大学物理规范作业 (8)

合集下载

大学物理标准化作业答案

大学物理标准化作业答案

(SI)
2分
标准化作业(4)
1.(3089)一平面简谐波在弹性媒质中传播,在媒质质元从最大
位移处回到平衡位置的过程中
(A) 它的势能转换成动能. (B) 它的动能转换成势能.
[ C]
(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.
(A)它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.
(3) 振动方程的数值式.
解: (1) ∴
vm = ωA ∴ω = vm / A =1.5 s-1 T = 2π/ω = 4.19 s
(2)
am = 2A = vm = 4.5×10-2 m/s2
(3)
1p 2
x = 0.02 cos(1.5t 1 p) (SI) 2
2.(3385)一台摆钟每天慢2分10秒,其等效摆长l = 0.995 m, 摆锤可上下移动以调节其周期.假如将此摆当作质量集中在摆 锤中心的单摆来估算,则应将摆锤向上移动多少距离,才能使 钟走得准确?
A
B
观察旋转矢量图可得: 3p / 4
x
解三角形可得A:
A

x0
/ cos p
4

5
2cm

所以(1):x 5 2 102 cos(pt 3 p )m
44
(2) vA
t 0

dx dt
t 0

p
4
5
2 102 sin( pt 3 p ) 3.93m / s
4 4 t0
T = ____2_T_0___.
2(3817)一简谐振动的表达式为 x Acos(3t )
,已知 t = 0时的初位移为0.04 m,初速度为0.09 m/s,

