不等式专题复习(精心)

合集下载

第六讲:不等式的总复习——常见题型总结

第六讲:不等式的总复习——常见题型总结

第六讲:不等式的总复习一、知识点归纳1、用不等号连接的式子叫不等式。

2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

思考:举例说明不等式与等式的基本性质的区别?3、不等式的解集:(1)能使不等式成立的未知数的值,叫做不等式的解;(2)一个含有未知数的不等式的所有解,组成这个不等式的解集。

(3)求不等式解集的过程叫做解不等式。

4、一元一次不等式:不等式的两边都是整式,只含有一个未知数,且未知数的最高次数为1.5、解不等式的步骤:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化为1.6、在数轴上表示不等式的解集:取等画实心,不等画空心7、常见的不等关系词:不少于、至少(≥);不超过、至多(≤)8、一元一次不等式与一次函数的关系:对于一次函数b kx y +=,它与x 轴的交点坐标为(k b -,0) 当0>k 时,不等式0>+b kx 的解为k b x ->,不等式0<+b kx 的解为kb x -< 当0<k 时,不等式0>+b kx 的解为k b x -<,不等式0<+b kx 的解为kb x -> 因此,在做此类题时,先看一次函数(直线)与x 轴的交点,观察交点左右两边函数值y 的大小关系。

9、一元一次不等式组:一元一次不等式组中各个不等式的解集的公共部分叫做这个一元一次不等式组的解集常见题型解析考点一:解不等式并在数轴表示出来例1 解下列不等式,并把它们的解集分别表示在数轴上。

(1)132<-x x (2)2235-+≥x x (3)634321x x -≥-例2 求不等式64)1(4≤+x 的正整数解。

例3 (1)若代数式352243--+a a 的值不是正数,求a 的取值范围。

2023高考数学高频考点复习不等式知识点汇总

2023高考数学高频考点复习不等式知识点汇总

2023高考数学高频考点复习不等式知识点汇总高考是人生道路上的重要转折点,会对考生的将来进展产生重要的影响作用,甚至转变命运。

想要在高考中取得好成果,自然是要付出努力的,只有努力才能获得回报。

这里给大家共享一些2023高考高频考点学问归纳,盼望对大家有所关心。

2023高考数学不等式学问复习汇总高中数学不等式学问点总结:1.用符号〉,=,〈号连接的式子叫不等式。

2.性质:①假如xy,那么yy;(对称性)②假如xy,yz;那么xz;(传递性)③假如xy,而z为任意实数或整式,那么x+zy+z;(加法原则,或叫同向不等式可加性)④ 假如xy,z0,那么xzyz;假如xy,z0,那么xz⑤假如xy,mn,那么x+my+n;(充分不必要条件)⑥假如xy0,mn0,那么xmyn;⑦假如xy0,那么x的n次幂y的n次幂(n为正数),x的n次幂。

或者说,不等式的基本性质有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。

3.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.不等式考点:①解一元一次不等式(组)②依据详细问题中的数量关系列不等式(组)并解决简洁实际问题③用数轴表示一元一次不等式(组)的解集注:不等式两边相加或相减同一个数或式子,不等号的方向不变。

(移项要变号)不等式两边相乘或相除同一个正数,不等号的方向不变。

(相当系数化1,这是得正数才能使用)不等式两边乘或除以同一个负数,不等号的方向转变。

(或1个负数的时候要变号)2023高考数学复习方法技巧汇总技巧一:"小题'巧做在数学考试中,相对解答题,选择题被称为"小题'。

《不等式》复习指导.pptx

《不等式》复习指导.pptx

.用基本不等式求最值应注意:一"正"、二“定”、三“相等”三个条件.“正"即不等式中的“匕均为正数;“定”即应用不 等式时其一边必须为定值,如求f+与的最小值时有X
√+4≥2,p4=2,其中为定值;"相等”即两项相等时取等号.
x~Vxr
X
.常见错例剖析
2I
例1已知月y>0,且χ+y=∣,求一+一的最小值.Xy
2,用数形结合法解一元二次不等式
解一元二次不等式CUC+bx+c>。或αr2+bx+c<。,反应在图形上就是考查二次函数
丁=双2+云+。的图象与X轴的关系(图象在其上方还是在其下方),利用数学的基本思想一
——数形结合思想,理解、认识一元二次不等式,能帮助我们熟练解决问题,提高解决数学问题的速度.
用数形结合法解一元二次不等式的步骤如下:
例设不等式0r2+6χ+c>0的解集是{χ∣α<χ<∕}(。<αv∕),求不等式c√+H+c>0的
解集.
b「
解:由题意可知αvθ,a+β=一一,a∙β=-la a
由此可得CV0,—+-^=--.-*-τ=—,apaape
故c√+6χ+α<o的解集是11gx>-1.Iβαj
三、二元一次不等式(组)与简单线性规划
d=11sin∕?,ac+bd=tmι∙cos(a-∕?)≤tnn) 点评:①在同一变化过程中两次使用基本不等式时,必须注意取等号条件前后要一致;②要使〃不小于4c+Zv∕ 的一切值,必须也只须P的最小值就是“c+Zv∕的最大值;③三角代换法是求函数最值或证明不等式的常用方法.

必修五不等式专题复习

必修五不等式专题复习

《不等式》专题复习知识回顾一.不等式的主要性质:(1)对称性: (2)传递性:(3)加法法则: (同向可加) (4)乘法法则:(同向同正可乘)(5)倒数法则: ;(6)乘方法则: (7)开方法则:2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式二.解不等式1.一元二次不等式()00或022≠<++>++a c bx ax c bx ax 的解集: !2、简单的一元高次不等式的解法:(穿根法)其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶不过;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

()()()如:x x x +--<1120233、分式不等式的解法(转化为常规不等式)()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩注意:右边不是零时,先移项再通分,化为上两种情况再处理4、不等式的恒成立问题:应用函数方程思想和“分离变量法”转化为最值问题 ^若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <三、线性规划1、用二元一次不等式(组)表示平面区域2、二元一次不等式表示哪个平面区域的判断方法:定点法3、线性规划的有关概念:①线性约束条件 ②线性目标函数③线性规划问题 ④可行解、可行域和最优解:4、求线性目标函数在线性约束条件下的最优解的步骤: (1)寻找线性约束条件,列出线性目标函数; ¥(2)由二元一次不等式表示的平面区域做出可行域;(3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解四.均值不等式1.若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号.2.如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba变形: ① a+b ≥ab 2;②ab ≤22⎪⎭⎫⎝⎛+b a , 当且仅当a=b 时取等号.注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 3.常用不等式有: |(12222211a b a b ab a b++≥≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。

不等式的期末复习(关键知识点)

不等式的期末复习(关键知识点)

不等式的复习易错点:不等式两边都乘(或除以)同一个负数,不等号的方向改变.在计算的时候符号方向容易忘记改变.另外,不等式还具有互逆性和传递性.不等式的互逆性:如果a>b ,那么b<a ;如果b<a ,那么a>b . 不等式的传递性:如果a>b ,b>c ,那么a>c .一、不等式的基本概念【例1】 不等号的关键词.(1)正数 (2)非负数 (3)超过 (4)不超过 (5)最多 (6)至少 (7)不大于 (8)不小于【例2】 用不等式表示:⑴ x 的15与6的差大于2; ⑵ y 的23与4的和小于x ;【例3】 根据a b >,则下面哪个不等式不一定成立 ( )A . 22a c b c +>+B . 22a c b c ->-C . 22ac bc >D . 22a bc c>【例4】 若x y x y +>-,y x y ->,那么下列式子正确的是 ( )A . 0x y +>B . 0y x -<C . 0xy <D . 0yx>【例5】 如果0b a <<,则下列哪个不等式是正确的( )A .2b ab <B .2a ab >C .22b a >D .22b a ->-二、不等式的解集不等式的解集 在数轴上表示的示意图x a >xax a <xax a ≥xax a ≤a x【例1】 不等式215x +≥的解集在数轴上表示正确的是 ( )DCBA4204206420420-2【例2】 解不等式:3(2)61x x +<-【例3】 解不等式:342163x x --≤;【例4】 不等式132x x +>的负整数解是_______.【例5】 已知12(3)(21)3a a -<-,求关于x 的不等式(4)5a x x a ->-的解集.【例6】 已知m 、n 为实数,若不等式(2)340m n x m n -+-<的解集为49x >,求不等式(4)230m n x m n -+->的解集.【例7】 关于x 的不等式()122a x a +>+的解集是2x <-,则系数a ( )A.是负数B.是大于1-的负数C.是小于1-的负数D.是不存在的【例8】 若不等式ax a <的解集是1x >,则a 的取值范围是______.三、不等式组的解集不等式 图示 解集 x ax b >⎧⎨>⎩b ax a >(同大取大数)x ax b <⎧⎨<⎩abx b <(同小取小数)x ax b<⎧⎨>⎩ abb x a <<(大小交叉中间找)x ax b >⎧⎨<⎩ab无解(大大小小没有解)【例1】 不等式组10,2x x ->⎧⎨<⎩的解集是A .x >1B .x <2C .1<x <2D .0<x <2【例2】 求不等式组2(2)43,251x x x x -≤-⎧⎨--⎩<的整数解.【例3】 不等式组331482x x x +>⎧⎨-≤-⎩的最小整数解是( )A .0B .1C .2D .-1【例4】 不等式322x -<-<的正整数解为__________.1、讨论一次不等式组中的字母系数【例5】 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,求m 的取值范围.【例6】 已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解共有5个,求a 的取值范围.【例7】解下列不等式:53xx-<-;【例8】523xx-> -2、一元一次不等式组与方程的结合【例9】若方程组4143x y kx y+=+⎧⎨+=⎩的解满足条件01x y<+<,求k的取值范围.【例10】已知关于x、y的方程组325x y ax y a-=+⎧⎨+=⎩的解满足0x y>>,化简3a a+-.【例11】已知关于,x y的方程组2743x y mx y m+=+⎧⎨-=-⎩的解为正数.(1)求m的取值范围; (2)化简325m m+--.四、不等式组的解集【例1】某企业人事招聘工作中,共安排了五个测试项目,规定每通过一项测试得1分,未通过不得分,此次前来应聘的26人平均得分不低于4.8分,其中最低分3分,而且至少有3人得4分,则得5分的共有多少人?【例2】2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A B,两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?【例3】某饮料厂开发了A B,两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A B,两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题:⑴有几种符合题意的生产方案?写出解答过程;⑵如是A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?原料名称甲乙饮料名称A20克40克B30克20克【例4】某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.⑴设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请选择最省钱的租车方案.。

