《有理数》有理数及其运算课件PPT
合集下载
有理数的加减混合运算-有理数及其运算 优秀PPT课件
例1填空:
(-8)+ =-5;(-8)+ =-3; 8+ =-7;(-8)+ =4 (-8)- =-5;(-8)- =-3; 8- =-7;(-8)- =4
解:(-8)+ 3 =-5;(-8)+ 5 =-3; 8+ (-15 ) =-7;(-8)+ 12 =4 (-8)- (-3) =-5;(-8)- (-5) =-3; 8- 15 =-7;(-8)- (-12) =4
3 3 10 32 ) 例2.计算( 4 4
例3下列变形中,正确的是
(1 ) (2 ) (3) (4 ) (5 ) 1-4+5-4=1-4+4-5; 1-2+3-4=2-1+4-3; 2-3-4+5=2-3+5-4; 2-3-4+5=2-(3-4)+5; 2-3-4+5=2-3-(4+5)
解法二:设立标准数 设每个的汉堡标准质量为200克,则可列出下表:
序 号 误 差 值 序 号 误 差 值 1 +1 2 +4 3 -1 4 -3 5 +3 6 0 7 +1 8 +2 9 -2 10 -3
11 -4
12 - 28
13 -2
14 +3
15 0
16 +2
17 +1
18 -1
19 -3
20 +5
例6电子跳蚤落在数轴上表示2003这个数的 点上。它第一步往左跳一个单位,第二步 往右跳 2 个单位,第三步往左跳 3个单位, 第四步往右跳4个单位,依次类推,当跳了 一百步时,电子跳蚤恰好落在了 K 点。你 能求出点K所表示的数吗?
例7. 水库管理人员为了掌握水库蓄水情况,需要观测水位变化,下 表是某水库一周内水位高低的变化情况(正数表示比前一日上升的 值,负数表示比前一日下降的值)。
有理数及其运算PPT演示课件
详细描述
绝对值是一个重要的数学概念,它表示一个 数距离0的距离。绝对值具有一些重要的性质, 包括非负性(任何数的绝对值都是非负的)、 传递性(如果 a ≤ b 且 b ≤ c,则 a ≤ c)和
三角不等式(|a + b| ≤ |a| + |b|)。这些性 质在解决数学问题时非常有用。
06
有理数在实际生活中的应用
零
• 零是有理数的一个特殊类别,它既不是正数也不是负数。在数学中,零被定义为没有任何大小或方向的数。
04
有理数的四则运算
加法运算
总结词
有理数加法运算的基本法则
详细描述
有理数的加法运算遵循交换律和结合律,即加法满足交换律,可以任意改变加数的位置,同时加法也满足结合律, 可以任意改变括号的的位置。在进行加法运算时,首先判断加数的符号,然后根据绝对值相加,最后再根据加数 的符号确定结果的符号。
详细描述
有理数包括整数和分数,它们都可 以表示为两个整数之比的形式,如 $frac{a}{b}$,其中$a$和$b$是整 数,且$b neq 0$。
有理数的性质
总结词
有理数具有整数的基本性质和分数的基本性质。
详细描述
有理数具有加法、减法、乘法和除法的封闭性,即有理数的加、减、乘、除运 算结果仍为有理数。此外,有理数还具有顺序性、传递性和稠密性等性质。
减法运算
总结词
有理数减法运算的基本法则
详细描述
有理数的减法运算可以通过加法来实现,即a-b=a+(-b)。在进行减法运算时, 首先判断被减数和减数的符号,然后根据绝对值相减,最后再根据被减数和减数 的符号确定结果的正负。
乘法运算
总结词
有理数乘法运算的基本法则
七年级数学上册 第二章 有理数及其运算 1 有理数课件上册数学课件
12/9/2021
第四页,共三十七页。
例1 (1)如果节约10吨水记作+10吨,那么浪费2吨水记作什么?
(2)如果-2 015元表示(biǎoshì)亏本2 015元,那么+1 009元表示(biǎoshì)什么? (3)如果+20%表示增加20%,那么-8%表示什么?
解析(jiě xī) (1)浪费2吨水记作-2吨. (2)+1 009元表示盈利1 009元. (3)-8%表示减少8%.
7
5
正整数集合:{
…};
负整数集合:{
…};
正分数集合:{
…};
负分数集合:{
…};
正数集合:{
…};
负数集合:{
…}.
分析 有理数的分类:按照定义有理数分为整数和分数两部分,其中整数包括
正整数、0、负整数;按照符号有理数分为正有理数、0、负有理数三部分.