大学物理学(第三版上) 课后习题8答案详解

大学物理学(第三版上)  课后习题8答案详解

习题八7-1下列表述是否正确?为什么?并将错误更正.(1)A E Q ∆+∆=∆ (2)⎰+=V p E Q d(3)121Q Q -≠η (4)121Q Q -<不可逆η解:(1)不正确,A E Q +∆=(2)不正确,⎰+=Vp E Q d Δ(3)不正确,121Q Q -=η(4)不正确,121Q Q -=不可逆η7-2 V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高?答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关.7-3 如题7-3图所示,有三个循环过程,指出每一循环过程所作的功是正的、负的,还是零,说明理由.解:各图中所表示的循环过程作功都为0.因为各图中整个循环分两部分,各部分面积大小相等,而循环方向一个为逆时针,另一个为顺时针,整个循环过程作功为0.题7-3图7-4 用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题7-4图解:1.由热力学第一定律有A E Q +∆= 若有两个交点a 和b ,则 经等温b a →过程有0111=-=∆A Q E 经绝热b a →过程012=+∆A E 022<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 7-5 一循环过程如题7-5图所示,试指出: (1)ca bc ab ,,各是什么过程;(2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积? (5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得K vR p =故bc 过程为等压过程 ca 是等温过程(2)V p -图如题57'-图题57'-图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5)ab ca bc abQ Q Q Q e -+=题7-5图 题7-6图7-6 两个卡诺循环如题7-6图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7-7 评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程. 答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是 可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程 虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 7-8 热力学系统从初平衡态A 经历过程P 到末平衡态B .如果P 为可逆过程,其熵变为 :⎰=-BA AB T Q S S 可逆d ,如果P 为不可逆过程,其熵变为⎰=-B A A B T Q S S 不可逆d ,你说对吗?哪一个表述要修改,如何修改?答:不对.熵是状态函数,熵变只与初末状态有关,如果过程P 为可逆过程其熵变为:⎰=-BA AB T Q S S 可逆d ,如果过程P 为不可逆过程,其熵变为⎰>-B A A B T Q S S 不可逆d7-9 根据⎰=-B A A B T Q S S 可逆d 及⎰>-B A A B T Q S S 不可逆d ,这是否说明可逆过程的熵变大于不可逆过程熵变?为什么?说明理由.答:这不能说明可逆过程的熵变大于不可逆过程熵变,熵是状态函数,熵变只与初末状态有关,如果可逆过程和不可逆过程初末状态相同,具有相同的熵变.只能说在不可逆过程中,系统的热温比之和小于熵变.7-10 如题7-10图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统作功126 J .(1)若沿adb 时,系统作功42 J ,问有多少热量传入系统?(2)若系统由状态b 沿曲线ba 返回状态a 时,外界对系统作功为84 J ,试问系统是吸热还是放热?热量传递是多少?题7-10图解:由abc 过程可求出b 态和a 态的内能之差 A E Q +∆=224126350=-=-=∆A Q E Jabd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热7-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功? (1)体积保持不变; (2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆= 吸热)(2)(1212V T T R iT T C E Q -=-=∆=υυ25.623)300350(31.823=-⨯⨯=∆=E Q J对外作功 0=A(2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ吸热 75.1038)300350(31.825=-⨯⨯=Q J)(12V T T C E -=∆υ内能增加 25.623)300350(31.823=-⨯⨯=∆E J对外作功 5.4155.62375.1038=-=∆-=E Q A J7-12 一个绝热容器中盛有摩尔质量为mol M ,比热容比为γ的理想气体,整个容器以速度v 运动,若容器突然停止运动,求气体温度的升高量(设气体分子的机械能全部转变为内能).解:整个气体有序运动的能量为221mu ,转变为气体分子无序运动使得内能增加,温度变化2V 21mu T C M m E =∆=∆ )1(211212mol V 2mol -==∆γu M R C u M T7-13 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功. 解:(1)等温压缩 300=T K 由2211V p V p = 求得体积3211210101.0101-⨯=⨯==p V p V 3m对外作功21112ln lnp pV p V V VRT A ==01.0ln 01.010013.115⨯⨯⨯⨯=31067.4⨯-=J(2)绝热压缩R C 25V =57=γ由绝热方程 γγ2211V p V p = γγ/12112)(p V p V =1121/12112)()(V p pp V p V γγγ==3411093.101.0)101(-⨯=⨯=m由绝热方程γγγγ---=22111p T p T 得K579)10(30024.04.1111212=⨯==--T p p T T γγγγ热力学第一定律A E Q +∆=,0=Q所以)(12molT T C M MA V --=RT M MpV mol=,)(2512111T T R RT V p A --=35105.23)300579(25300001.010013.1⨯-=-⨯⨯⨯⨯-=A J7-14 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明: 由绝热方程C V p V p pV ===γγγ2211 得γγV V p p 111=⎰=21d V V Vp A⎰-----==21)11(1d 11121111V V r V V V p v v V p A γγγγγ]1)[(112111---=-γγV VV p又 )(1111211+-+----=γγγγV V V p A 112221111--=+-+-γγγγγV V p V V p所以 12211--=γV p V p A7-15 1 mol 的理想气体的T-V 图如题7-15图所示,ab 为直线,延长线通过原点O .求ab过程气体对外做的功.题7-15图解:设KV T =由图可求得直线的斜率K 为002V T K =得过程方程VV T K 002=由状态方程 RT pV υ= 得V RTp υ=ab 过程气体对外作功⎰=02d V v Vp A⎰⎰⎰====00000020002202d 2d 2d V V V v V V RTV V RT VV V T V R V V RT A7-16 某理想气体的过程方程为a a Vp,2/1=为常数,气体从1V 膨胀到2V .求其所做的功.解:气体作功⎰=21d V v Vp A⎰-=-==-2121)11()(d 2121222V V V V V V a V a V V a A7-17 设有一以理想气体为工质的热机循环,如题7-17图所示.试证其循环效率为1112121---=p p VV γη答:等体过程吸热)(12V 1T T C Q -='υ)(1221V 11R V p R V p C Q Q -='=绝热过程 03='Q等压压缩过程放热)(12p 2T T C Q -='υ)(12P 22T T C Q Q --='=υ)(2212P R V p R V p C -= 循环效率121Q Q-=η)1/()1/(1)()(1121212221V 2212p 12---=---=-=p p V p V p C V p V p C Q Q ννγηη题7-17图 题7-19图7-18 一卡诺热机在1000 K 和300 K 的两热源之间工作,试计算 (1)热机效率;(2)若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少? (3)若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少?解:(1)卡诺热机效率121T T -=η%7010003001=-=η(2)低温热源温度不变时,若%8030011=-=T η要求 15001=T K ,高温热源温度需提高500K (3)高温热源温度不变时,若%80100012=-=T η要求 2002=T K ,低温热源温度需降低100K7-19 如题7-19图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为2T 和3T .求此循环效率.这是卡诺循环吗?解:(1)热机效率121Q Q -=ηAB 等压过程 )(12P 1T T C Q -='υ 吸热)(P mo 1A B lT T C M MQ -=CD 等压过程 )(12P 2T T vC Q -=' 放热)(P mol22D C T T C M MQ Q -='-=)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--=根据绝热过程方程得到AD 绝热过程 γγγγ----=D D A A T p T p 11BC 绝热过程 γγγγ----=C C B B T p T p 111又B C D DC BA T T T T p p p p ===231T T -=η(2)不是卡诺循环,因为不是工作在两个恒定的热源之间. 7-20 (1)用一卡诺循环的致冷机从7℃的热源中提取1000 J 的热量传向27℃的热源,需要多少功?从-173℃向27℃呢?(2)一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于作功就愈有利.当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利?为什么? 解:(1)卡诺循环的致冷机2122T T T A Q e -==静7℃→27℃时,需作功4.71100028028030022211=⨯-=-=Q T T T A J173-℃→27℃时,需作功2000100010010030022212=⨯-=-=Q T T T A J(2)从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的.7-21 如题7-21图所示,1 mol 双原子分子理想气体,从初态K 300,L 2011==T V 经历三种不同的过程到达末态K 300,L 4022==T V . 图中1→2为等温线,1→4为绝热线,4→2为等压线,1→3为等压线,3→2为等体线.试分别沿这三种过程计算气体的熵变.题7-21图 解:21→熵变 等温过程 AQ d d =, V p A d d =RT pV =⎰⎰==-21111221d 1d V V VV RT T T Q S S76.52ln ln !212===-R V VR S S J 1K -⋅321→→熵变⎰⎰+=-312312d d T QT Q S S32V 13p V p 12ln ln d d 2331T TC T T C T T C TT C S S T T T T +=+=-⎰⎰31→等压过程 31p p = 3211T V T V =1213V V T T =23→等体过程 2233T p T p =3232p p T T = 1232p p T T =12V 12P 12ln ln p pC V V C S S +=-在21→等温过程中 2211V p V p =所以2ln ln ln ln1212V 12P 12R V VR V V C V V C S S ===-241→→熵变⎰⎰+=-412412d d T QT Q S S41p 42p p 12ln lnd 024T T C T T C TT C S S T T ==+=-⎰41→绝热过程111441144111----==γγγγV V T T V T V Tγγγγ/121/141144411)()(,p pp p V V V p V p ===在21→等温过程中 2211V p V p =γγγ/112/121/14114)()()(V V p p p p V V ===γγ11241)(-=V V T T2ln ln 1ln12P 41P 12R V V C T T C S S =-==-γγ7-22 有两个相同体积的容器,分别装有1 mol 的水,初始温度分别为1T 和2T ,1T >2T ,令其进行接触,最后达到相同温度T .求熵的变化,(设水的摩尔热容为mol C ). 解:两个容器中的总熵变⎰⎰+=-TT T T lT TC T T C S S 12d d mo mol 0212mol 21mol ln)ln (ln T T T C T T T T C =+= 因为是两个相同体积的容器,故)()(1mol 2mol T T C T T C -=-得212T T T +=21212mol 04)(lnT T T T C S S +=- 7-23 把0℃的0.5kg 的冰块加热到它全部溶化成0℃的水,问:(1)水的熵变如何?(2)若热源是温度为20 ℃的庞大物体,那么热源的熵变化多大? (3)水和热源的总熵变多大?增加还是减少?(水的熔解热334=λ1g J -⋅) 解:(1)水的熵变612273103345.031=⨯⨯==∆T Q S J 1K -⋅(2)热源的熵变570293103345.032-=⨯⨯-==∆T Q S J 1K -⋅(3)总熵变4257061221=-=∆+∆=∆S S S J 1K -⋅熵增加。

大学物理作业学生最终版

大学物理作业学生最终版

《大学物理》作业No.1 运动的描述班级 ________ 学号 _________ 姓名 _________ 成绩 _______一、选择题1. 一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间的关系有 [ ](A) v v v v ==, (B) v v v v =≠, (C) v v v v ≠≠,(D) v v v v ≠=,2. 某物体的运动规律为kt tv-=d d ,式中的k 为大于零的常数。

当t =0时,初速为0v ,则速度v 与t 的函数关系是 [ ] (A) 0221v kt v +=(B) 0221v kt v +-= (C) 02121v kt v +=(D) 02121v kt v +-=3. 一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量)则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动(C) 抛物线运动 (D) 一般曲线运动 4.一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为[ ] (A) trd d (B)(C )tr d d( D)22)d d ()d d (ty t x +二、填空题t r d d1. 一质点的运动方程为SI)(62t t x -=,则在t 由0至4 s 的时间间隔内,质点的位移大小为 ,在t 由0到4 s 的时间间隔内质点走过的路程为 。