自学初中数学资料 不等式综合复习(资料附答案)

自学初中数学资料 不等式综合复习(资料附答案)

自学资料一、不等式综合复习【错题精练】例1.已知关于x的不等式ax<b的解为x>﹣2,则下列关于x的不等式中,解为x<2的是()A. ax+2<﹣b+2B. ﹣ax﹣1<b﹣1C. ax>bD.【解答】由已知不等式的解集确定出a为负数,确定出所求不等式即可.解:∵关于x的不等式ax<b的解为x>﹣2,∴a<0,则解为x<2的是﹣ax﹣1<b﹣1,故选:B.【答案】B例2.若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是()第1页共25页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 1<a≤7B. a≤7C. a<1或a≥7D. a=7【解答】求出不等式2x<4的解,求出不等式(a﹣1)x<a+5的解集,得出关于a的不等式,求出a即可.本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于a的不等式是解此题的关键.解:解不等式2x<4得:x<2,∵不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,∴a﹣1>0,x,∴≥2,﹣2≥0,≥0,≥0,∵a﹣1>0,∴解得:1<a≤7,故选:A.【答案】A例3.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值范围是__________ .第2页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】【答案】1<z<11例4.若不等式x<a只有5个正整数解,则a的取值范围.【答案】5<a≤6.例5.定义新运算:对于任意实数a,b都有:a⊕b=a(a−b)+1.如:2⊕5=2×(2﹣5)+1=﹣5,那么不等式3⊕x<13的解集为.【答案】x>−1.【举一反三】1.若关于x的不等式3m−2x<5的解集是x>3,则实数m的值为..【答案】1132.我们把称作二阶行列式,规定他的运算法则为,如:,如果有,则x__________ .第3页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【解答】解:列不等式得:2x﹣(3﹣x)>0,整理得:2x﹣3+x>0,解得:x>1.故答案为:x>1.【答案】x>13.不等式组无解,则a的取值范围是__________.【解答】二、三角形的初步知识综合复习【错题精练】例1.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF的度数为()A. 45°∠AB. 90∠AC. 90°﹣∠AD. 180﹣∠A【解答】由题中条件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°与∠BDE、∠CDF的差表示,进而求解即可.解:∵AB=AC,∴∠B=∠C,∵BD=CF,BE=CD∴△BDE≌△CFD,∴∠BDE=∠CFD,第4页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=∠C,∵∠A+∠B+∠C=180°.∴∠A+2∠EDF=180°,∴∠EDF=90°﹣∠A.故选:B.【答案】B例2.如图∠BAC的平分线AD与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=22,AC=10,则BE=.【答案】6.例3.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,求∠EFC的度数.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45∘,又∵AB=AC,∴∠ABC=12(180∘−∠BAC)=12(180∘−45∘)=67.5∘,∴∠CBE=∠ABC−∠ABE=67.5∘−45∘=22.5∘,∵AB=AC,AF⊥BC,∴BF=CF,第5页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训∴BF=EF,∴∠BEF=∠CBE=22.5∘,∴∠EFC=∠BEF+∠CBE=22.5∘+22.5∘=45∘.【答案】45°.例4.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图,若AC=BC,AD=BE,CD=CE,∠ACE=55∘,∠BCD=155∘,则∠BPD的度数为.【答案】130°.【举一反三】1.(1)如图1所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O,试说明∠BOC=90∘+∠A.(2)如图2所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线,试说明∠D=90∘−∠A.(3)如图3,B、C、D在一条直线上,∠PBC=∠ABC,∠PCD=∠ACD,求证∠BPC=∠BAC.【解答】(1)证明:∵在△ABC中,OB、OC分别是∠ABC、∠ACB的平分线,∠A为x∘∴∠OBC+∠OCB=12(180∘−∠A)=12×(180∘−x∘)=90∘−12∠A故∠BOC=180∘−(∠OBC+∠OCB)=180∘−(90∘−12∠A)=90∘+12∠A(2)证明:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∠A为x∘∴∠BCD=12(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180∘−∠BCD−∠DBC第6页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训[∠A+(∠A+∠ABC+∠ACB)]=180∘−12(∠A+180∘)=180∘−12=90∘−1∠A2(3)证明:∵BD为△ABC的角平分线,交AC与点ECD为△ABC外角∠ACE的平分线,两角平分线交于点D(∠A+2∠1),∠3=∠4,∴∠1=∠2,∠5=12在△ABE中,∠A=180∘−∠1−∠3∴∠1+∠3=180∘−∠A−−−−①在△CDE中,∠D=180∘−∠4−∠5=180∘−∠3−(∠A+2∠1),即2∠D=360∘−2∠3−∠A−2∠1=360∘−2(∠1+∠3)−∠A−−−−②,把①代入②得:2∠D=∠A.【答案】略.2.如图,△ABC中,∠ACB=90∘,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22∘,则∠BDC等于()A. 44°;B. 60°;C. 67°;D. 77°.【答案】C3.如图,P是等边△ABC外一点,把△ABP绕点B顺时针旋转60∘到△CBP′,已知∠AP′B=150∘,P′A:P′C=2:3,求PB:P′A.图一图二第7页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第8页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第9页 共25页 自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞 非学科培训【解答】、(1)证明:在△ABC 和△BAD 中,{AC =BD∠CAB =∠DBA AB =BA,∴△ABC ≌△BAD (SAS ),∴∠C =∠D ,在△ACE 和△BDE 中,{∠AEC =∠BED∠C =∠D AC =BD,∴△ACE ≌△BDE (AAS ),∴AE =BE ;(2)解:①四边形ACBF 为平行四边形,理由如下:由(1)得AE =BE ,∴∠EAB =∠EBA ,∵△ABF 与△ABD 关于直线AB 对称,∴∠EAB =∠BAF 且AD =AF ,∴∠EBA =∠BAF ,又∵△ABC ≌△BAD ,∴BC =AD ,∴BC =AF ,∴四边形ACBF 为平行四边形;②由题意得∠DAB =∠FAB =30∘,∴∠DAF =60∘,过E 作EG ⊥AF 于G ,∵AE =5,DE =3,∴AD =8,∴AF =8,AG =52,GE =5√32,∴GF =112, ∴EF =√EG 2+BF 2=7.【答案】(1)略;(2)平行四边形;7.例2.如图,PA⊥OA,PB⊥OB,垂足分别为A,B,AB交OP于点Q,且PA=PB,则下列结论:①OP平分∠AOB;②AB是OP的中垂线;③OP平分∠APB;④OP是AB的中垂线;⑤OQ=PQ;其中全部正确的序号是()A. ①②③;B. ①②④;C. ①③④;D. ③④⑤.【答案】C例3.在△ABC中,AB=AC,∠BAC=90∘,点D为AC上一动点.(1)如图1,点E、点F均是射线BD上的点并且满足AE=AF,∠EAF=90∘.求证:△ABE≌△ACF;(2)在(1)的条件下,求证:CF⊥BD;(3)由(1)我们知道∠AFB=45∘,如图2,当点D的位置发生变化时,过点C作CF⊥BD于F,连接AF.那么∠AFB的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘∴∠BAE=∠CAF在△ABE和△ACF中第10页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训{AB =AC∠BAE =∠CAF AE =AF∴△ABE ≌△ACF (SAS )(2)证明: ∵∠BAC =90∘∴∠ABE +∠BDA =90∘,由(1)得△ABE ≌△ACF∴∠ABE =∠ACF∴∠BDA +∠ACF =90∘又∵∠BDA =∠CDF∴∠CDF +∠ACF =90∘∴∠BFC =90∘∴CF ⊥BD(3)解:∠AFB =45∘不变化,理由如下:点A 作AF 的垂线交BM 于点E ,∵CF ⊥BD∴∠BAC =90∘∴∠ABD +∠BDA =90∘同理∠ACF +∠CDF =90∘∵∠CDF =∠ADB∴∠ABD =∠ACF同(1)理得∠BAE =∠CAF在△ABE 和△ACF 中{∠BAE =∠CAFAB =AC ∠ABD =ACF∴△ABE ≌△ACF (ASA )∴AE =AF∴△AEF 是等腰直角三角形∴∠AFB =45∘.【答案】(1)略;(2)略;(3)∠AFB =45∘不变化,理由:略.【举一反三】1.在△ABC 中,AB =AC ,∠BAC =90∘,点D 为AC 上一动点.(1)如图1,点E 、点F 均是射线BD 上的点并且满足AE =AF ,∠EAF =90∘.求证:△ABE ≌△ACF ;(2)在(1)的条件下,求证:CF ⊥BD ;(3)由(1)我们知道∠AFB =45∘,如图2,当点D 的位置发生变化时,过点C 作CF ⊥BD 于F ,连接AF .那么∠AFB 的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘,∴∠BAE=∠CAF,在△ABE和△ACF中{AB=AC∠BAE=∠CAFAE=AF∴△ABE≌△ACF(SAS);(2)证明:∵∠BAC=90∘,∴∠ABE+∠BDA=90∘,由(1)得△ABE≌△ACF,∴∠ABE=∠ACF,∴∠BDA+∠ACF=90∘,又∵∠BDA=∠CDF,∴∠CDF+∠ACF=90∘,∴∠BFC=90∘,∴CF⊥BD;(3)解:∠AFB=45∘不变化,理由如下:过点A作AF的垂线交BM于点E,∵CF⊥BD,∴∠BAC=90∘,∴∠ABD+∠BDA=90∘,同理:∠ACF+∠CDF=90∘,∵∠CDF=∠ADB,∴∠ABD=∠ACF,同(1)理得:∠BAE=∠CAF,在△ABE和△ACF中{∠BAE=∠CAF AB=AC∠ABD=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等腰直角三角形,∴∠AFB=45∘.