材料力学组合变形.ppt
合集下载
材料力学组合变形
第八章 组合变形
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
《材料力学组合变形》课件
这种变形通常发生在承受轴向力 和弯矩的杆件中,其变形特点是 杆件既有伸长或缩短,又有弯曲 。
拉伸与压缩组合变形的分析方法
01
02
03
弹性分析方法
基于弹性力学的基本原理 ,通过求解弹性方程来分 析杆件内部的应力和应变 分布。
塑性分析方法
在材料进入塑性阶段后, 采用塑性力学的基本理论 来分析杆件的承载能力和 变形行为。
材料力学在组合变形中的应用实例
01
02
03
04
桥梁工程
桥梁的受力分析、桥墩的稳定 性分析等。
建筑结构
高层建筑、大跨度结构的受力 分析、抗震设计等。
机械工程
机械零件的强度、刚度和稳定 性分析,如轴、轴承、齿轮等
。
航空航天
飞机和航天器的结构分析、材 料选择和制造工艺等。
材料力学在组合变形中的发展趋势
特点
剪切与扭转组合变形具有复杂性和多样性,其变形行为受到多种因素的影响,如 材料的性质、杆件的长度和截面尺寸、剪切和扭转的相对大小等。
剪切与扭转组合变形的分析方法
1 2 3
工程近似法
在分析剪切与扭转组合变形时,通常采用工程近 似法,通过简化模型和假设来计算杆件的应力和 变形。
有限元法
有限元法是一种数值分析方法,可以模拟杆件在 剪切与扭转组合变形中的真实行为,提供更精确 的结果。
弯曲组合变形的分析方法
叠加法
刚度矩阵法
叠加法是分析弯曲组合变形的基本方 法之一。该方法基于线性弹性力学理 论,认为各种基本变形的应力、应变 分量可以分别计算,然后按照线性叠 加原理得到最终的应力、应变分布。
刚度矩阵法是通过建立物体内任意一 点的应力、应变与外力之间的关系, 来求解复杂变形问题的一种方法。对 于弯曲组合变形,可以通过构建系统 的刚度矩阵来求解。
拉伸与压缩组合变形的分析方法
01
02
03
弹性分析方法
基于弹性力学的基本原理 ,通过求解弹性方程来分 析杆件内部的应力和应变 分布。
塑性分析方法
在材料进入塑性阶段后, 采用塑性力学的基本理论 来分析杆件的承载能力和 变形行为。
材料力学在组合变形中的应用实例
01
02
03
04
桥梁工程
桥梁的受力分析、桥墩的稳定 性分析等。
建筑结构
高层建筑、大跨度结构的受力 分析、抗震设计等。
机械工程
机械零件的强度、刚度和稳定 性分析,如轴、轴承、齿轮等
。
航空航天
飞机和航天器的结构分析、材 料选择和制造工艺等。
材料力学在组合变形中的发展趋势
特点
剪切与扭转组合变形具有复杂性和多样性,其变形行为受到多种因素的影响,如 材料的性质、杆件的长度和截面尺寸、剪切和扭转的相对大小等。
剪切与扭转组合变形的分析方法
1 2 3
工程近似法
在分析剪切与扭转组合变形时,通常采用工程近 似法,通过简化模型和假设来计算杆件的应力和 变形。
有限元法
有限元法是一种数值分析方法,可以模拟杆件在 剪切与扭转组合变形中的真实行为,提供更精确 的结果。
弯曲组合变形的分析方法
叠加法
刚度矩阵法
叠加法是分析弯曲组合变形的基本方 法之一。该方法基于线性弹性力学理 论,认为各种基本变形的应力、应变 分量可以分别计算,然后按照线性叠 加原理得到最终的应力、应变分布。
刚度矩阵法是通过建立物体内任意一 点的应力、应变与外力之间的关系, 来求解复杂变形问题的一种方法。对 于弯曲组合变形,可以通过构建系统 的刚度矩阵来求解。
材料力学第八章组合变形
例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
材料力学 第八章 组合变形
度理论校核此杆的强度。 解:①外力分析
y ZC
Mx z P2z
P2y 400N YA 457N Z A 20.1N