2. ()()t t r t r ∆+与为某质点在不同时刻的位置矢量,试在两个图中分别画出v v r r ∆∆∆∆、以及、。

三、计算题1.(p36 习题1.6)一质点在xy 平面上运动,运动函数84,22-==t y t x (采用国际单位制)。

(1) 求质点运动的轨道方程并画出轨道曲线;(2) 求s t s t 2121==和时,质点的位置、速度和加速度。

2.(p38 习题1.18)当速录为30m/s 的西风正吹时,相对于地面,向东、向西和向北传播的声音速率各是多大?已知声音在空气中传播的速率为344m/s 。

大学物理规范作业(本一)08解答

大学物理规范作业(本一)08解答

2u
O点振动方程为:yO 0.03 cos( 50t ) 2 y 0.03 cos[ 50 (t x) ] 波函数为: 2
y 0.03cos(50t 2 ) 0.03cos50t
初相位=-2(或=0)
(2)当x1=0.05m时,代入波函数有:
8
x
5
3. 一图示为 t=0 时平面波波形图,则 x=0 处质元振动的 初相位为 ___________ ;该波波长=_________m 。 4 分析:⑴t=0时,x=0的质 元处于负的最大位移,即
y A O -A 3 u x (m)
( x0)
又由图可知x=3处与x=0处正好相距3λ/4,即
2.一平面简谐波沿 x轴正向传播,振幅为A,频率为ν , 传播速度为 u , t=0 时,在原点 O 处的质元由平衡位置 向y轴正方向运动,则此波的波动方程为
x 3 _________________距 离 O 点 3λ/4 处 的 P 点 u 2 y A cos 2t (如图所示)的振动方程为____________________ 。
分析:⑴由波动方程 得:A 0.2(m),
2




2
0,
所以 4(m)
2 y 3 2 2 a 2 | x3 0.2 cost x | x3 0.2 cost 2 2 t
4
3 y 分析:⑴由旋转矢量法得: ( x 0 ) 2 3 3 4 ) 则o点振动方程:y( x 0) A cos( 2t 2 x 3 o P ] 波动方程为: y A cos[ 2 (t ) u 2 取 x 3 / 4 得P点振动方程: y( x3 / 4) A cos2t

《大学物理教学资料》规范作业30 23页

《大学物理教学资料》规范作业30 23页

不变。插入之后,两板间的电势差减少为原来的60%,
求电介质的相对介电常量多大?
解:设电容器极板间距为d,电荷密度为
σ,电介质未插入时,极板间的场强、
电势为: E 0
U0

0
d
若介质的厚度为T,插入介质后介质中的场强
这时两板间的电势差
r
Er

r 0

U T (dT)
若将0点的电势取为零,在 那轴 么线与窄缝之间线 离轴
R3 处P点的电势 Up
l ln 2 2 0 3

解用补偿法:设想圆柱原来没有窄缝,用
宽度为l,面电荷密度为-σ的带电窄条补在窄
缝处,由于圆柱面对场强的贡献为0, p点
的场强由该窄条产生,该窄条的电荷线密度
为 l
l
0点的场强为 E电气2学院0R学习部资料库
r0
电0气学院学习部资料库
21
由题中给出的条件
U U 0[ r0T0(dT)/]0d
T d T
解出

rd d
0.6
1
r
d(0.6dT)2(0.621.5)0.46
T
d 1.5
2
r1/0.4 62.14
电气学院学习部资料库
22
Thank you

0
R
11
E 2 4 0 R
结果如图。
同样可以得到-q的场强,则 合场强为:
Ey
2Eco4s5
2
2 4 0R
1 2


2 0 R
q
2 0R 2
E
E
电场强度沿 –y 方向
E

q

大学物理第8章 稳恒磁场 课后习题及答案之欧阳道创编

大学物理第8章 稳恒磁场 课后习题及答案之欧阳道创编

第8章 稳恒磁场 习题及答案 时间:2021.03.06 创作:欧阳道 6. 如图所示,AB 、CD 为长直导线,C B 为圆心在O点的一段圆弧形导线,其半径为R 。

若通以电流I ,求O 点的磁感应强度。

解:O 点磁场由AB 、C B 、CD 三部分电流产生,应用磁场叠加原理。

AB 在O 点产生的磁感应强度为 C B 在O 点产生的磁感应强度大小为θπμR I B 402=RI R I 123400μππμ=⨯=,方向垂直纸面向里 CD 在O 点产生的磁感应强度大小为)231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。

已知圆环的粗细均匀,求环中心O 的磁感应强度。

解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

且1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外 2I 产生的磁感应强度大小为θπμRI B 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B 环中心O 的磁感应强度为8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。

解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。

以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。

在载流平板上取dx a I dI =,dI 在P 点产生的磁感应强度大小为x dI dB πμ20=dx axI πμ20=,方向垂直纸面向里 P 点的磁感应强度大小为方向垂直纸面向里。

9. 如图所示,真空中有两个点电荷A ,B ,分别带有电量q +和q -,相距为d 。

它们都以角速度ω绕轴'OO 转动,轴'OO 与AB 连线相互垂直,其交点为C ,距A 点为3d。

大学物理第八章课后答案 .

大学物理第八章课后答案 .