【答案】略.2.如图,已知AC⊥BC,AD⊥BD,E为AB的中点.(1)如图1,求证:△ECD是等腰三角形;(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.【解答】(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90∘,∠ADB=90∘,又∵E为AB的中点,∴CE=12AB,DE=12AB,∴CE=DE,即△ECD是等腰三角形;(2)解:∵AD=BD,E为AB的中点,∴DE⊥AB,已知EF=3,DE=4,∴DF=5,过点E作EH⊥CD,∵∠FED=90∘,EH⊥DF,∴EH=EF⋅EDDF =125,∴DH=√DE2−EH2=165,∵△ECD是等腰三角形,∴CD=2DH=225.【答案】(1)略;(2)225.3.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AE=AF;(2)若AB+AC=16,S△ABC=24,∠EDF=120∘,求AD的长.【解答】(1)证明:∵DE、DF分别是△ABD和△ACD的高,∴∠AED=∠AFD=90∘,∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∵AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF;(2)解:∵△ADE≌△ADF,∴DE=DF,∴S△ABC=12⋅AB⋅DE+12⋅AC⋅DF=12⋅DE(AB+AC)=24,∵AB+AC=16,∴DE=3,∵∠ADE=∠ADF=60∘,∴∠DAE=30∘,∴AD=2DE=6.【答案】(1)略;(2)6.4.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.【解答】(1)证明:∵∠BAC=∠DAE=90∘,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAEAD=AE,∴△BAD≌△CAE(SAS);(2)解:BD=CE,BD⊥CE,理由如下:由(1)知:△BAD≌△CAE,∴BD=CE,∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45∘,∴∠ACE+∠DBC=45∘,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90∘,则BD⊥CE.【答案】(1)略;(2)BD=CE,BD⊥CE.5.如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)在图1中,你发现线段AC,BD的数量关系是,直线AC,BD相交成度角.(2)将图1中的△OAB绕点O顺时针旋转90∘角,这时(1)中的两个结论是否成立?请做出判断并说明理由.(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.【解答】(1)解:在图1中,线段AC,BD的数量关系是相等,直线AC,BD相交成90度角;(2)解:(1)中结论仍成立;证明如下:如图延长CA交BD于点E,∵等腰直角三角形OAB和OCD,∴OA=OB,OC=OD.∵AC2=AO2+CO2,BD2=OD2+OB2,∴AC=BD.∴△DOB≌△COA(SSS).∴∠CAO=∠DBO,∠ACO=∠BDO.∵∠ACO+∠CAO=90∘,∴∠ACO+∠DBO=90∘,则∠AEB=90∘,即直线AC,BD相交成90∘角.(3)解:结论仍成立;如图延长CA交OD于E,交BD于F,∵∠COD=∠AOB=90∘,∴∠COA+∠AOD=∠AOD+∠DOB,即:∠COA=∠DOB.∵CO=OD,OA=OB,∴△COA≌△DOB(SAS).∴AC=BD,∠ACO=∠ODB.∵∠CEO=∠DEF,∴∠COE=∠EFD=90∘.∴AC⊥BD,即直线AC,BD相交成90∘角.【答案】见解答.四、全等三角形综合复习【错题精练】例1.如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.【解答】解:BM=BN,BM⊥BN.理由:在△ABE和△DBC中,{AB=DB∠ABD=∠DBCEB=CB,∴△ABE≌△DBC(SAS).∴∠BAE=∠BDC.∴AE=CD.∵M,N分别是AE,CD的中点,∴AM=DN.在△ABM和△DBN中,{AB=DB∠BAM=∠BDNAM=BN,∴△ABM≌△DBN(SAS).∴BM=BN,∠ABM=∠DBN.∵∠ABD=∠DBC,∠ABD+∠DBC=180∘,∴∠ABD=∠ABM+∠MBE=90∘.∴∠MBE+∠DBN=90∘.即BM⊥BN.∴BM=BN,BM⊥BN.【答案】BM=BN,BM⊥BN.例2.如图,在Rt△ABC中,∠B=90∘,AC=10,∠C=30∘,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)DF=;(用含t的代数式表示)(2)求证:△AED≌△FDE;(3)当t为何值时,△DEF是等边三角形?说明理由;(4)当t为何值时,△DEF为直角三角形?(请直接写出t的值)【解答】(1)解:∵DF⊥BC,∴∠CFD=90∘,在Rt△CDF中,∠CFD=90∘,∠C=30∘,CD=2t,∴DF=12CD=t.(2)证明:∵∠CFD=90∘,∠B=90∘,∴DF∥AB.∴∠AED=∠FDE.在△AED和△FDE中,{AE=FD=t∠AED=∠FDEED=DE,∴△AED≌△FDE(SAS).(3)解:∵△AED≌△FDE,∴当△DEF是等边三角形时,△EDA是等边三角形.∵∠A=90∘−∠C=60∘,∴AD=AE.∵AE=t,AD=AC−CD=10−2t,∴t =10−2t .∴t =103. ∴当t 为103时,△DEF 是等边三角形.(4)解:∵△AED ≌△FDE ,∴当△DEF 为直角三角形时,△EDA 是直角三角形.当∠AED =90∘时,AD =2AE ,即10−2t =2t .解得:t =52;当∠ADE =90∘时,AE =2AD ,即t =2(10−2t ).解得:t =4.综上所述:当t 为52或4时,△DEF 为直角三角形.【答案】(1)t ;(2)略;(3)103;(4)52或4.【举一反三】1.如图,△ABC 中,∠ABC =45∘,AD ⊥BC 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与AD 相交于点G ,DF ⊥AB 于F ,交BE 于H .下列结论:①AD =BD ;②CE =BH ;③AE =12BG ;④CD +AG =BD .其中正确的序号是_________.【答案】①③④2.数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF =90∘,且EF 交正方形外角∠DCG 的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证△AME ≌△ECF ,所以AE =EF .在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【答案】解:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∵BM=BE.∴∠BME=45∘,∴∠AME=135∘.∵CF是外角平分线,∴∠DCF=45∘,∴∠ECF=135∘.∴∠AME=∠ECF.∵∠AEB+∠BAE=90∘,∠AEB+∠CEF=90∘,∴∠BAE=∠CEF∴△AME≌△BCF(ASA).∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE.∴∠N=∠PCE=45∘.四边形ABCD是正方形,∴AD∥BE.∴∠DAE=∠BEA.∴∠NAE=∠CEF.∴△ANE≌△ECF(ASA).∴AE=EF.3.如图,等边△ABC的边长为6,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.【解答】(1)解:如图,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB=60∘,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,且△PBF是等边三角形CF,BF=PB∴DF=CD=12∵P是AB的中点,即PB=1AB=3,2∴BF=3∴;(2)解:分两种情况讨论,得ED为定值,是不变的线段如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,由(1)证得△PFD≌△QCD,且△PBF是等边三角形∴FD=12FC,EF=12BF∴ED=FD+EF=12FC+12BF=12BC=3∴ED为定值同理,如图,若P在BA的延长线上,作PM∥AC的延长线于M,∴∠PMC=∠ACB,又∵AB=AC,∴∠B=∠ACB=60∘,∴∠B=∠PMC=60∘,∴PM=PB,且PE⊥BC∴BE=EM=12BM,△PBM是等边三角形∴PM=PB=CQ∵PM∥AC∴∠PMB=∠QCM,∠MPD=∠CQD且PM=CQ ∴△PMD≌△QCD(ASA),∴CD=DM=12CM,∴DE=EM−DM=12BM−12CM=12(BM−CM)=12BC=3综上所述,线段ED的长度保持不变.【答案】(1);(2)线段ED的长度保持不变.1.已知(a-)<0,若b=2-a,则b的取值范围是__________.【解答】根据被开方数大于等于0以及不等式的基本性质求出a的取值范围,然后再求出2-a的范围即可得解.2.有八个球编号是①至⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,两个轻球的编号是__________.【解答】由①+②比③+④重可知③与④中至少有一个轻球,由⑤+⑥比⑦+⑧轻可知⑤与⑥至少有一个轻球,①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤.3.若a,b均为整数,a+b=﹣2,且a≥2b,则有最大值是__________ .【解答】【答案】14.如图,在△ABC中,∠ACB=90∘,分别以点A,B为圆心,大于12AB长为半径作弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连结CD,BE,下列结论错误的是()A. AD=CD;B. BE>CD;C. ∠BEC=∠BDC;D. BE平分∠CBD.【答案】D.5.如图,Rt△ABC中,∠ACB=90∘,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为();A. 35;B. 45;C. 23.D. √32【答案】B.6.如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B运动运动至点C,△B′C′D 面积的大小变化情况是()A. 一直减小;B. 一直不变;C. 先减小后增大;D. 先增大后减小.【答案】D7.如图,△ABC中,点D在AC的延长线上,E、F分别在边AC和AB上,∠BFE和∠BCD的平分线相交于点P,若∠B=80∘,∠FEC=70∘,则∠1−∠2=°;∠P=°.【答案】15,95.。

