁介质的磁化现象
凡是能与磁场发生相互作用的物质叫磁介质。
磁场中放入磁介质
磁介质发生磁化
出现磁化电流
产生附加磁场

磁介质内部的总场强 B B0 B
在各向同性均匀介质中:
r 称为相对磁导率。
B内

r B0
磁介质的分类:
介质中的磁感 应强度是真空
美国在 磁谱仪中,将采用超导磁铁产生强磁场,
2003 年再次送入地球轨道,观察暗物质和反物质。
高温超导现已达到 -153°C。
11
L


对各B向同性的磁介质
dl
L 0r
I0内

B r B0
B
定义:磁场强度
H
0r

08磁介质的磁化和介质中的安培环路定理

08磁介质的磁化和介质中的安培环路定理
0
磁力线为闭合曲线, 磁力线为闭合曲线,穿过任何一个闭合曲面的 磁通量为零。 磁通量为零。
v v B⋅ dS = 0 ∫
s
三、磁介质中的安培环路定理 1、磁介质中的安培环路定理
r r 在真空中的安培环路定理中: 在真空中的安培环路定理中: B0 ⋅ dl = µ 0 ∑ I ∫
3
r r 在介质中: 在介质中: ∫ B ⋅ dl = µ 0 ∑ ( I + I ′)
磁介质的磁化 磁介质中的高斯定 理和安培环路定理
1
一、磁介质的磁化现象 凡是能与磁场发生相互作用的物质叫磁介质。 凡是能与磁场发生相互作用的物质叫磁介质。 磁场中放入磁介质 磁介质发生磁化 产生附加磁场 r r r 磁介质内部的总场强 B = B0 + B′ 出现磁化电流
r r r B 在各向同性均匀介质中: 在各向同性均匀介质中: B = µ r B0 即 r = µ r B0
H = nI
H = nI 真空中 µ = 1 ∴ B = µ 0 H = µ 0 nI
8
r r r r H ⋅ dl = ∫da H ⋅ dl = 0
a
B
∴ H ab = ∑ I c = n abI ,
∴ B = µ 0 µ r H = µ 0 µ r nI
2、管内真空中 、 作环路 abcda ; 在环路上应用介 质中的安培环路定理,同理有: 质中的安培环路定理,同理有:
4
r r H ⋅ dl = ∑I ∫
L L
r r H ⋅ dl = ∑I ∫
L L
----磁介质中的环路定理 磁介质中的环路定理
物理意义:磁场强度沿闭合路径的线积分, 物理意义:磁场强度沿闭合路径的线积分,等于环路 所包围的传导电流的代数和。 所包围的传导电流的代数和。 2、明确几点: 明确几点:

磁介质的安培环路定理公式

磁介质的安培环路定理公式

磁介质的安培环路定理公式是:∮H·dl = Ni。

其中,∮H·dl表示磁场强度H沿闭合路径的环路积分,Ni表示被路径所包围的磁介质内部的电流。

该公式描述了磁场强度H在磁介质中的分布情况,它可以用于分析磁介质中的电磁现象,如电感、电磁波传播等。

根据安培环路定理,当电流通过磁介质时,会在磁介质中产生磁场。

磁介质的磁化程度取决于磁介质内部的电流密度和材料的磁化特性。

因此,在磁介质中,磁场强度H不仅与电流有关,还与磁介质的磁化特性有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 5磁场中的磁介质
一、磁介质的分类 介质对场有影响 总场是 传导电流产生
B Bo B
充满各向同性介质的磁场
与介质有关的磁化电流产生 顺磁质 抗磁质
B r B0
介质的相对磁导率
r 1 r 1 r >> 1
铁磁质
二、磁介质的磁化 分子圆电流和磁矩 顺 磁 质 的 磁 化
0
M
B
0
H
B 0 (1 ) H
例1:一环形螺线管,管内充满磁导率为μ,相对磁导率为μr的
顺磁质.环的横截面半径远小于环的半径.单位长度上的导
线匝数为n.求:环内的磁场强度和磁感应强度 解:
LH dl H 2r NI
NI H 2r

H
I
0
I I
H
I 2r
0 I B 2r
r
类比: •各向同性线性磁介质 •各向同性线性电介质
B 0 r H
D 0 r E
0 r ─ 磁导率 B
B B0 B
'
磁化强度: 磁介质中单位体积内分子的合磁矩
M
Pm V
分子磁矩 的矢量和 体积元
单位(安/米)
Am
1
I'
r
分子磁矩 P I 'π r m
r
2
C
L
(单位体积分子磁矩数) n
Is (n π r 2 L)I ' nPm L
m
P M
V
nPm
nI
O
r
B H 0 r H
例2:一无限长载流圆柱体,通有电流I,设电流I均匀 分布在整个横截面上.柱体的磁导率为μ ,柱外为真 空.求:柱内外各区域的磁场强度和磁感应强度。
解: LH dl H 2r I
I
rR
r I R 2 I
2
R
rR
Ir Ir H B 2 2R 2 2R
I s ML
三、磁介质中的安培环路定理
l B dl BC B dl 0 I i 0 ( NI I s )
传导电流 分布电流
I
B C Is ML M dl l l B dl 0 ( NI l M dl ) A D L B ( M ) dl NI I l H dl I 传 l
0
H(磁场强度)
磁介质中的安培环路定理
H dl I传
l
注意: 各向同性磁介质 M H (磁化率)
H B
相对磁导率 r 1 B 0 r H H 磁 导 率 0 r
引入H能比较方便的处理磁介质中的磁场问题
Is
B0
m
I
无外磁场
I0 Is
有外磁场
顺磁质内磁场 B B0 B '
无外磁场时抗磁质分子磁矩为零
抗 磁 质 的 磁 化

q
pm'

B0
v F
Pm'
B0
q
Pm '
Pm'
, B0 同向时
抗磁质内磁场
, B0 反向时

v
F
相关文档
最新文档