习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷20220)33(π4130cos π412a q q a q '=︒εε解得q q 33-='(2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得θπεθtan 4sin 20mg l q =8-3 根据点电荷场强公式204r qE πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解:20π4r r q E ε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S qE 0ε=,所以f =S q 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S qE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε=,另一板受它的作用力S q S q q f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p .∵ l r >>∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图 8-6 长l =15.0cmAB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε2220)(d π4d x a xE E llP P -==⎰⎰-ελ ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=lQx E 0d ,即QE只有y 分量,∵22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d ll x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0R E E x ==ϕϕελϕπd cos π4)cos(d d 0R E E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπR E y∴R E E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E.解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强P Ed 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ ∵22cos 221l r l +=θ 12cos cos θθ-= ∴24π4d 22220l r ll r E P ++=ελ P Ed 在垂直于平面上的分量βcos d d P E E =⊥∴424π4d 222222l r rl r l r lE+++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ ∵l q 4=λ ∴2)4(π422220l r l r qrE P ++=ε 方向沿 8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(x Rarctan=α)解: (1)由高斯定理0d εq S E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴)(π42200x R Sq +=Φε02εq=[221x R x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r S ααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,=E8=r cm 时,∑q 3π4p=3(r )3内r -∴()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外.12=r cm时,3π4∑=ρq-3(外r)内3r∴()42331010.4π43π4⨯≈-=rrrEερ内外1CN-⋅沿半径向外.8-11 半径为1R和2R(2R>1R)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r<1R;(2) 1R<r<2R;(3) r>2R处各点的场强.解: 高斯定理0dε∑⎰=⋅qSEs取同轴圆柱形高斯面,侧面积rlSπ2=则rlESESπ2d=⋅⎰对(1) 1Rr<0,0==∑Eq(2) 21RrR<<λlq=∑∴rEπ2ελ=沿径向向外(3) 2Rr>0=∑q∴0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间,nE)(2121σσε-=1σ面外,nE)(2121σσε+-=2σ面外,nE)(2121σσε+=n :垂直于两平面由1σ面指为2σ面.8-13 半径为R的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r<R的小球体,如题8-13图所示.试求:两球心O与O'点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1)ρ+球在O点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场d 33030r E ερ= ;(2) ρ+在O '产生电场d π4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场003ερ='E OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则03ερrE PO =,03ερr E O P '-=' ,∴00033)(3ερερερd r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p 在外场E 中受力矩E p M⨯=∴ qlE pE M ==max代入数字 4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解:⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε)11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R q R q -R q 0π6ε-=∴R qq U U q A oC O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sinπ-] R 0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生 0034π4πελελ==R R U∴0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强r E 0π2ελ=电子受力大小r e eE F e 0π2ελ==∴r v m r e 20π2=ελ 得1320105.12π2-⨯==e mv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷r qU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r 为r 方向单位矢量.(2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴()ix R qx i x U E 2/3220π4+=∂∂-=ε (3)偶极子l q p=在l r >>处的一点电势 200π4cos ])cos 21(1)cos 2(1[π4r ql ll r qU εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-=30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即∴AB AB AC AC E E d d =∴ 2d d 21===ACABAB AC E E σσ且 1σ+2σS q A= 得,32S q A =σ S q A321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:π4π42020=-=R qR qU εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q '(电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21='外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+R qR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电qq 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力0294π432322F r qq F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得S q261==σσ S qd U 2032-=-=εσσ S qd U 2054+=-=εσσ所以CB 间电场S q d U E 00422εεσ+== )2d (212d 02S q U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理∑⎰=⋅qS D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外(2)介质外)(2R r >电势r Q E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势rd r d⋅+⋅=⎰⎰∞∞rrE E U 外内2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势rd r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε )11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E ,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21UE E ==∴ r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴rl Q D π2=(1)电场能量密度22222π82l r Q D w εε== 薄壳中rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R V R R l Q rl r Q W W εε(3)电容:∵C Q W 22=∴)/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力为零,没有加速度.(2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C +=其上电荷123Q Q =∴355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量)111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容)11/(π422102R R Q W C -==ε 121049.4-⨯=F。

大学物理(下)规范作业(阳光)01解答

大学物理(下)规范作业(阳光)01解答
( A) 0.04m,
(C ) 0.08m,
π
2
;
π π −2 xB = 2 ×10 sin(π − 5t ) = 2 ×10 cos − (π − 5t ) = 2 ×10 cos 5t − 2 2
−2 −2
分析:
2
;
2 π ( D) 0.08m, − 2
( B) 0.04m,
( A) T / 4 ,
( B) T / 6,
( C) T / 8 ,
( D) T / 12
x
分析: 当质点从二分之一最大位移处运动到最大 位移处时,旋转矢量转过的角度为:
Q ω∆t = ∆θ
∆θ
∆θ = 0 − ( − ) = 3 3
π
π
oπ3
∆θT T 得: ∆t = = = ω 2π 6
2
2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的 一弹簧振子作简谐振动, 一弹簧振子作简谐振动 大小为振幅的1/4时 其动能为振动总能量的: 大小为振幅的 时,其动能为振动总能量的: (A)9/16 (B)11/16 (C)13/16 (D)15/16
;
A、B好为反相振动, 所以合振动的表达式为:
x = x A + xB = 6 ×10 − 2 ×10
(
−2
−2
)
π π −2 cos 5t + = 4 ×10 cos 5t + 2 2
4
二、填空题 1.一质点作简谐振动,其振动曲线如图所示。根据此图 一质点作简谐振动, 一质点作简谐振动 其振动曲线如图所示。 用余弦函数描述时, 可知,它的周期T= 3.43( s ) , ;用余弦函数描述时,其 可知,它的周期 − 2π 3 初位相为 。 分析: 由旋转矢量图可得: π 2π t = 0, ϕ = − , t = 2 s, ϕ = 3 2 因此从t=0到t=2的时间内旋转矢 量转过的角度为: t = 2 ϕ =π 2 1 2 7 ∆ϕ = π − − π = π 2 3 6 x o ∆ϕ 7π = Q ωt = ∆ϕ ∴ ω =

大学物理规范作业解答(全)

大学物理规范作业解答(全)

2.一小环可在半径为R的大圆环上无摩擦地滑动,而 大圆环能以其竖直直径为轴转动,如图所示。当圆 环以恒定角速度ω 转动,小环偏离圆环转轴而且相 对圆环静止时,小环所在处圆环半径偏离竖直方向 的角度θ B ( 为 ) (A) θ =π /2 (B)θ =arccos(g/Rω 2) (C)θ =arccos(Rω 2 / g)(D)须由小珠质量决定 解:环受力N的方向指向圆心,mg向下, 法向加速度在水平面内 N sin θ = ma n = ml ω2 N N cos θ = mg 由于 l=Rsinθ
大学物理规范作业
总(02)
牛顿运动定律 动量 角动量
一、选择题 1.站在电梯内的一个人,看到用细线连结的质量不同 的两个物体跨过电梯内的一个无摩擦的定滑轮而处于 “平衡”状态。由此,他断定电梯作加速运动,其加 速度为: (B) A)大小为g,方向向上; B)大小为g,方向向下; C)大小为g/2,方向向上;D)大小为g/2,方向向下; 分析:电梯中的观察者发现两个物体处于“失重”状 态,绳中张力为零。 两个物体只能相对地面作加速运动,并且加速度 一定为g,方向向下。 am地 am梯 a梯地 g 0 a梯地
an g
2 v0 x


an

a
v 曲率圆的半径一质点作直线运动,某时刻的瞬时速度为 v 2(m s )
,瞬时加速度为 a 2(m s 2 ) 。 则一秒后质点的 速度: (A) 等于零
1
(B)等于 2(m s 1 )
(C)等于 2(m s ) (D)不能确定
1
(D)
分析: 只告诉该时刻的瞬时加速度,并不知道加速度的 变化规律,所以一秒后质点的速度无法确定。