(完整版)初中不等式专题复习知识点及习题

(完整版)初中不等式专题复习知识点及习题

专题二不等式(组)知识点汇总:1.不等式:用“>”、“<”、“≥”或“≤”将两个式子连结以表示大小关系的式子。

2.不等式的解:把使不等式建立的未知数的值叫做不等式的解。

3.不等式的解集:使不等式建立的 x 的取值范围叫做不等式解的会合,简称解集。

4.不等式的基天性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

5. 解不等式:求不等式解集的过程。

其目的本质就是把不等式化为“x>a 或 x ≥ a”、“ x<a 或 x≤ a”的形式。

6.用数轴表示不等式:(大于向右画,小于向左画,无等号画圆圈,有等号画实心点)7.一元一次不等式:不等式左右两边都是整式,只含有一个未知数,而且未知数的最高次数是 1,这样的不等式叫做一元一次不等式。

思虑:解一元一次不等式与解一元一次方程有什么异同?8.一元一次不等式组:把两个或多个一元一次不等式组合起来是一个一元一次不等式组。

9.不等式组的解集:不等式组中每一个解集的公共部分叫做不等式组的解集。

记:同大取大,同小取小,大小小大取中间,大大小小无处找。

思虑:解一元一次方程组与解一元一次不等式组有什么异同?随堂练习:1.已知 a<0,则对于 x 的不等式 ax< 5 的解为 ________,5x <a 的解为 ________。

2.已知 a,b 为常数,若 ax+b>0 的解集为 x<3,则 bx+a< 0 的解集为 ________。

3. 若不等式组有解,则k的取值范围是()(A)k< 2(B)k≥ 2(C)k<1(D)1≤k<24.若( x+1)( x-1 )< 0,则 x 的解集为 __________。

5.九年级一个班有几个同学毕业前合影纪念,每人交 0.7 元,一张彩色底片元,扩印一张相片 0.50 元,每人分一张,在收上来的钱尽量用掉的前提下,这张相片上的同学最罕有 ________个。

不等式专题复习

不等式专题复习

不等式专题复习一、解一元二次不等式1已知集合2设a 0, X i ,X 2是方程axbx c 0的两实根,且x 1 x 2,则其解集如下表:2,N= xx x 6 0,贝U M N 为M=xx23x 28 02、已知A=1 , B=xx2 5x 4 0,若A B=,则实数a 的范围是3、若 0 a 1,则不等式(a x)(x1一)0的解是a4、若不等式 ax 2+ 8ax + 21<0的解集是{x| — 7<x< — 1},那么a 的值是ax b5、关于x 的不等式ax b 0的解集为1, ,则 --------------0的解集为x 26、若不等式x 2ax a3的解集不是空集,则实数 a 的取值范围是7、关于x 的不等式ax 2 +bx+ c<0的解集为{x| x< a 或x> 3 }, ( a < 3 <0),求不等式ax 2— bx + c>0的解集 ________________________8、解不等式ax22(a 1)x 420 与B x|x 2ax a 2 0,若B A,求a9、关于x的方程x2(m 1)x 2 m 0的两根为正数,求m的取值范围。

的取值范围。

.兀一次不等式组与简单线性规划问题1、二元一次不等式表示的平面区域:(1)取一个特殊点(X0, y。

),从Ax。

By。

C的正负即可判断Ax By C 0表示直线哪一侧的平面区域。

(2)当两个点位于直线Ax0 By0 C=0 两侧,(AX1 By1 C)(Ax? By? C) 02.线性规划问题应用题的求解步骤:(1)先写出决策变量,找出约束条件和线性目标函数; (2)作出相应的可行域;(3)确定最优解3、典型试题1.不等式x+ay-6>0表示的区域在直线 x+ay-6=0的(上方,下方,左方,右方)2.若点(1,3 )和(-4,-2 )在直线2x+y+m=0的两侧,贝U m的取值范围是3、已知平面区域如右图所示,z mx y(m 0)在平面区域内取得最大值的最优解有无数多个,则m的值为x 4、已知实数x, y满足x y 32y 50,则y 2x的最大值是10、已知集合A x|x2 5x 45、已知变量X, y满足约束条件2 < 0,则1的取值范围是7 < 0, x6、已知x x2y2 10y 25的最小值是2x7、点(-2 , -1 ) 在直线X my 0下方,则m的取值范围为2 &已知函数f (x) ax bx(a 0)满足1 f ( 1) f(1)5,则f( 3)的取值范围为x9、若不等式组x 3y 4所表示的平面区域被直线kx3x面积相等的两部分, 则k的值为3x 10、设x,y满足约束条件y 6 0y 2 0若目标函数0, y 0ax by(a 0, b 0)的最大值为2 3 12,则一一的最小值为a b11、设实数x,y满足x2 (y91) 1,当x y c0时,求c的取值范围2二、基本不等式a b1、由“ ------j ab (a ,b 都大于0)”可以看岀:2 若ab = s (为定值),则a b 在 若 a b = s2、 变式:(3)ab (为定值) (1)a 2a 2b 22 取得最取得最 3、 典型试题 1、 2、函数3、 4、 5、9、 时, ,则ab 在 ______________时, b 22ab(a,b R) (2)a b 2jab(a,b 0) 2 2 a b 2 a b (a,b 0) (4)ab (号)2(a,b R)(5)a ^-b 43x --- 的最小值x 1y5的最大值为J x 2 4 2y 1,则 2x 4的最小值是如果正数a, b 满足ab 1知X, y R 且一 x 已知 a,b, x, y R (a 18,则a,b 的 值为已知 0 x4 1,则4x 已知 x, y R ,且2x 6、7、 8 y 1 0, 91 x, y,z R * ,x 10、已知△ 11、设X a b 3,那么ab 的取值范围是1,则x y 的最小值是a b,b 为常数),a b 10, - — 1,若x y 的最小值为x y—的最小值是 x 则——最小值为 2x+1 y+1 2y 3z 2 0,—的最小值为 XZ ABC 中,C=6O 0,c=5 则^ ABC 面积的最大值为 0,且x 2+y 2=1,求X ?』1 y 的最大值为。

不等式复习题及答案

不等式复习题及答案

不等式复习题及答案1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集为 \( (-1, 2) \),求 \( a \)、\( b \) 和 \( c \) 的值。

答案:根据解集 \( (-1, 2) \) 可知,\( -1 \) 和 \( 2 \) 是方程\( ax^2 + bx + c = 0 \) 的两个实根,且 \( a < 0 \)。

根据根与系数的关系,我们有 \( -1 + 2 = -\frac{b}{a} \) 和 \( -1\times 2 = \frac{c}{a} \)。

解得 \( b = -a \) 和 \( c = -2a \)。

由于 \( a < 0 \),我们可以取 \( a = -1 \),则 \( b = 1 \),\( c = 2 \)。

2. 已知 \( x \) 和 \( y \) 满足 \( x + y \geq 3 \) 且 \( x -y \leq 1 \),求 \( x^2 + y^2 \) 的最小值。