P2Z 70.5N YC 257N Z C 90.6N
YA A 150
T M x 120Nm
B 200
C YC D 100
P2y
x
y
M Z (Nm) M (Nm)
建立图示杆件的强度条件
解:①外力向形心
x A 150 P1 T A 150 B 200 C T B 200 C 100 D 简化并分解
z
z P2z D P2y x 弯扭组合变形 y
100
M Z (Nm) M (Nm)
y
②每个外力分量对应 x 的内力方程和内力图 X
(Nm) My (Nm) Mz
x X
125 37.8 162.8MPa
孔移至板中间时
N 100 103 2 A 631.9mm 10(100 x) x 36.8mm 6 σ max 162.8 10
偏心拉伸或压缩:
CL11TU11
任意横截面上的内力: N P,M y Pa,M z Pb
第八章 组合变形
§8–1 组合变形和叠加原理
§8–2 拉(压)弯组合 §8–4 偏心压缩 截面核心 §8-4 弯曲与扭转
§8–1组合变形和叠加原理
一、组合变形 :在复杂外载作用下,构件的变形会包含几种简
单变形,当几种变形所对应的应力属同一量级时,不能忽略
之,这类构件的变形称为组合变形。 P P
弯曲与扭转
P1
80ºP2 z
x A 150 B 200 C 100 D
y
材料力学课件第8章组合变形zym
§8—4 扭转与弯曲的组合 一、圆截面杆弯扭组合 实例: (一)实例: 已知:塑性材料轴尺寸,传动力偶Me。 已知:塑性材料轴尺寸,传动力偶 。 试建立轴的强度条件。 试建立轴的强度条件。 解: 1、确定危险点: 、确定危险点: (1)外力分析 ) F 计算简图: ①计算简图: Fτ 由 ∑ M x = 0 得: FD = Me 2 可确定F 由F可确定 τ。 可确定 外力分解: ②外力分解: 变形判断: ③变形判断: AB段扭转变形,BE段弯扭组合变 段扭转变形, 段弯扭组合变 段扭转变形 形,EC段弯曲变形。 段弯曲变形。 段弯曲变形
解: 、确定各边为中性轴时的压力作用点: 1、确定各边为中性轴时的压力作用点: b2 h2 2 iy = , iz2 = 12 12 h az = ∞ AB截距: a y = − , 截距: 截距 2 h2 iz2 12 = h , zF = 0 F作用点 坐标: yF = − = − 作用点a坐标 作用点 坐标: h 6 ay − 2 同样确定b,c,d点。 同样确定 点 2、连线 确定截面核心。 、连线a,b,c,d确定截面核心。 确定截面核心 解:
3 由: W ≥ M max = 12 ×10 N ⋅ m 6
[σ ]
100 × 10 Pa
= 12 × 10−5 m3 = 120cm3
查表选定16号工字钢。 查表选定 号工字钢。 号工字钢 (2)组合变形校核计算: )组合变形校核计算: 16号工字钢:W=141cm3,A=26.1cm3 号工字钢: 号工字钢
2、应力状态分析 、 均为单向应力状态 单向应力状态。 均为单向应力状态。
'' σ A = σ ′ +σ A =
F (0.425m) F × (0.075m) + −3 2 15 ×10 m 5310 ×10−8 m 4
k-组合变形-应力状态理论幻灯片PPT
否可以叠加?
安全
安全 安全吗?
(3) 组合变形危险点
复杂应力状态
Complex stress state
A
危险点
A 点在什么情况下 平安又在什么情况下 危险?
问题 (Question) :
When :
[]
[]
问题: A 点的 平安性由什么 来决定?
Is the poiAnt点A平i安n 吗sa?fety or not ?
qmaxEmAax
•
A
L
A
问题: 材料力学这样分析杆 件的平安性问题是基于什么 思想?