大学物理规范作业上册答案全

大学物理规范作业上册答案全

R1
r3
R 3R
(G
Mm r2
)dr
3R
Em A
R2 R1
G
Mm r3
r
dr
(G Mm )dr
3R
r2
GMm
3R
21
2.一链条长度为L,质量为m , 链条的一端放在桌面上, 并桌用面手上拉要住做,功另A=一端有1/14悬m。在gL桌边,将链条全部拉到
32 解法1:将链条全部拉到桌面上做功的效果 就是使悬在桌边链条的重力势能增加,
比, dv kv 2 ,式中k为正常数,求快艇在关闭发动机
dt
后行驶速度与行驶距离的关系。
解: 作一个变量代换
a kv 2 dv dv dx v dv dt dx dt dx
得到: kv dv kdx dv
dx
v
积分得到: k x ln v v0
v0为初始速度
8
大学物理规范作业上册
02
17
24
2.质量为m的物体放在光滑的水平面上,物体的两边 分别与劲度系数k1和k2的弹簧相连。若在右边弹簧的
末端施以拉力F,问(1)该拉力F非常缓慢地拉过距离l,F
做功多少?(2)瞬间拉到l便停止不动,F做的功又为 多少?
解:(1)拉力作功只增加二弹 簧的弹性势能。
k2l2 l1
k1l1 l2 l
当t=1秒时,其切向加速度的大小at = 4
;法
向解加:ar速度d2的vt 2大i4小i
an= 2
costj
2 cos tj
v
。 dr
dt
4ti sin tj
dt
根据曲线运动的加速度为
at
dv dt

大学物理学 (第版.修订版) 北京邮电大学出版社 上册 第八章习题8答案

大学物理学 (第版.修订版) 北京邮电大学出版社 上册 第八章习题8答案

习题8选择题(1) 关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是准静态过程.②准静态过程一定是可逆过程.③不可逆过程发生后一定找不到另一过程使系统和外界同时复原.④非静态过程一定是不可逆过程.以上说法,正确的是:[](A) ①、②、③、④. (B) ①、②、③.(C) ②、③、④. (D) ①、③、④.[答案:D. 准静态过程不一定是可逆过程.因准静态过程中可能存在耗散效应,如摩擦、粘滞性、电阻等。

](2) 热力学第一定律表明:[](A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.[答案:C。

热力学第一定律描述个热力学过程中的能量守恒定性质。

](3) 如题图所示,bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过程中气体做功与吸收热量的情况是: [](A) b1a过程放热,做负功;b2a过程放热,做负功.(B) b1a过程吸热,做负功;b2a过程放热,做负功.(C) b1a过程吸热,做正功;b2a过程吸热,做负功.(D) b1a过程放热,做正功;b2a过程吸热,做正功.题图[答案:B。

b1acb构成正循环,ΔE = 0,A净> 0,Q = Q b1a+ Q acb= A净>0,但Q acb= 0,∴Q b1a >0 吸热; b1a压缩,做负功b2a cb构成逆循环,ΔE = 0,A净< 0,Q = Q b2a+ Q acb= A净<0,但Q acb= 0,∴Q b2a <0 放热; b2a压缩,做负功](4) 根据热力学第二定律判断下列哪种说法是正确的.[](A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量.[答案:C. 热力学第二定律描述自然热力学过程进行的条件和方向性。

大学物理第8章学习题答案 北京邮电大学出版社

大学物理第8章学习题答案 北京邮电大学出版社

习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,S q E 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin rp πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p .∵ l r >>∴ 场点P 在r 方向场强分量30π2cos rp E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x x E Qy λε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan=α) 解: (1)由高斯定理d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量6εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量6εq e=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则24εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E中受力矩E p M ⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解:⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示π41ε=O U 0)(=-RqR q 0π41ε=Uc )3(R q R q -R q 0π6ε-=∴Rqq U U q A o C O00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势. 解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r rq r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=2220π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r qq F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持UU AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ 所以CB 间电场 S qd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rr Q E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε= 3R r >时 302π4r rQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F。

高考物理专题复习文档作业(八)选修-含解析

高考物理专题复习文档作业(八)选修-含解析

作业(八)选修3-31.(2018届高三·湖南师大附中检测)(1)下列说法中正确的是()A.悬浮在液体中的微小固体颗粒的运动是无规则的,说明液体分子的运动也是无规则的B.物体中分子热运动的动能的总和等于物体的内能C.橡胶无固定熔点,是非晶体D.热机的效率可以等于100%E.对于同一种气体,温度越高,分子平均动能越大(2)标准状况下的压强为p 0=1×105Pa,在标准状况下用打气筒给一个体积为2.5 L的足球充气。

充气前足球内部空气的压强为1×105Pa,设充气过程中足球体积不变,且球内、外的温度均保持20 ℃不变。

在打气最后的时刻,对打气筒活塞施加的压力为F=200 N,设打气筒为圆柱形、其活塞的截面积为S=10 cm2,打气筒每次打气压下的高度为20 cm。

不计各种摩擦,打气筒的活塞与连杆、把手的重力均不计。

充气过程中,打气筒的活塞下压了多少次?解析:(1)根据布朗运动可知,悬浮在液体中的固体小颗粒的无规则运动间接说明液体分子的运动也是无规则的,所以A项正确。

因为物体的内能是分子热运动的动能和分子势能之和,所以B项错误。

晶体有固定的熔点,非晶体无固定熔点,C项正确。

因为热机工作时必有能量耗散,所以热机的效率不可能达到100%,D项错误。

因为温度是分子平均动能的唯一标志,所以E项正确。

(2)充气的最后的末态,设足球内气体的压强为p,以活塞为研究对象,由平衡条件得p0S+F=pS每次压下打气筒的体积为lS,设共需要压下打气筒n次。

取足球内原有气体与外面打进的气体整体为研究对象,做等温变化,由玻意耳定律得p0(2.5×103+nlS)=p·2.5×103,代入数据解得n=25(次)。

答案:(1)ACE(2)252.(1)下列说法正确的是()A.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动B.空中的小雨滴呈球形是水的表面张力作用的结果C.彩色液晶显示器利用了液晶的光学性质具有各向异性的特点D.高原地区水的沸点较低,这是高原地区温度较低的缘故E.干湿泡湿度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果(2)在水下气泡内空气的压强大于气泡表面外侧水的压强,两压强差Δp 与气泡半径r 之间的关系为Δp =2σr,其中σ=0.070 N /m 。

(完整版)大学物理学(课后答案)第8章

(完整版)大学物理学(课后答案)第8章

第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。

则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。

而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。

8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。

开始时它们的压强和温度都相同。

现将3 J 热量传给氦气,使之升高到一定的温度。

若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。

故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。

故正确的是(C )。

8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。

又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。

清华大学《大学物理》习题库试题及答案__08_电学习题答案

清华大学《大学物理》习题库试题及答案__08_电学习题答案

一、选择题1.1003:下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向 (B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同(C) 场强可由q F E / =定出,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受的电场力(D) 以上说法都不正确2.1405:设有一“无限大”均匀带正电荷的平面。