12/9/2021
第九页,共三十七页。
解析 正整数集合:{5,+2,…}; 负整数集合:{-3,-600,…};
在海12/平9/2面021下60 m处,所以鲨鱼所在的海拔高度为-60 m,故选A.
第十九页,共三十七页。
3.(2016山西大同一中期中)下列说法正确(zhèngquè)的有 ( ) (1)整数就是正整数和负整数;(2)零是整数,但不是自然数;(3)分数包括
正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整 数就是分数.
答案 15.02;不符合
点拨(diǎn bo) 解决此类问题的关键是正确理解题中“+、-”号的含义:“+”
12/9/2021
号表示比标准量多,“-”号表示比标准量少.
有理数PPT课件(北师大版)
(2)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02克,那么﹣0.03克表示什么? (3)某大米包装袋上标注着:“净重量: 10kg±150g”, 这里的“10kg±150g” 表示什么?
解:(1)沿顺时针方向转了12圈记作-12圈;
(2)-0.03克表示乒乓球的质量低于标准质量 0.03克;
例4、把下列各数填在相应的大括号里:
1
- 11,4.8,+73,12,- 100.5…
2,7, 6
7
,12
Hale Waihona Puke ,- 83,正数集合:{4.8,+73,7,1 ,7 ,12… }
6 12
负数集合:{ -11,-2,- 8 ,-100.5… }
3
三、实际应用
例 (1)某人转动转盘,如果用+5圈表示沿逆时针方向 转了5圈,那么沿顺时针方向转了12圈怎样表示?
…………
西
东
解:-60m表示向西走60m
1、填空:
(1)-50元表示支出50元,那么+100元表示 _收__入__1_0_0_元___.
(2)正常水位为0m ,水位高于正常水位0.2m记 作_+_0_._2_m_,低于正常水位0.3m记作
-_0_._3_m__.
(3)乒乓球比标准重量重0.039kg记作 +_0_._0_3_9_k_g__; 比标准重量轻0.019kg记作_-_0_._0_1_9_k_g; 同标准重量一致记作_0_k_g___.
正整数:如1,2,3
整数 零:0
有理数
分数
负整数:如-1,-2,… 正分数:如 12,13 5,.2 … 负分数:如 15, 3.5 , 65 ,…
解:(1)沿顺时针方向转了12圈记作-12圈;
(2)-0.03克表示乒乓球的质量低于标准质量 0.03克;
例4、把下列各数填在相应的大括号里:
1
- 11,4.8,+73,12,- 100.5…
2,7, 6
7
,12
Hale Waihona Puke ,- 83,正数集合:{4.8,+73,7,1 ,7 ,12… }
6 12
负数集合:{ -11,-2,- 8 ,-100.5… }
3
三、实际应用
例 (1)某人转动转盘,如果用+5圈表示沿逆时针方向 转了5圈,那么沿顺时针方向转了12圈怎样表示?
…………
西
东
解:-60m表示向西走60m
1、填空:
(1)-50元表示支出50元,那么+100元表示 _收__入__1_0_0_元___.
(2)正常水位为0m ,水位高于正常水位0.2m记 作_+_0_._2_m_,低于正常水位0.3m记作
-_0_._3_m__.
(3)乒乓球比标准重量重0.039kg记作 +_0_._0_3_9_k_g__; 比标准重量轻0.019kg记作_-_0_._0_1_9_k_g; 同标准重量一致记作_0_k_g___.
正整数:如1,2,3
整数 零:0
有理数
分数
负整数:如-1,-2,… 正分数:如 12,13 5,.2 … 负分数:如 15, 3.5 , 65 ,…
《有理数》有理数及其运算PPT课件
分数集合:{-0.314,25%,22,-4 1,0. 3,2 3,…};
7
3
5
非正整数集合:{ -2, 0, …}.
知3-讲
导引:要严格按照各类数的概念进行填写,非负有 理数包含正有理数和0;非正整数包含负整 数和0.
(来自《点拨》)
总结
知3-讲
(1)非负有理数一定是有理数,它包含正有理数和0, 不要误认为是除负有理数以外的任何数;
知2-讲
解:(1)沿顺时针方向转了 12圈记作-12圈; (2)-0.03 g表示乒乓球的质量低于标准质量0.03 g; (3)每袋大米的标准质量应为10 kg,但实际每袋大米 可能有150 g的误差,即每袋大米的净含量最多 是10 kg+150 g,最少是10 kg-150 g.
(来自教材)
知2-练
C.-6,0.5,0
D.0,6,9
(来自《典中点》)
知识点 2 具有相反意义的量
知2-导
议一议 生活中你见过其他用负数表示的量吗?与同 伴进行交流.