注意: 杆件的强度 分析实质上是分析 危险点的强度!
maxqAL[]
那么杆件平安
maxqAL[]
那么杆件不平安
2. 一点处材料的强度
Strength of materials at one point
(1) 拉压及梁弯曲最大正应力点
Results:
(1) The strength of materials at one point is relation to its mechanic behaviors. (2) The strength of materials at one point is relation to the stresses of this point, many times relation to the stresses along the slope directions. (3) The strength of materials at one point is relation to some maxium stresses of this point.
k-组合变形-应力状态理论 幻灯片PPT
材料力学 第7章 组合变形
y
1
z x
1
式中M——危险截面的弯矩 T——危险截面的扭矩
2
y
2
例 3 某齿轮传动轴上装有两个直圆柱齿轮,C轮的输入功
率NkC=15kW,不考虑功率损耗,轴的转速n=850r/min, 直径d=50mm,材料的[]=50MPa,两轮节圆直径分别为 D1=300mm, D2=120mm,压力角=20,试校核轴的强度。
FAx
800
.
D
.
A
.
. .
C
.
B 1500
2500
c max
FN M max A Wz
A FAy y
FC
FCx
FCy C
F B
F x
40 10 12 10 4 26.1 10 141 10 6
3 3
FN 40kN
12kNm M
100.5 MPa [ ]
第七章
作业
7-2 7-4 7-5 7-8 7-13 7-17 7-21
第七章
7.1 7.2
组合变形杆的强度
组合变形的概念 弯曲与拉伸(压缩)的组合
7.3
偏心压缩与截面核心
7.4 扭转与弯曲的组合 7.5 复合梁的强度计算
7.6
开口薄壁梁的切应力
组合变形杆的强度
7.1
组合变形概念
F
截面核心—— 在轴向压力作用下,使杆的横截面上只产 生压应力的载荷作用区域
偏心压缩与截面核心
五、截面核心
2.确定方法
压力作用区域。 当压力作用在此区域内时,横截面上无拉应力。 ay 截面核心 az
1
z x
1
式中M——危险截面的弯矩 T——危险截面的扭矩
2
y
2
例 3 某齿轮传动轴上装有两个直圆柱齿轮,C轮的输入功
率NkC=15kW,不考虑功率损耗,轴的转速n=850r/min, 直径d=50mm,材料的[]=50MPa,两轮节圆直径分别为 D1=300mm, D2=120mm,压力角=20,试校核轴的强度。
FAx
800
.
D
.
A
.
. .
C
.
B 1500
2500
c max
FN M max A Wz
A FAy y
FC
FCx
FCy C
F B
F x
40 10 12 10 4 26.1 10 141 10 6
3 3
FN 40kN
12kNm M
100.5 MPa [ ]
第七章
作业
7-2 7-4 7-5 7-8 7-13 7-17 7-21
第七章
7.1 7.2
组合变形杆的强度
组合变形的概念 弯曲与拉伸(压缩)的组合
7.3
偏心压缩与截面核心
7.4 扭转与弯曲的组合 7.5 复合梁的强度计算
7.6
开口薄壁梁的切应力
组合变形杆的强度
7.1
组合变形概念
F
截面核心—— 在轴向压力作用下,使杆的横截面上只产 生压应力的载荷作用区域
偏心压缩与截面核心
五、截面核心
2.确定方法
压力作用区域。 当压力作用在此区域内时,横截面上无拉应力。 ay 截面核心 az
《组合变形》PPT课件
0.266q (12 ) 237 106
(21.5103) q
( max )D
M yD Wy
M zD Wz
0.444q (12 ) 31.5 106
0.456q (12 ) 237 106
(16.02 103) q
危险点在A截面上的外棱角D1和D2处
z
MyA
y
z
MzA
y
D1 z D2
y
32
l 几何参数
A 15103 m2 , zo 7.5 cm, I y 5310 cm4
l 求内力(作用于截面形心)
取研究对象如图
FN P kN,
M y 42.5 102 P kN.m
l 危险截面
各截面相同
l 应力分布
350
FN
33
l 危险截面
各截面相同
l 应力分布
l FN引起的应力
FN P MPa
u 拉伸、压缩
l 组合变形 有两种或两种以上的 基本变形同时发生。
u 剪切
l 求解组合变形的方法
将载荷分为几组分别产生 基本变形的载荷,然后应 用叠加原理。
u 扭转
u 弯曲
3
2 叠加原理 如果内力、应力、变形等与外力成线性关系, 则复杂受力情况下组合变形构件的内力、应 力、变形等可以由几组产生基本变形的载荷 单独作用下的内力、应力、变形等的叠加而 得到,且与各组载荷的加载次序无关。
'' My z Mz y
Iy
Iz
中性轴的方程:
My F1l
F2 (l a)
Mz
My Iy
z0
Mz Iz
y0
0
5
中性轴的方程:
材料力学第10章 组合变形综述资料.