取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):3.1551:关于电场强度定义式0/q F E=,下列说法中哪个是正确的?(A) 场强E的大小与试探电荷q 0的大小成反比(B) 对场中某点,试探电荷受力F与q 0的比值不因q 0而变(C) 试探电荷受力F 的方向就是场强E的方向(D) 若场中某点不放试探电荷q 0,则F =0,从而E=04.1558:下面列出的真空中静电场的场强公式,其中哪个是正确的?(A)点电荷q 的电场:204r qE επ=(r 为点电荷到场点的距离)(B)“无限长”均匀带电直线(电荷线密度λ)的电场:r r E 302ελπ=(r 为带电直线到场点的垂直于直线的矢量)(C)“无限大”均匀带电平面(电荷面密度σ)的电场:02εσ=E (D) 半径为R 的均匀带电球面(电荷面密度σ)外的电场:r r R E 302εσ=(r 为球心到场点的矢量)5.1035:有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A) 03εq (B) 04επq (C) 03επq (D) 06εq6.1056:点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后: q( x q1035图(A) 曲面S 的电场强度通量不变,曲面上各点场强不变 (B) 曲面S 的电场强度通量变化,曲面上各点场强不变 (C) 曲面S 的电场强度通量变化,曲面上各点场强变化 (D) 曲面S 的电场强度通量不变,曲面上各点场强变化7.1255:图示为一具有球对称性分布的静电场的E ~r 关系曲线。

大学物理作业81

大学物理作业81

(D) (1)(4)
答:D
大学物理
8、“ 理想气体和单一热源接触作等温膨胀时,吸收的 热量全部用来对外做功”。对此说法有如下几种评论, 其中正确的是: (A) 不违反热力学第一定律,但违反热力学第二定律; (B) 违反热力学第一定律,但不违反热力学第二定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律
8、2mol氢气(可视为理想气体),从状态参量P0、V0、
T0的初态经等容过程到末态,在此过程中,气体从外
界吸收热量Q,则氢气末态的温度T=
的压强P=
P0
(1

Q iRT0
)
.
T0

Q iR
;末态
Q E M i RT M mol 2
T Q iR
大学物理
三、计算题:
1、如果一定量的理想气体,其体积和压强依照V a / p 的规律变化,其中a为已知常数。试求: (1)气体从体积V1膨胀到V2所做的功; (2)体积为V1时的温度T1与体积为V2时的温度T2之比。
Qp

M M mol
i
2 2
RT
Qv

M M mol
i RT 2
i2 4 i3
大学物理
3、 2mol的二氧化碳,在常压下加热,使温度从
30℃升高到80℃,则
(1)气体内能的增量为 2493J ;
(2)气体膨胀时所做的功 831J ;
(3)气体吸收的热量
3324J。
M E
M mol
答:C
二、填空题:
大学物理
1、理想气体在等容、等压、绝热变化过程中,内能
增量的表达式为