答案:要使 \( x^2 + y^2 \) 最小,\( x \) 和 \( y \) 应尽可能接近。

由 \( x + y \geq 3 \) 和 \( x - y \leq 1 \) 可得 \( 2x\leq 4 \),即 \( x \leq 2 \)。

当 \( x = 2 \) 时,\( y = 1 \)。

因此,\( x^2 + y^2 \) 的最小值为 \( 2^2 + 1^2 = 5 \)。

3. 若 \( a \)、\( b \) 和 \( c \) 是正实数,且满足 \( a + b +c = 1 \),求 \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \) 的最小值。

答案:根据柯西-施瓦茨不等式,我们有 \( (a + b +c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq(1 + 1 + 1)^2 = 9 \)。

一轮复习专题34 不等式(知识梳理)

一轮复习专题34 不等式(知识梳理)

专题34不等式(知识梳理)一、不等式的有关概念1、不等式的定义:用数学符号“≠、>、<、≥、≤”连接的两个数或代数式表示不等关系的式子叫不等式。

不等式的定义所含的两个要点:(1)不等符号<、≤、>、≥或≠;(2)所表示的关系是不等关系。

2、不等式b a ≥的含义:不等式b a ≥应读作“a 大于或者等于b ”,其含义是指“或者b a >,或者b a =”,等价于“a 不小于b ,即若b a >或b a =之中有一个正确,则b a ≥正确。

不等式中的文字语言与符号语言之间的转换:大于大于等于小于小于等于至少至多不少于不多于>≥<≤例1-1.判断(正确的打“√”,错误的打“×”)(1)某隧道入口竖立着“限高5.4米”的警示牌,是指示司机要安全通过隧道,应使车的整体高度h 满足关系为5.4≤h 。