矩形截面:只有两个平面为对称面
当力和弯矩作用在一个非对称平面上,杆件弯曲方向?
2020/7/3
F F
F F
16
材料力学-第10章 组合变形
两相互垂直平面内的弯曲
矩形截面分析:
中性轴
Mz z
My
M
z
θ
M
y
y
如果弯曲平面和弯矩作用平面一致,那么必须
2020/7/3
17
材料力学-第10章 组合变形
14
材料力学-第10章 组合变形
两相互垂直平面内的弯曲
对于圆形截面,杆的变形与弯矩作用平面在同一平面内
A
A
F
F
F
w
w
弯曲平面在哪 个方向?
对于矩形截面,变形与弯矩作用平面是否仍在同一 平面?
2020/7/3
15
材料力学-第10章 组合变形
两相互垂直平面内的弯曲
圆形截面:任何通过轴心的力引起的弯矩所作用的平面均为 截面的对称面
2020/7/3
10
叠加原理
材料力学-第10章 组合变形
基本方法
变形
线弹性、小变形
分解
基本变形1 基本变形2 基本变形n
叠加
组合变形
2020/7/3
11
2020/7/3
材料力学-第10章 组合变形
计算简图
借助于带轮或齿轮传递功率 的传动轴,工作时在齿轮的齿上 均有外力作用。
将作用在齿轮上的力向轴的 截面形心简化便得到与之等效的 力和力偶,这表明轴将承受横向 载荷和扭转载荷。
矩形截面应力分析:
矩形截面内任一点的弯曲正应力
Mz z
My
Mz
当力和弯矩作用在一个非对称平面上,杆件弯曲方向?
2020/7/3
F F
F F
16
材料力学-第10章 组合变形
两相互垂直平面内的弯曲
矩形截面分析:
中性轴
Mz z
My
M
z
θ
M
y
y
如果弯曲平面和弯矩作用平面一致,那么必须
2020/7/3
17
材料力学-第10章 组合变形
14
材料力学-第10章 组合变形
两相互垂直平面内的弯曲
对于圆形截面,杆的变形与弯矩作用平面在同一平面内
A
A
F
F
F
w
w
弯曲平面在哪 个方向?
对于矩形截面,变形与弯矩作用平面是否仍在同一 平面?