大学物理8章作业

大学物理8章作业

第八章波动光学(一) 光的干涉答案在最后一. 选择题1. 波长为λ的单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e,且,则两束反射光的光程差为(A)(B)(C)(D)2. 如图示,波长为λ的单色光,垂直入射到双缝,若P点是在中央明纹上方第二次出现的明纹,则光程差为(A) 0 (B) λ(C) 3λ/2 (D) 2 λ3. 在双缝干涉实验中,屏幕上的P点处是明条纹,若将缝盖住,并在连线的垂直平分面处放一高折射率介质反射面M,如图示,则此时(A) P点处仍为明条纹(B) P点处为暗条纹(C) 不能确定P点处是明条纹还是暗条纹(D) 无干涉条纹4. 双缝干涉中,若使屏上干涉条纹间距变大,可以采取(A) 使屏更靠近双缝(B) 使两缝间距变小(C) 把两个缝的宽度稍稍调窄(D) 用波长更短的单色光入射5. 波长为λ的单色光垂直入射到折射率为n的透明薄膜上,薄膜放在空气中,要使反射光干涉加强,薄膜厚度至少为(A) λ /2 (B) λ /2n(C) λ /4 (D) λ /4n6. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢向上平移,则干涉条纹(A) 向棱边方向平移,条纹间距变小(B) 向棱边方向平移,条纹间距变大(C) 向棱边方向平移,条纹间距不变(D) 向远离棱边方向平移,条纹间距不变(E) 向远离棱边方向平移,条纹间距变小7. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,再反射光中看到干涉条纹,则在接触点处形成的圆斑为(A) 全明(B) 全暗(C) 右半边明,左半边暗(D) 右半边暗,左半边明8. 在迈克耳逊干涉仪的一条光路中放入折射率为n的透明薄膜后,观察到条纹移动6条,则薄膜的厚度是(A) 3λ (B) 3λ /n(C) 3λ /(n-1) (D) 6λ /n二. 填空题9. 有两种获得相干光的基本方法,它们是__________________和___________________.10. 两同相位相干点光源、,发出波长为λ的光,A是它们连线中垂线上的一点,在与A间插入厚度为e折射率为n的薄玻璃片,两光源发出的光到达A点时光程差为______________,相位差为____________________.11. 杨氏双缝干涉实验中,双缝间距为d,屏距双缝的间距为D(D >>d),测得中央明条纹与第三级明条纹间距为x,则入射光的波长为_____________________.12. 一双缝干涉装置,在空气中观察时干涉条纹间距为1mm,若将整个装置放入水中,干涉条纹的间距变为_________________mm.(设水的折射率为4/3)13. 波长为λ的单色光垂直照射到两块平玻璃片构成的劈尖上,测得相邻明条纹间距为l,若将劈尖夹角增大至原来的2倍,间距变为__________________.14. 用λ=600nm 的平行单色光垂直照射空气牛顿环装置时,第四级暗环对应的空气膜厚度为______________µm .三. 计算题15. 在双缝干涉实验中,两个缝分别用和的厚度相同的薄玻璃片遮着,在观察屏上原来的中央明纹处,现在为第5级明纹,若入射光的波长为nm 600,求玻璃片的厚度.16. 用白光入射到mm 25.0 d 的双缝,距缝50cm 处放置屏幕,问观察到第一级明纹彩色带有多宽?17. 一薄玻璃片,厚度为μm4.0,折射率为1.50,用白光垂直照射,问在可见光范围内,哪些波长的光在反射中加强?哪些波长的光在透射中加强?18. 波长为680nm的平行光垂直地照射到12cm长的两块玻璃片上,两玻璃片一边相互接触,另一边被厚0.048mm的纸片隔开. 试问在这12cm内呈现多少条明条纹?(二) 光的衍射、偏振一. 选择题1. 光的衍射现象可以用(A) 波传播的独立性原理解释(B) 惠更斯原理解释(C) 惠更斯-菲涅耳原理解释(D) 半波带法解释2. 在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射到宽为a =4 λ的单缝上,对应衍射角为30o的方向,单缝处波面可分成的半波带数目为(A) 2个 (B) 4个(C) 6个 (D) 8个3. 单缝衍射中,若屏上P点满足,则该点为(A) 第二级暗纹(B) 第三级暗纹(C) 第二级明纹(D) 第三级明纹4. 利用波动光学试验可测细丝的直径,通常采用下述实验的哪种(A) 牛顿环 (B) 劈尖干涉(C) 劈尖干涉和杨氏双缝干涉 (D) 单缝衍射或衍射光栅5. 某元素的特征光谱中含有波长和的谱线,在光栅光谱中两种谱线有重叠现象,重叠处谱线的级次是(A) 2、3、4、5…(B) 2、5、8、11…(C) 2、4、6、8…(D) 3、6、9、12…6. 波长的单色光垂直入射于光栅常数的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2 (B) 3(C) 4 (D) 57. 一束光强为的自然光垂直穿过两个偏振片,两偏振片的偏振化方向成45o角,则穿过两个偏振片后的光强I为(A)(B)(C)(D)8. 一束光自空气斜入射至的玻璃表面时,发现没有反射光,由此可以判断(A) 入射光为完全线偏振光,入射角为(B) 入射光为完全线偏振光,入射角为(C) 入射光为任意光,入射角为(D) 入射光为任意光,入射角为二. 填空题9. 单缝衍射图样可以用非常简单的近似方法_____________________来分析,明纹最亮的是____________________.10. 在单缝衍射中,屏上第二级暗纹对应的单缝处波面可分为_________个半波带,若缝宽缩小一半,原来第二级暗纹处将是第______级_______纹.11. 在单缝夫琅和费衍射实验中,第一级暗纹的衍射角很小,若钠黄光()中央明纹宽度为,则蓝紫色光()的中央明纹宽度为______________.12. 复色光中含有波长和的两种波长,在光栅衍射实验中观察到第一级主明纹更靠近中央明纹,则_______.(填“﹥”“﹤”“=”)13. 单色光垂直入射到每毫米有1000条刻痕的光栅上,若第一级主明纹对应的衍射角为,则入射光波长为_______________.14. 一束自然光垂直穿过两个偏振片,两偏振片的偏振化方向夹角由转到,转动前后透射光强度之比为________________________.15.一束平行的自然光,以60o角入射到平玻璃表面上,若反射光束是完全偏振光,则透射光束的折射角为___________;玻璃的折射率为_________________.三. 计算题16. 在复色光照射下的单缝衍射图样中,其中某一波长的第3级明纹位置恰与波长λ=600nm的单色光的第2级明纹位置重合,求这光波的波长.17.某单色光垂直入射到一每厘米刻有6000条刻线的光栅上,如果第一级谱线的偏角为20︒,试问入射光的波长如何?它的第二级谱线将在何处?18. 已知一个每厘米刻有4000条缝的光栅,利用这个光栅可以产生多少级完整不重叠的可见光谱( =400~760nm)?19. 一束自然光和线偏振光的混合光,垂直通过一偏振片,以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍. 求入射光束中自然光和线偏振光的光强比值.第八章波动光学参考答案(一) 光的干涉一. 选择题1. ( C )2. ( D )3. ( B )4. ( B )5. ( D )6. ( C )7. ( D )8. ( C )二. 填空题9. (分波面法;分振幅法)10. (;)11. ( )12. ( 0.75mm ) 13. ( )14.( 1.2 )三. 计算题15. 在双缝干涉实验中,两个缝分别用和的厚度相同的薄玻璃片遮着,在观察屏上原来的中央明纹处,现在为第5级明纹.若入射光的波长为nm 600,求玻璃片的厚度.解: 放上玻璃后原中央明纹处的光程为对应第5级明纹16. 取白光波长范围400nm ~760nm ,用白光入射到mm 25.0 d 的双缝,距缝50cm 处放置屏幕,问观察到第一级明纹彩色带有多宽?解: 取白光波长范围400nm ~760nm ,对于波长的光波,第一级干涉明纹中心的位置为波长和的光波,第一级明纹间距为17. 一薄玻璃片,厚度为μm 4.0,折射率为1.50,用白光垂直照射,问在可见光范围内,哪些波长的光在反射中加强?哪些波长的光在透射中加强? 解:从玻璃片两表面反射的光的光程差光在反射中加强有可解得在可见光范围内,只有,相应波长为透射光的光程差光在透射中加强有可解得在可见光范围内,有和,相应波长为18. 波长为680nm的平行光垂直地照射到12cm长的两块玻璃片上,两玻璃片一边相互接触,另一边被厚0.048mm的纸片隔开. 试问在这12cm内呈现多少条明条纹?解:两玻璃片之间是一空气劈尖,相邻明纹间距为l设玻璃片长为L、纸片厚度为d则呈现明纹条数为(二) 光的衍射、偏振一. 选择题1. ( C )2. ( B )3. ( D )4. ( B )5. ( D )6. ( B )7. ( B )8. ( A )二. 填空题9. (菲涅耳半波带法;中央明纹)10. ( 4 ;第一级暗纹)11. ( 3 mm)12. (﹤)13. ( 500 nm)14. ()15.( 30o; 1.73 )三. 计算题16. 在复色光照射下的单缝衍射图样中,其中某一波长的第3级明纹位置恰与波长λ=600nm的单色光的第2级明纹位置重合,求这光波的波长.解:设未知波长为,则对波长λ为的单色光有由于明纹位置重合,17.某单色光垂直入射到一每厘米刻有6000条刻线的光栅上,如果第一级谱线的偏角为20︒,试问入射光的波长如何?它的第二级谱线将在何处?解:光栅常数为k =1时,,由光栅方程得第二级谱线偏角,由光栅方程得18. 已知一个每厘米刻有4000条缝的光栅,利用这个光栅可以产生多少级完整不重叠的可见光谱( =400~760nm)?解:光栅常数为设,,完整不重叠光谱条件是的k+1级主明纹对应角度大于的k级主明纹对应角度由光栅方程满足条件的,所以此光栅可产生一级完整不重叠谱线.19. 一束自然光和线偏振光的混合光,垂直通过一偏振片,以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍. 求入射光束中自然光和线偏振光的光强比值.解:设入射光中自然光强为,线偏光强为,通过偏振片后光强为由题意可得。