(√)(2)用不等式表示“a 与b 的差是非负数”为0>-b a 。

(×)(3)不等式2≥x 的含义是指x 不小于2。

(√)(4)若b a <或b a =之中有一个正确,则b a ≤正确。

(√)【解析】(1)∵“限高5.4米”即为“高度不超过5.4米”。

不超过用“≤”表示,故此说法正确。

(2)∵“非负数”即为“不是负数”,∴0≥-b a ,故此说法错误。

(3)∵不等式2≥x 表示2>x 或2=x ,即x 不小于2,故此说法是正确的。

(4)∵不等式b a ≤表示b a <或b a =,故若b a <或b a =中有一个正确,则b a ≤一定正确。

二、实数比较大小的依据与方法1、实数的两个特征(1)任意实数的平方不小于0,即R a ∈⇔02≥a 。

(2)任意两个实数都可以比较大小,反之,可以比较大小的两个数一定是实数。

2、实数比较大小的依据(1)如果b a -是正数,那么b a >;如果b a -等于零,那么b a =;如果b a -是负数,那么b a <。

高考数学《不等式》专项复习

高考数学《不等式》专项复习

高考数学《不等式》专项复习一、考纲解读1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值.2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位.3.了解基本不等式,会用它来证明不等式和求最值.4.会用综合法、分析法、反证法及数学归纳法证明不等式.二、命题趋势探究本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档.三、知识点精讲(一).不等式的性质1.同向合成(1),a b b c a c >>⇒>;(2),c a b d a c b d >>⇒+>+;(3)0,c 0a b d ac bd >>>>⇒>.(合成后为必要条件)2.同解变形(1)a b a c b c >⇔+>+;(2)0,0,a b c ac bc c ac bc >⇔>>⇔<<;(3)11000a b b a>>⇔>>⇔>>. (变形后为充要条件)3.作差比较法0,0a b a b a b a b >⇔>-><⇔-<(二).含绝对值的不等式(1)0,||a x a a x a ><⇔>-<<;0,||,a x a x a x a >>⇔>><-或(2)22||||a b a b >⇔>(3)||||x a x b c +++<零点分段讨论(三).基本不等式(1)222a b ab +>(当且仅当等号成立条件为a b =)(2)0,0,2a b a b +>>≥a b =);0,0,0,3a b c a b c ++>>>≥(当且仅当a b c ==时等号成立) (3)柯西不等式22222()()()a b c d ac bd ++≥+(当且仅当ad bc =时取等号)①几何意义:||ad bc ⋅⇔+≤a b a b ||||||≤ ②推广:222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++.当且仅当向量12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.(四).不等式的证明(1)作差比较法、作商比较法.(2)综合法——由因到果.(3)分析法——执果索因.(4)数学归纳法.(5)构造辅助函数利用单调性证明不等式.(6)反证法.(7)放缩法.四、解答题题型总结核心考点一:解含绝对值的不等式对于含绝对值的不等式问题,首先要考虑的是根据绝对值的意义去掉绝对值.常用的去绝对值方法是零点分段法.特别用于多个绝对值的和或差不等式问题.若单个绝对值的不等式常用以下结论:|()|()()()()f x g x g x f x g x <⇔-<<;|()|()()()()()f x g x f x g x f x g x >⇔><-或;22|()||()|()()(()())(()())0f x g x f x g x f x g x f x g x >⇔>⇔+->. 有时去绝对值也可根据22||x x =来去绝对值. 1.在实数范围内,不等式||2|1|1x --≤的解集为 .解析 由于||2|1|1x --≤,即1|2|11x -≤--≤,即|2|2x -≤,所以222x -≤-≤,所以04x ≤≤.所以不等式的解集为[0,4].2.不等式|5||3|10x x -++≥的解集是( )A. [5,7]-B. [4,6]-C. (,5][7,)-∞-+∞D. (,4][6,)-∞-+∞解析 解法一:当5≥x 时,原不等式可变形为1022≥-x ,所以6≥x ;当53<<-x 时,原不等式可变形为108≥,显然不成立;当3-≤x 时,原不等式可变形为4,1022-≤≥-x x 得,所以(][)+∞⋃-∞-∈,64,x .之和,要使点x 到点x =-3与x =5的距离之和等于10,只需64=-=x x 或,于是当6≥x ,或4-≤x3.已知函数()|2||5|f x x x =---.(1)证明:3()3f x -≤≤;(2)求不等式2()815f x x x ≥-+的解集.解析 (1)()|2||5|f x x x =--- , |()|2||5|||(2)(5)|3f x x x x x =---≤---=,故3()3f x -≤≤ .(2)由(1)知.当2x ≤ 时,2()815f x x x ≥-+ 的解集为空集;当5x ≥ 时,2()815f x x x ≥-+ 的解集为{|56}x x ≤≤.核心考点二:含绝对值不等式恒成立,求参数问题1.已知()|1|()f x ax a =+∈R ,不等式()3f x ≤的解集为{}|21x x -≤≤. (1)求a 的值;(2)若|()2()|2x f x f k -≤恒成立,求k 的取值范围.解析 (1)由|1|3ax +≤得42ax -≤≤,又()3f x ≤的解集为{}|21x x -≤≤,所以当0a ≤时,所以|()|1h x ≤,因此1k ≥,即k 的取值范围是[1,)+∞.2.已知函数()|||2|f x x a x =++-.(1)当3a =-时,求不等式()3f x ≥的解集;(2)若()|4|f x x ≤-的解集包含[1,2],求a 的取值范围.解析 (1)当3a =- 时,()3|3||2|3f x x x ≥⇔-+-≥2323x x x ≤⎧⇔⎨-+-≥⎩ 或23323x x x <<⎧⎨-+-≥⎩ 或3323x x x ≥⎧⇔⎨-+-≥⎩1x ⇔≤或4x ≥(2)原命题 ()|4|f x x ⇔≤- 在[1,2] 上恒成立||24x a x x ⇔++-≤-在[1,2] 上恒成立 22x a x ⇔--≤≤-在[1,2] 上恒成立30a ⇔-≤≤ .3. 若关于实数x 的不等式|5||3|x x a -++<无解,则实数a 的取值范围是 . 解析 因为|5||3||5||3||53|8x x x x x x -++=-++≥-++= ,所以min (|5||3|)8x x -++= ,要使|5||3|x x a -++<无解,只需8a ≤ .故实数a 的取值范围是(,8]-∞ .4.已知函数()|21||2|f x x x a =-++,g()3x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围. 解析 (1)当2a =- 时,不等式()()f x g x < 化为|21||22|30x x x -+---< .设函数|21||22|3y x x x =-+---,0y < ,所以原不等式的解集是{|02}x x << .1a核心考点三:含绝对值(方程)不等式有解,求参数问题1.若关于x 的不等式|||1||2|a x x ≥++-存在实数解,则实数a 的取值范围是 . 解析 不等式|||1||2|a x x ≥++-有解,则min ||(|1||2|)3a x x ≥++-=,故实数a 的取值范围是(,3][3,)-∞-+∞.2.若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .解析 因为 |||1||()(1)||1|x a x x a x a -+-≥---=-.要使|||1|3x a x -+-≤有解,可使|1|3a -≤,所以313a -≤-≤ ,所以24a -≤≤ .3.已知a ∈R ,关于x 的方程21||||04x x a a ++-+=有实根,求a 的取值范围.(2)数轴标根,核心考点四:已知含绝对值不等式的解集,求参数的值或范围1. 设不等式|2|()x a a *-<∈N 的解集为A ,且31,22A A ∈∉ .(1)求a 的值;(2)求函数()|||2|f x x a x =++-的最小值.所以1a =.(2)因为|1||2||(1)(2)|3x x x x ++-≥+--=,当且仅当(1)(2)0x x +-≤,即12x -≤≤时取等号,所以()f x 的最小值为3.2.设函数()||3f x x a x =-+,其中0a >.(1) 当1a =时,求不等式()32f x x ≥+的解集;(2)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.由此可得3x ≥或1x≤-,故不等式 ()32f x x ≥+的解集为{|31}x x x ≥≤或.故此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩或30x a x a x <⎧⎨-+≤⎩,3.已知函数()||f x x a =-,其中1a >.(1) 当2a =时,求不等式()4|4|f x x ≥--的解集;(2) 已知关于x 的不等式|(2)2()|2f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.解析 (1)当2a =时,()26,2|4|2,2426,4x x f x x x x x -+≤⎧⎪+-<<⎨⎪-≥⎩(2)记()()()22h x f x a f x =+- ,则2,042,()02,a x h x a x a x a x a -≤⎧⎪=-<<⎨⎪≥⎩,由|()|2h x ≤ ,又已知 |()|2h x ≤的解集为{|12}x x ≤≤ ,4.若不等式|4|2kx -≤的解集为{}|13x x ≤≤,则实数k = .故2k =.核心考点五:比较法(差值法和比值法)证明不等式1.已知,,a b m 均为正实数,且a b <,求证:a m a b m b+>+.2.已知,,a b +∈R ,且a b ≠,n *∈N . 求证:11()()2()n n n n a b a b a b ++++<+.解析 ()()112()n n n n a b b a b a +++++- 111122n n n n n n a a ab ba b b ++++=++-+-11n n n n ab a b a b ++=+--()()n n n n a b a b a b =-+- ()()n n b a a b =--为确定差的符号,应分0a b >>和0b a >>两种情况讨论.①若0a b >>,n N *∈,则n n a b >,因此()()0n n b a a b --<,故原不等式成立;②若0b a >>,n N *∈,则n n b a >,因此()()0n n b a a b --<,原不等式也成立,综上所述,()()112()n n n n a b b a b a +++++<.核心考点六:利用函数的单调性证明使用对象:在某区间成立的函数不等式、数值不等式的证明通常是通过辅助函数完成的. 解题程序:(1)移项(有时需要作简单的恒等变形),使不等式一端为0,另一端为所作辅助函数()f x .(2)求()f x 并验证()f x 在指定区间上的单调性.(3)求出区间端点的函数值(或极限值),其中至少有一个为0或已知符号,作比较即得所证.1.已知01x <<,求证:31sin 6x x x -<.又(0)0f =,所以当01x <<时,()0f x >成立.2.证明:当02x π<<时,2sin xx x π<<.解析 不等式sin x x <⇔sin 0x x -<.令所以()()00f x f <= ,所以sin x x <.高考数学《极坐标与参数方程》专项复习一、总论坐标系与参数方程它以函数、方程等知识点为载体,渗透着换元、化归、分类讨论、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用.近几年的数学高考中频频出现参数的几何意义问题,其形式逐渐多样化,但只要知其本质,便可举一反三,金枪不倒.二、考纲解读1.理解坐标系的作用.2.了解在直角坐标系伸缩变换作用下平面图形的变化情况.3.能在极坐标中用极坐标表示点的位置.理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.4.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.5.了解柱坐标系、球坐标系中表示空间中的点的位置的方法,并与空间直角坐标系中表示点的位置方法相比较,了解它们的区别.6.了解参数方程,了解参数的意义.7.能选择适当的参数写出直线、圆和圆锥曲线的参数方程.8.掌握参数方程化普通方程的方法.三、命题趋势探究本章是新课标新增内容,属选考内容,在高考中可能有所体现.参数方程是解析几何、平面向量、三角函数、圆锥曲线与方程等知识的综合应用和进一步深化,是研究曲线的工具之一,值得特别关注.四、知识讲解1.极坐标系在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图1和图2所示).这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角.2.极坐标与直角坐标的互化设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立:θ ρ) 图 y xθO ρ (,)M x y 图 2cos sin x y ρθρθ=⎧⎨=⎩或222tan (0)x y y x x ρθ⎧=+⎪⎨=≠⎪⎩(对0ρ<也成立). 3.极坐标的几何意义r ρ=——表示以O 为圆心,r 为半径的圆;0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线;2cos a ρθ=表示以(,0)a 为圆心过O 点的圆.(可化直角坐标: 22cos a ρρθ=222x y ax ⇒+=222()x a y a ⇒-+=.)4.直线的参数方程直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程:00sin ()()cos 2y y x x απαα-=-≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα=+⎧⎨=+⎩,2πα=也成立,故直线的参数方程为00cos t sin x x t y y αα=+⎧⎨=+⎩(t 为参数,α为倾斜角,直线上定点000(,)M x y ,动点(,)M x y ,t 为0M M 的数量,向上向右为正(如图3所示).5.圆的参数方程若圆心为点00(,)M x y ,半径为r ,则圆的参数方程为00cos (02)sin x x r y y r θθπθ=+⎧≤≤⎨=+⎩.6.椭圆的参数方程 椭圆2222C :1x y a b +=的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数,(02)θπ≤≤). 7.双曲线的参数方程 双曲线2222C :1x y a b -=的参数方程为sec tan x a y b θθ=⎧⎨=⎩(,)2k k πθπ≠+∈Z . 8.抛物线的参数方程抛物线22y px =的参数方程为222x pt y pt ⎧=⎨=⎩(t 为参数,参数t 的几何意义是抛物线上的点与顶点连线的斜率的倒数).五、解答题题型归纳核心考点1: 参数方程与普通方程、极坐标系与直角坐标系的互化1.⊙1O 和⊙2O 的极坐标方程分别为4cos ρθ=,4sin ρθ=-.(1)把⊙1O 和⊙2O 的极坐标方程分别化为直角坐方程;(2)求经过⊙1O 和⊙2O 交点的直线的直角坐标方程.解析 (1)圆1O :4cos ρθ= ⇒ 24cos ρρθ=⇒224x y x +=,得()2224x y x -+=, 圆2O :4sin ρθ=-⇒24sin ρρθ=-⇒224x y y +=-,得()2224x y ++=。