知2-导
“加分与扣分” “上涨量与下 跌量” “零上温度与零下温度”等 都是具有相 反意义的量.为了表 示具有相反意义的量,我们可把 其中一个量规定为正的,用正数 来表示,而把与这个量意义相反 的量规定为负的,用负数来表示. 例如,把上涨3.3%记为+3.3%, 那么下跌0.6%就记为-0.6%.
如果答对题所得的分数用正数表示,那么你 能写出每个队答题得分的情况吗?试完成下表:
答对题的得分 答错题的得分 未回答题的得分
第一队
+6
第二队
-2
知识点 1 正数和负数
知1-讲
1.定义:大于0的数叫做正数,在正数前面加上 符号“-”(负)的数叫做负数.
北师大版七年级上册数学《有理数的除法》有理数及其运算PPT教学课件
想一想:
(-18) ÷6=___-__3_,
5
-
1 5
=
____—__2_5,
(-27) ÷ (-9)=__3_____,0÷ (-2)=___0____,
观察上面的算式及计算结果,你有什么发现?换
一些算式再试一试.
知1-讲
除法法则1: 两个有理数相除,同号得__正__,异号得__负__, 并把绝对值__相__乘__. 0除以任何非0的数都得___0___. 注意:0不能作除数.
-12
+
1 2
;
(3)0÷(-3.72);(4)(-4.7)÷1.
导引:直接运用法则,先确定符号,然后再求数值.
解:(1)(-42)÷(-6)=+(42÷6)=7.
(2)
-12
+
1 2
=-
12
1 2
=-24.
(3)0÷(-3.72)=0.
(4)(-4.7)÷1=-4.7.
(来自《点拨》)
总结
知1-讲
A.
(-5)
-
1 2
=(-5)
(-2)
B. 1 (-3)=3 (-3) 3
C.
(-2)
(-3)=(-2)
-
1 3
D.
2 3
-
4 9
=
2 3
-
9 4
(来自《典中点》)
3 下列计算正确的是( C )
A. 0 -3=- 1
3
B.
-
3 7
-
3 35
=-5
C.
1
-
1 9
=-9
D.
-
3 4
除法法则确定商的符号与积的符号确定方法 一样.注意:①0除以任何不等于0的数直接得0; ②任何数除以1都等于原数.
《有理数》有理数及其运算PPT课件
+10分 +20分 0分 -10分
现在我们可以用带有“+”号和“-”号的数表示各 队每道题的得分情况.试完成下表:
第1题 第2题 第3题 第4题 第5题 合计 第一组 +10 -10 +10 +10 - 10 +10
第二组 - 10 +10
0 +10 +10 +20
第三组 +10 +10 - 10 - 10
做一做
随堂练习
3、某厂计划每天生产零件800个,第一天生产零 件850个,第二天生产零件800个,第三天生产零 件750个,
你能正、负数表示该厂每天的超产量吗?
解:第一天超产零件是50个. 第二天超产零件是0个. 第三天超产零件是-50个
关键:以800个零件为正、负数的标准(分界限)
必做题
1、在-2;+1/2;-3.5;11中,正数 是 +1/2、 11 ;负数是-2、 -3。.5
对于比0分高的得分,可以在前面加上“+”号, 如+10(读作:正10)表示比0分高10的数。
加10分表示+10分 扣10分表示-10分 得0分表示0分
第一题 第二题 第三题 第四题 第五题 最后得分
第一队 第二队 第三队 第四队
+10分 -10分 +10分 +10分 -10分 -10分 +10分 0分 +10分 +10分 +10分 +10分 -10分 -10分 0分 +10分 -10分 +10分 -10分 -10分
注意:小数≠分数
请你将到目前为止学过的数进行
分类,并与你的同伴进行交流。
正有理数
整数
有
0
理
数
正整数:如 1、2、3…… 零: 0 负整数:如-1、-2、-3…
有理数及其运算PPT课件
汇报人:XXX 汇报日期:20XX年10月10日
11
-12 那么沿顺时针方向转了12圈表示___。
(3)小明在某个路口,以规定方向以向东为正,向西为负,如果
他向东走了100m,则可表示为+_1_00;如果向西走了150m,则 可表示为 _-1_50_;如果他走了-50m,则表示_向_西_走_了_5_0m,
如果走了+200m,则表示_向_东_走_了_20_0m__;如果小明先向西
3.0 既不是正数,也不是负数.