大学物理标准化作业答案

大学物理标准化作业答案

y A cos 2(t x / )
.在t = 1 / 时刻,x1 = 3 /4与x2 = /4二点处质元速度之比是 (A) -1. (B) 1 (C) 1. (D) 3
3
[ A ]
二、填空题 1、一平面简谐波沿x轴负方向传播.已知 x = -1 m处质点的振动 方程为 y A cos(wt ) ,若波速为u,则此波的表达式为
y A cos(wt 0 )
标准化作业(3)
y A cos{ [t ( x x0 ) / u] 0 } w
[ A ]
w (C) y A cos{ t [(x0 x) / u] 0 }
(D) y A cos{ t [(x x) / u] } w 0 0 2、一平面简谐波的表达式为
解:y 3 10 cos4t (1)
2
(2)
x y 3 10 cos 4 π(t ) u x 2 y 3 10 cos 4π(t ) 20 x 5 2 y 3 10 cos 4π(t ) u x 2 y 3 10 cos 4π[( t ) ] 20
3 3 4 t 2 ) (D) (C) x 2 cos( x 2 cos(4 t 2 ) 3 3 3 3 4 t 1 ) (E) x 2 cos(3 4
O -1 -2 t (s) 1
[C ]
二、填空题 5 1 3. 一物体作简谐振动,其振动方程为 x 0.04 cos( t ) (SI) . 3 2 1.2 s (1) 此简谐振动的周期T =__________________; -20.9 cm/s (2) 当t = 0.6 s时,物体的速度v =__________________. 三、计算题 5.一物体作简谐振动,其速度最大值vm = 3×10-2 m/s,其振幅 A = 2×10-2 m.若t = 0时,物体位于平衡位置且向x轴的负方向 运动. 求:(1) 振动周期T; (2) 加速度的最大值am ; (3) 振动方程的数值式. 4解: (1) vm = ωA ∴ω = vm / A =1.5 s-1 ∴ T = 2π/ω = 4.19 s (2) am = w2A = vm w = 4.5×10-2 m/s2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 l u 根据时间膨胀效应,有: t 0 1 2 u c
t
代入数据解得:u=0.894c。
3
(法二)根据长度缩短效应,飞船甲测得乙船的 长度为:
u l 100 1 2 c
5 7 依题意,有 l u 10 3
100
2
u 5 7 100 1 2 u 10 3 c
解: 对动量问题,由题知: 2m0v m0v
1 2 对动能问题,由题知: mc m0 c 2 m0 v 2 2 2 v 2 v 由此得:(1 ) (1 ) 1 c2 c2
2 2
3 2, v c 0 . 866 c 得: 2 v2 1 2 c
1
由此式解得: v
分析:m m0 代入得
m0
1 v
c
2
2m0
3 v c 0.866c 2.6 108 m / s 2
7
3.质子的静止质量mp=1.67265×10-27kg,中子的静止质 量mn=1.67495×10-27kg,一个质子和一个中子结合成的 氘核的静止质量md=3.34365×l0-27kg,在结合过程中放 出的能量是 Mev,它是氘核静止能量 2.22 的 倍。 1.18×10-3
2
1 EK 1 m c 2 0
2
)

v c (1
1 2800 1 2 2 c v (c v)(c v) 所以 2 5491 由于 Ek m0c2 c u, 可得
c 5m / s 所以 c v 2 2 5491

ab
运动时: m m0
m0
1 u
c
2
又根据长度缩短效应: b' b,
a'
a
m0 m' 板的面密度为: a' b' ab1 u 2 c

a 1 u
c
2

6
2.一观察者测出电子的质量为静止质量的两倍,则该 电子的速度为 0.866c 。
5 1 c 0.786c 2
9
2.在北京正负电子对撞机中,电子可以被加速到动能 为2.8×109eV, 试问这种电子的速率和光速相差多 少?这样的一个电子动量多大? 解: 由于
Ek m c2 m0 c 2 m0 c 2 (
2
1 v 1 2 c
2 2
2
1)

v c (1
( A)
(C ) ct 1 v 2 c 2 ,
分析:根据光速不变原理可得结论为(A)。
2
2.两飞船,在自己的静止参照系中测得各自的长度均为 100 m,飞船甲测得其前端驶完相当于飞船乙全长的距 离需时(5/3)×10-7s,则两飞船相对速度的大小为: (A)0.408c (B)0.5c 甲 ( D) 乙 (C)0.707c (D)0.894c 分析:以甲船为S系,乙船为S’系, 设两飞船相对速度的大小为u, 在S’系中测量,乙船测得飞船甲前端驶过其全长需 时Δt′=l0/u(异地时)。在S系中,飞船甲测得其前端驶 完相当于飞船乙全长的距离需时间 (5/3)×10-7s, 由于事 件发生于同一地点,故该时间为固有时间。
10
1 2 4 p E 2 m0 c c
Ek m0c2
E Ek
Ek 2.8 109 1.6 1019 18 1 p 1 . 49 10 kg m s c 3 108
11
大学物理规范作业
总(06)
洛仑兹速度变换 动力学理论
1
一、选择题 1.宇宙飞船相对地面以速度u作匀速度直线飞行,某一 时刻飞船头部的宇航员向飞船尾部发出一个光讯号, 经过 t(飞船上的钟)时间后,被接收器收到,由此 可知宇航员测出的飞船长度为:
( A) ct ,
( B) ut ,
( D)ut 1 v 2 c 2
解得:u=0.894c。
4
2
3.一电子运动速度v=0.99c,它的动能是(已知电子的静 能为0.51Mev): (A)4.0 Mev (B)3.5 Mev (C)3.l Mev (D)2.5 Mev
分析:
( C)
1
1 2 2 2 Ek m c m0c m0c 1 v c

2
m0c 7.09 1 3.1MeV
2
5
二、填空题 1.一质量均匀的矩形薄板,在它静止时测得其长为a、宽 为b,质量为m0,由此可算出其质量面密度为 m0 / ab 。假 定该薄板沿长为a的方向以接近光速的速度u作匀速直线 m0 运动,此时该板的质量面密度应为 。 2 ab 1 u m c 分析: 静止时:
分析:
E mc (mp mn md )c
2
1 3
2
3.55510 ( J ) 2.22(Mev)
E mn mn md 3 1.18 10 Ed 0 md
8
三、计算题 1. 在什么速度下粒子的动量等于非相对论动量的两倍? 又在什么速度下粒子的动能等于非相对论动能的两倍?
相关文档
最新文档