不等式专题复习精心

不等式专题复习精心

不等式专题复习(精心)不等式专题复习类型一:不等关系及解不等式1.若,,a b c 为实数,则下列命题正确的是( ) A .若a b >,则22acbc > B .若a b <<,则22aab b >>C .若0a b <<,则11a b< D .若0a b <<,则b a a b> 2.求下列不等式的解集.(1)x 2+4x+4>0 (2)(1﹣2x )(x ﹣1)3(x+1)2<0(3)≥2.3.已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bxx a -+>的解集为( )A .11{|}32x x -<<B .11{|}32x x x <->或 C .{|32}x x -<< D .{|32}x x x <->或22为(x 1,x 2),且x 2-x 1=15,则a=( )(A)52 (B) 72 (C) 154 (D) 1525.已知函数223log ,0,()23,0,x x f x x x x +>⎧=⎨-≤⎩则不等式()5f x ≤的解集为( )A .[]1,1-B .(](),10,1-∞-C .[]1,4-D .(][],10,4-∞-6.若关于x 的不等式220xax +->在区间[]1,5上有解,则实数a 的取值范围为A .),523(+∞-B .]1,523[- C .(1,+∞) D .)1,(--∞7.已知不等式bax x +-2>0的解集为(-1,2),m 是a 和b 的等比中项,那么33223b a am +=A .3B .-3C .-1D .1类型二:简单的线性规划问题1.已知平面直角坐标系xOy 上的区域D 由不等式组给定.若M (x ,y )为D 上的动点,点A 的坐标为,则z=•的最大值为( )A.3B.4C.3D.42.已知点(,)P a b 与点(1,0)Q 在直线2310x y +-=的两侧,且0, 0a b >>, 则2w a b=-的取值范围是( )A .21[,]32-B .2(,0)3-C .1(0,)2D .21(,)32- 3.在平面直角坐标系xOy 中,M 为不等式组所表示的区域上一动点,则的最小值为( ) A. 2 B. 1 C.D.4.已知点M(x ,y)是平面区域0010240x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+-≤⎩内的动点,则22(1)(1)x y +++的最大值是( )(A)10 (B)495(C)13(D)135.设x ,y 满足,若目标函数z=ax+y(a >0)最大值为14,则a 为( )A .B .23C .2D .1 6.若实数x ,y 满足不等式组且x+y的最大值为9,则实数m=( ) A .﹣2 B .﹣1 C .1 D .2 7.若关于,x y 的不等式组0010x x y kx y ≤⎧⎪+≥⎨⎪-+≥⎩,表示的平面区域是等腰直角三角形区域,则其表示的区域面积为( )A.1或14B.12或18C.1或12 D.12或14类型三:不等式恒成立问题 1.已知不等式012<--mx mx .(1)若对R x ∈∀不等式恒成立,求实数m 的取值范围;(2)若对]3,1[∈∀x 不等式恒成立,求实数m 的取值范围;(3)若对满足2||≤m 的一切m 的值不等式恒成立,求实数x 的取值范围.2.在ABC中,已知恒成立,则实数m的范围是()A. B. C. D.参考答案1.B 试题分析. A 若2c=,则不成立;C 对a b <两边都除以0ab >,可得11b a <,C 不成立;D 令2,1,a b =-=-则有212,,12a b b a b a a b-===<-所以D 不成立,故选B. 3.B 试题分析:由已知可得3,2-是方程250axx b -+=的两根.由根与系数的关系可知532a-+=,5a =-32ba-⨯=,30b =.代入不等式250bx x a -+>解得11{|}32x x x <->或.4.A 【解析】由题意知x 1,x 2是方程x 2-2ax-8a 2=0的两根,所以x 1+x 2=2a,x 1x 2=-8a 2,则(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=4a 2+32a 2=36a 2,又x 2-x 1=15,可得36a 2=152,又a>0,则a=52.故选A. 5.1.C 试题分析:当x >时,()5f x ≤即为223log 5,log 2,x x +≤∴≤解得04;x <≤当0x ≤时,()5f x ≤即为22235,2350,x x x x -≤∴--≤解得10x -≤≤,所以不等式的解集为[]1,4-.考点:分段函数与不等6.A 试题分析:问题等价转化为不等式22ax x >-在区间[]1,5上有解,即不等式2a x x>-在区间[]1,5上有解,令()2f x x x=-,则有()mina f x >,而函数()f x 在区间[]1,5上单调递减,故函数()f x 在5x =处取得最小值,即()()min2235555f x f ==-=-,235a ∴>-.7.B【解析】由,,恒成立,,即恒成立,,选B. 8.D 【解析】试题分析:根据题意,由于不等式bax x +-2>0的解集为(-1,2),那么可知-1是因式ax+b=0的根,所以a=b,又因为m 是a 和b 的等比中项,则有22m ab a==,可知22333333122m a a aa b a b ==++,故答案为1,选D.考点:一元二次不等式的解集 9.D 【解析】10.B解:首先做出可行域,如图所示: z=•=,即y=﹣x+z 做出l 0:y=﹣x ,将此直线平行移动,当直线y=﹣x+z 经过点B 时,直线在y 轴上截距最大时,z 有最大值.因为B (,2),所以z 的最大值为4故选B 11.D试题分析:由已知,(231)(21301)0,2310a b a b +-⨯+⨯-<+-<,画出可行域及直线20a b -=,如图所示.平移2w a b=-,当其经过点1(,0)2A 时,112022max w =-⨯=;当其经过点1(0,)3B 时,min 120233w =-⨯=-,故选D .12.C 【解析】由得A(3,-1).此时线OM 的斜率最小,且为,选C. 13.D试题分析:解:点M(x ,y)所在的平面区域0010240x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+-≤⎩如下图中的阴影部分,设点P 的坐标为(1,1)-- 222(1)(1)PMx y =+++由图可知当最大时,点M 应在线段AB上;而()()222112113PB =+++=()()222210110PA =+++=22(1)(1)x y +++的最大值是13.故应选D.22.(1)}04|{≤<-m m (2)}61|{<m m (3)}231231|{+<<-x x【解析】试题分析:(1)要使不等式012<--mx mx 恒成立∴综上,实数m的取值范围是}04|{≤<-m m……4分 (2)令1)(2--=mx mx x f①当=m 时,01)(<-=x f 显然恒成立 ……5分②当0>m 时,若对]3,1[∈∀x 不等式恒成立,只需⎩⎨⎧<<0)3(0)1(f f 即可⎩⎨⎧<--=<-=0139)3(01)1(m m f f 解得61<m 610<<m③当0<m 时,函数)(x f 的图象开口向下,对称轴为21=x ,若对]3,1[∈∀x 不等式恒成立,结合函数图象知只需)1(<f 即可,解得R m ∈0<m∴综上述,实数m的取值范围是}61|{<m m……11分 (3)令1)(1)(22--=--=m x x mx mxm g若对满足2||≤m 的一切m 的值不等式恒成立,则只需⎩⎨⎧<<-0)2(0)2(g g 即可∴⎪⎩⎪⎨⎧<--<---01)(201)(222x x x x 解得231231+<<-x……∴实数x 的取值范围是2.C【解析】试题分析:由线性约束条件画出可行域,然后结合目标函数的最大值.求出a 的值.解:画出约束条件的可行域,如图:目标函数z=ax+y (a >0)最大值为14,即目标函数z=ax+y (a >0)在的交点M (4,6)处,目标函数z 最大值为14,所以4a+6=14,所以a=2.故选C .考点:简单线性规划.3.C 解:先根据约束条件画出可行域,设z=x+y ,将最大值转化为y 轴上的截距,当直线z=x+y 经过直线x+y=9与直线2x ﹣y ﹣3=0的交点A (4,5)时,z 最大,将m 等价为斜率的倒数,数形结合,将点A 的坐标代入x ﹣my+1=0得m=1,故选C .4.D 试题分析:可行域等腰三角形由三条直线01,0,0≥+-≥+≤y kx y x x 围成,因为00=+=y x x 与的夹角为4π,所以010=+-=y kx x 与的夹角为4π或者010=+-=+y kx y x 与的夹角为4π,当010=+-=y kx x 与的夹角为4π时,可知1=k ,此时等腰三角形的直角边长为22,所以面积为14,当010=+-=+y kx y x 与的夹角为4π时,0=k ,此时等腰三角形的直角边长为1,面积为12,所以本体的正确选项为D.考点:线性约束条件.5.解:(1)由x 2+4x+4>0可化为(x+2)2>0,(用判别式同样给分)故原不等式的解集为{x|x≠﹣2,x ∈R};(2)由(1﹣2x )(x ﹣1)3(x+1)2<0可化为(2x ﹣1)(x ﹣1)3(x+1)2>0,且方程(1﹣2x )(x ﹣1)3(x+1)2=0的根为、1(三重根)和﹣1(二重根),所以该不等式的解集为{x|x<﹣1或﹣1<x<或x>1};(3)不等式≥2可化为≤0,即①或②,解①得,不等式组无解;解②得,﹣3<x≤﹣1或≤x<1;所以该不等式的解集为{x|﹣3<x≤﹣1或≤x <1}.N*).。

不等式知识点总结 高三数学一轮复习

不等式知识点总结 高三数学一轮复习

知识点总结2 不等式一.一元二次不等式1.解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断对应方程Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).2.解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑: ①二次项系数决定开口方向;②判别式Δ决定根的情形,一般分Δ>0,Δ=0,Δ<0三种情况;③在有根的条件下,要比较两根的大小.3.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是{a >0,∆<0,(2)ax 2+bx +c <0(a ≠0)恒成立的条件是{a <0,∆<0,二.分式不等式()()f xg x >0(<0)⇔f (x )g (x )>0(<0); ()()f x g x ≥0(≤0)⇔ ()()0(0),()0f xg x g x ≥≤⎧⎨≠⎩. 三.基本不等式:1.高中阶段涉及的几个平均数:设()01,2,,i a i n >= (1)调和平均数:H n =n1a 1+1a 2+⋯+1a n ;(2)几何平均数:12n n n G a a a = ; (3)算术平均数:12n n a a a A n +++=;(4)平方平均数:22212n n a a a Q n+++ 2.均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a === 当2n =时,21a +1b≤√ab ≤a+b2≤√a 2+b 22; 特别的: √ab ≤a+b2为常用基本不等式3.基本不等式的几个变形:(1)a 2+b 2≥2ab (a ,b ∈R ).(2)a +b ≥2√ab(a,b >0);(3)b a +a b≥2(a ,b 同号);(4)ab ≤(a+b 2)2≤a 2+b 22(a ,b ∈R ).以上不等式等号成立的条件均为a =b .4.利用基本不等式求最值已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,和x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,积xy 有最大值p 24.(简记:和定积最大) 利用均值不等式求最值遵循的原则:“一正二定三等”。

不等式专题整理

不等式专题整理

不等式专题整理1. 一次不等式:- 加减法:- 如果 a>b,则 a+c > b+c (c为任意实数)- 如果 a>b,则 a-c > b-c (c为任意实数)- 乘法:- 如果 a>b 且 c>0,则 ac > bc- 如果 a>b 且 c<0,则 ac < bc- 除法:- 如果 a>b 且 c>0,则 a/c > b/c- 如果 a>b 且 c<0,则 a/c < b/c- 平方:- 如果 a>b 且 a>0 且 b>0,则 a^2 > b^2- 如果 a>b 且 a<0 且 b<0,则 a^2 > b^2- 开方:- 如果 a>b 且 a>0 且 b>0,则√a > √b- 如果 a>b 且 a<0 且 b<0,则√a < √b2. 二次不等式:- 求根:- 如果 ax^2+bx+c > 0 且 a>0,则该二次函数有两个实根。