2020/7/3
15
材料力学-第10章 组合变形
两相互垂直平面内的弯曲
圆形截面:任何通过轴心的力引起的弯矩所作用的平面均为 截面的对称面
2020/7/3
10
叠加原理
材料力学-第10章 组合变形
基本方法
变形
线弹性、小变形
分解
基本变形1 基本变形2 基本变形n
叠加
组合变形
2020/7/3
11
2020/7/3
材料力学-第10章 组合变形
计算简图
借助于带轮或齿轮传递功率 的传动轴,工作时在齿轮的齿上 均有外力作用。
将作用在齿轮上的力向轴的 截面形心简化便得到与之等效的 力和力偶,这表明轴将承受横向 载荷和扭转载荷。
矩形截面应力分析:
矩形截面内任一点的弯曲正应力
Mz z
My
Mz
45-48-第09章-组合变形--王亲猛课件资料
y
应力分布图
s
s
应力: s FN
A
s M max
Wz
叠加:同向应力相加,反向相减
即可得出杆上最大拉、压应力。
(4)强度条件:
s max
s
s max
s
8
例9-1 起重机的横梁用25a号工字钢制成如图,梁长 l 4m,拉杆与横梁夹角 为30,电葫芦自重为 4k,N最大起吊重量为 20k,N许用应力为 [s ] 100MPa
300 500
500
解: (1)外力分析
5kN
d
A
C
B
D
2kN 5kN
2kN
力学简图
1.5kNm 7kN z
1.5kNm
建立坐标系 x
5kN
5kN 7kN
y
22
1.5kNm 7kN z 1.5kNm
5kN y
MT
12kN 1.5kNm
y 5kN 12.5k
N
Mz
z
1.5kNm
7kN
12kN 2.25kNm
A F
m1=Fr1 A
F F、P 使轴弯曲
m1、m2 使轴受扭
C
E
B
P
m2=Pr2 E
B
C
P
弯扭组合
(Combination of bending and torsion)
4
9.1 组合变形概述 (Summary)
讨论组合变形强度问题的基本思路 由于材料力学讨论线弹性、小变形,各载荷的
(1)将外力作局用部相等互效独变立换,(互分不解影或响平。移因)此并在分计组算:反使力每、一内组力 只产生力一、种应基力本、变变形形;时都可以应用叠加原理。
材料力学刘鸿文第六版最新课件第八章 组合变形
667 667
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯矩和扭矩
W d 3
W D3 1 4
32
32
25
目录
§10-4 弯扭组合变形 例题10-2
传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300N.m。两轴承中间的齿轮半径R=200mm,径向啮合力 F1=1400N,轴的材料许用应力〔σ〕=100MPa。试按第三强 度理论设计轴的直径d。
16
目录
§10-3 拉(压)弯组合变形 例题10-1
铸铁压力机框架,立柱横截面尺寸如图所示,材料的许用
拉应力[t]=30MPa,许用压应力[c]=120MPa。试按立柱
的强度计算许可载荷F。
解:(1)计算横截面的形心、
面积、惯性矩
F 350
F 350
A 15000mm2
F
M
z0 75mm
FN
y1 z0 y z1
934 934
许可压力为F 45000N 45kN 19 目录
§10-4 弯扭组合变形
10-4
20
目录
§10-4
l
SF
a
Fa T
M
Fl
弯扭组合变形
S平面 y
1
T
4
z
x
2
3 Mz
1
τ
T Wp
σ
Mz Wz
3
τ
T Wp
目录
σ
M W
z z
21
§10-4 弯扭组合变形
1
τ
T Wp
3
σ
Mz Wz
τ
T Wp
z1 125 mm I y 5.31107 mm4 (2)立柱横截面的内力
50
FN F
150
M F350 75103
50
150
425F 103N.m
17
目录
§10-3 拉(压)弯组合变形
A 15000mm2
(2)立柱横截面的内力
z0 75mm
FN F
z1 125 mm
M 425 10 3 F N.m
300N.m 1400N
300N.m
1500N 150 200
解:(1)受力分析,作 计算简图
F2R M e
F2
Me R
300 0.2
1500N
26
目录
§10-4 弯扭组合变形
300N.m 1400N
(2)作内力图
危险截面E 左处
300N.m
1500N
150
200
300N.m 128.6N.m