可以通过求解方程 ax^2+bx+c = 0 来确定实根所在的区间。

- 如果 ax^2+bx+c < 0 且 a<0,则该二次函数有两个实根。

可以通过求解方程 ax^2+bx+c = 0 来确定实根所在的区间。

- 判别式:- 当二次函数 ax^2+bx+c = 0 的判别式 D = b^2-4ac > 0 时,该二次函数有两个不相等的实根。

- 当二次函数 ax^2+bx+c = 0 的判别式 D = b^2-4ac = 0 时,该二次函数有两个相等的实根。

- 当二次函数 ax^2+bx+c = 0 的判别式 D = b^2-4ac < 0 时,该二次函数无实根。

3. 绝对值不等式:- 绝对值大于等于某个数:- 如果|a| ≥ b,则a ≥ b 或a ≤ -b (b为非负实数)- 绝对值小于等于某个数:- 如果|a| ≤ b,则 -b ≤ a ≤ b (b为非负实数)4. 分式不等式:- 分式大于等于某个数:- 如果f(x) ≥ a,则分别对 f(x)-a ≥ 0 进行相应的不等式变形和求解。

不等式总复习

不等式总复习

1 2 3
x
常考题型: 1.解集( 62页.10) 2.整数解(62页.6) 3.参数问题 4.决策问题
7、 若不等式组 x+8<4x—1
x> m
的解集为x>3,则m的取值范围是(D ): A、m≥3 B、m=3 C、m<3 D、m≤3
x y 7 a 8(例)若解方程组 的解x为非正数, x y 1 3a
一元一次不等式和 一元一次不等式组
复 习
主要知识点: 1、不等关系
2、不等式的基本性质
3、解一元一次不等式 4、解一元一次不等式组
5、一元一次不等式与一次函数
1、不等关系 用符号“>、≥、<、≤、≠”连接的 式子叫做不等式.
如:用不等式表示 (1) a是非负数; (2) a与b的平方和不大于3; (3) x除以2的商与4的和,至多为5; (4) 用长度为a的绳子,围成一个圆,若使 圆的面积不小于100,那么绳长a应满足怎 样的关系式?
0
a
3、解一元一次不等式 一般步骤: (1)去分母; (不要漏乘不含分母的项) (2)去括号; (3)移项;(要变号) (4)合并同类项; (5)系数化1. (注意何时改变不等号方向)
x x2 3 5 2
把解集表示在数轴上时,需注意: (1)空心、实心小圆圈的区别; (2)“>、≥”向右拐,“<、≤”向左拐.
2、不等式的基本性质
性质1,不等式的两边都加上(或减去) 同一个整式,不等号的方向不变;
性质2,不等式的两边都乘以(或除以)
同一个正数,不等号的方向不变;
性质3,不等式的两边都乘以(或除以) 同一个负数,不等号的方向改变.
2、不等式的基本性质 如:已知a<b,用“<”或“>”填空 (1) a-3 < b-3; (2) 6a < 6b; (3) -a > -b; (4) a-b < 0;2a < a+b (5) 若a<b<0,则 a2 > ab
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所表示的区域上一动点,
则 的最小值为(
)
A. 2 B. 1 C.
D.
x0
4.已知点
M(x,y)是平面区域
y0 x y 1 0
内的动点,则 (x 1)2
( y 1)2 的最大值
2x y 4 0
是(
)
(A)10
(B) 49 5
(C) 13
(D)13
5.设 x,y 满足
,若目标函数 z=ax+y(a>0)最大值为 14,则 a 为( )
(x)
5 的解集为(

A. 1,1
B. ,1 0,1 C.1,4 D.,1 0,4
6.若关于 x 的不等式 x2 ax 2 0 在区间 1,5 上有解,则 , 1] 5
C.(1,+∞) D. (,1)
7.已知不等式
x2 ax b
>0
x
x
min
f x 在 区 间 1,5 上 单 调 递 减 , 故 函 数 f x 在 x 5 处 取 得 最 小 值 , 即
f x f 5 2 5 23 ,a 23 .
min
5
5
5
7.B【解析】由


恒成立,
,即
恒成立,
,选 B.
8.D【解析】试题分析:根据题意,由于不等式 x 2 >0 ax b
3.B 试题分析:由已知可得 3, 2 是方程 ax2 5x b 0 的两根.由根与系数的关系可知
3 2 5 , a 5 3 2 b , b 30 . 代 入 不 等 式 bx2 5x a 0 解 得
a
a
{x | x 1 或x 1}
3
2.
4.A【解析】由题意知 x1,x2 是方程 x2-2ax-8a2=0 的两根,所以 x1+x2=2a,x1x2=-8a2,则
2.在 ABC 中,已知
则实数 m 的范围是(

A.
B.
C.
D.
恒成立,
请浏览后下载,资料供参考,期待您的好评与关注!
参考答案
1.B 试题分析. A 若 c2 0 ,则不成立;C 对 a b 两边都除以 ab 0 ,可得 1 1 ,C ba
不成立;D 令 a 2,b 1, 则有 a 2 2, b 1 , b a 所以 D 不成立,故选 B. b 1 a 2 a b
的解集为(-1,2), m
是a
和b
的等比中项,那么
3m 2 a a3 2b3
=
A.3
B.-3
C.-1
D.1
请浏览后下载,资料供参考,期待您的好评与关注!
类型二:简单的线性规划问题 1.已知平面直角坐标系 xOy 上的区域 D 由不等式组
给定.若 M(x,y)为
D 上的动点,点 A 的坐标为
,则 z= • 的最大值为(

A.3 B.4 C.3
D.4
2.已知点 P(a,b) 与点 Q(1, 0) 在直线 2x 3y 1 0 的两侧,且 a 0, b 0 , 则
w a 2b 的取值范围是(
A.[ 2 , 1] 32
B. ( 2 , 0) 3

C. (0, 1 ) 2
D. ( 2 , 1) 32
3.在平面直角坐标系 xOy 中,M 为不等式组
(x2-x1)2=(x1+x2)2-4x1x2=4a2+32a2=36a2,又 x2-x1=15,可得 36a2=152,又 a>0,则 a= 5 .故选 A. 2
5.1.C 试题分析:当 x 0 时, f (x) 5 即为 3 log2 x 5,log2 x 2, 解得 0 x 4; 当
D.{x | x 3或x 2}
4.关于 x 的不等式 x2-2ax-8a2<0(a>0)的解集为(x1,x2),且 x2-x1=15,则 a=(
)
(A) 5 (B) 7
2
2
(C) 15 (D) 15
4
2
5.已知函数
f
(x)
3 2
log2 x, x 0, x2 3x, x 0,
则不等式
f
C.1或 1 2
D. 1 或 1 24
请浏览后下载,资料供参考,期待您的好评与关注!
类型三:不等式恒成立问题
1.已知不等式 mx2 mx 1 0 . (1)若对 x R 不等式恒成立,求实数 m 的取值范围; (2)若对 x [1,3] 不等式恒成立,求实数 m 的取值范围;
(3)若对满足| m | 2 的一切 m 的值不等式恒成立,求实数 x 的取值范围.
的解集为(-1,2),那么可知-1 是因式 ax+b=0 的根,所
以 a=b, 又 因 为 m 是 a 和 b 的 等 比 中 项 , 则 有
m2
ab
a2 ,可知
3m2a a3 2b3
3a2a a3 2b3
1,故答案
为 1,选 D.
请浏览后下载,资料供参考,期待您的好评与关注!
考点:一元二次不等式的解集 9.D【解析】10.B 解:首先做出可行域,如图所示:
不等式专题复习
类型一:不等关系及解不等式
1.若 a, b, c 为实数,则下列命题正确的是( )
A.若 a b ,则 ac2 bc2
B.若 a b 0 ,则 a2 ab b2
C.若 a b 0 ,则 1 1 ab
D.若 a b 0 ,则 b a ab
2.求下列不等式的解集.
(1)x2+4x+4>0
A.
B.23 C.2 D.1
6.若实数 x,y 满足不等式组
且 x+y 的最大值为 9,则实数 m=( )
A.﹣2 B.﹣1 C.1 D.2
x 0
7.若关于
x,
y
的不等式组
x
y
0
,表示的平面区域是等腰直角三角形区域,则
kx y 1 0
其表示的区域面积为( )
A.1或 1 4
B. 1 或 1 28
(2)(1﹣2x)(x﹣1)3(x+1)2<0
(3)
≥2.
3.已知不等式 ax2 5x b 0 的解集为{x | 3 x 2} ,则不等式 bx2 5x a 0 的
解集为(
)
A.{x | 1 x 1} 32
B.{x | x 1 或x 1}
3
2
C.{x | 3 x 2}
x 0 时, f (x) 5 即为 2x2 3x 5,2x2 3x 5 0, 解得 1 x 0 ,所以不等式的解
集为 1, 4 .
考点:分段函数与不等 6.A 试题分析:问题等价转化为不等式 ax 2 x2 在区间 1,5 上有
解,即不等式 a 2 x 在区间1,5 上有解,令 f x 2 x ,则有 a f x ,而函数
相关文档
最新文档