3
934F Pa目 录
18
§10-3 拉(压)弯组合变形
F 350
M
t.max 667F c.max 934F
(4)求压力F
FN
t.max 667F t
F t 30106 45000N
667 667
t.max
c.max
c.max 934F c F c 120106 128500N
M
W T
Wp
1
2
1 2
2 4 2
2 0
3
2
1 2
2 4 2
第四强度理论:
24
目录
§10-4 弯扭组合变形
塑性材料的圆截面轴弯扭组合变形
第三强度理论:
r3
第四强度理论:
1 W
r4
1 W
M 2 T 2 [ ] M 2 0.75T 2 [ ]
式中W 为抗弯截面系数,M、T 为轴危险面的
解决组合变形的基本方法是将其分解为几种基 本变形;分别考虑各个基本变形时构件的内力、应 力、应变等;最后进行叠加。
8
目录
§10-1 概 述
研究内容
斜弯曲 拉(压)弯组合变形 弯扭组合变形
外力分析 内力分析 应力分析
9
目录
§10-2 斜 弯 曲
平面弯曲
斜弯曲
10
目录
§10-2 斜 弯 曲
11
目录
§10-2 斜 弯 曲
12
目录
§10-2 斜 弯 曲
t,max M y max M z max
c,max
Wy
Wz
强度条件:
D1点: t,max [ t ] D2点: c,max [ c ]
13
目录
§10-2 斜 弯 曲
fz
f
fy
挠度:
f
f
2 y
f
2 z
tan fz I z tan
组合变形工程实例
弯扭组合变形
5
目录
§10-1 概 述
组合变形工程实例
压弯组合变形
6
目录
§10-1 概 述
组合变形工程实例
拉扭组合变形
7
目录
§10-1 概 述
叠加原理
构件在小变形和服从胡克定理的条件下,力的 独立性原理是成立的。即所有载荷作用下的内力、 应力、应变等是各个单独载荷作用下的值的叠加
I y 5.31107 mm4 (3)立柱横截面的最大应力
t.max
Mz0 Iy
FN A
F 350
M FN
425103 F 0.075 5.31105
F 15 103
667F Pa
c.max
Mz1 Iy
FN A
t.max
c.max
425103 F 0.125 5.31105
15
F 10
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3 M 2 T 2 W Nhomakorabea 3W
32
d 3
32
M2 T2
3
32
1762 3002 100 106
32.8103 m 32.8mm29
目录
小结
1、了解组合变形杆件强度计算的基本方法 2、掌握斜弯曲和拉(压)弯组合变形杆件
的应力和强度计算 3、了解平面应力状态应力分析的主要结论 4、掌握圆轴在弯扭组合变形情况下的强度
120N.m
27
目录
§10-4 弯扭组合变形
r3
M 2 T 2
W
M
W T
Wp
r4
M 2 0.75T 2
W
28
目录
§10-4 弯扭组合变形
300N.m 1400N
300N.m
1500N
150
200
300N.m 128.6N.m
120N.m
(2)作内力图
危险截面E 左处
T 300N.m
fy Iy
正方形
Iy Iz
14
目录
§10-3 拉(压)弯组合变形
=+
10-3
15
目录
§10-3 拉(压)弯组合变形
t,max
=+
c,max
c
F A
t,max
=+
c,max
t,max
Fl W
c,max
Fl W
t,max
Fl W
F A
[t ]
c,max
Fl W
F A
[ c ]
σ
Mz Wz
max
x
y
2
1 2
x
y
2
4
2 xy
1 2 4 2 0
M
22
T
Wp
W
min
x
y
2
1 2
x
y
2
4
2 xy
1 2 4 2 0
22
22
目录
§10-4 弯扭组合变形
M
W T
Wp
1
2
1 2
2 4 2
2 0
3
2
1 2
2 4 2
第三强度理论:
23
目录
§10-4 弯扭组合变形
第十章 组合变形
1
目录
第十章 组合变形
§10-1 概述 §10-2 斜弯曲 §10-3 拉(压)弯组合变形 §10-4 弯扭组合变形 §10-5 组合变形的普遍情形
目录
2
目录
§10-1 概 述
组合变形工程实例
压弯组合变形
10-1
3
目录
§10-1 概 述
组合变形工程实例
拉弯组合变形
4
目录
§10-1 概 述