2020年10月2日
7
分类:
正整数 如1,2,3,…
有
整数
0
0
理
负整数 如-1,-2,-3,…
数
正分数 如5.2,—34 ,—37 , …
分数 负分数 如-5.2, - —34 , - —37 ,…
注意:小数≠分数
2020年10月2日
8
练习:
1.如果零上5记作+5,那么零下3 记作—-3—.
2.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,
记作—-3—.8.
3.把下列数分别填在对应的括号内: 13,-0.5,2.7,123,0, -─52,-4,─47。
(1)分数(-0.5,2.7,-)─52,;─(47 2)负整数( ); -4
(3)正分数( 2.7,)─47;(4)有理数( 全)都。是
规律是3_的_倍__数__为__-其__它__为__+ ;
(3)-1,2,-3,4,-5,6,-7,8 ,-9………
+ 其中第279个数为 _-_2_7_9_ ,第320个数的符号为___,
2020年10月2规日 律是_奇__数__为_-__偶_数__为__+_;
11
-12 那么沿顺时针方向转了12圈表示___。
(3)小明在某个路口,以规定方向以向东为正,向西为负,如果
他向东走了100m,则可表示为+_1_00;如果向西走了150m,则 可表示为 _-1_50_;如果他走了-50m,则表示_向_西_走_了_5_0m,
如果走了+200m,则表示_向_东_走_了_20_0m__;如果小明先向西
3.0 既不是正数,也不是负数.
2020年10月2日
7
分类:
正整数 如1,2,3,…
有
整数
0
0
理
负整数 如-1,-2,-3,…
数
正分数 如5.2,—34 ,—37 , …
分数 负分数 如-5.2, - —34 , - —37 ,…
注意:小数≠分数
2020年10月2日
8
练习:
1.如果零上5记作+5,那么零下3 记作—-3—.
2.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,
记作—-3—.8.
3.把下列数分别填在对应的括号内: 13,-0.5,2.7,123,0, -─52,-4,─47。
(1)分数(-0.5,2.7,-)─52,;─(47 2)负整数( ); -4
(3)正分数( 2.7,)─47;(4)有理数( 全)都。是
规律是3_的_倍__数__为__-其__它__为__+ ;
(3)-1,2,-3,4,-5,6,-7,8 ,-9………
+ 其中第279个数为 _-_2_7_9_ ,第320个数的符号为___,
2020年10月2规日 律是_奇__数__为_-__偶_数__为__+_;
有理数及其运算复习课件(经典)
有理数及其运算复习课件 (经典)
本课件全面回顾有理数的概念、运算规律及应用。通过丰富的图表和实例, 让您轻松掌握复杂的数学概念。我们开始吧!
有理数的概念及表示方法
通过例子和图示介绍有理数的定义以及常见的表示方法,如数轴、分数等。掌握有理数的基本概念和表示形式。运算规律和性质。通过实例演示绝对值在数轴上的 作用,帮助理解和掌握绝对值的概念。
有理数的比较与大小关系
介绍有理数的大小比较方法和运算规则。通过练习问题培养对有理数大小关 系的敏感性和判断能力。
有理数的加法与减法运算规律
总结有理数加法和减法的运算规律,提供实例演示。通过具体问题,培养对 有理数运算的理解和应用能力。
有理数的乘法与除法运算规律
详细介绍有理数乘法和除法的运算规律和性质。通过解决实际问题,巩固对 有理数乘除法的掌握。
有理数的运算性质及证明
探讨有理数运算的基本性质和证明方法。通过数学推理和证明题,加深对有理数运算性质的理解和运用。
有理数的约分与通分
教授有理数的约分和通分方法,通过实例演示和练习题,提高对有理数约分 和通分技巧的掌握。
有理数的混合运算
解释有理数的加减乘除混合运算规则,通过实际问题和练习题,提升对有理数混合运算的应用能力。
本课件全面回顾有理数的概念、运算规律及应用。通过丰富的图表和实例, 让您轻松掌握复杂的数学概念。我们开始吧!
有理数的概念及表示方法
通过例子和图示介绍有理数的定义以及常见的表示方法,如数轴、分数等。掌握有理数的基本概念和表示形式。运算规律和性质。通过实例演示绝对值在数轴上的 作用,帮助理解和掌握绝对值的概念。
有理数的比较与大小关系
介绍有理数的大小比较方法和运算规则。通过练习问题培养对有理数大小关 系的敏感性和判断能力。
有理数的加法与减法运算规律
总结有理数加法和减法的运算规律,提供实例演示。通过具体问题,培养对 有理数运算的理解和应用能力。
有理数的乘法与除法运算规律
详细介绍有理数乘法和除法的运算规律和性质。通过解决实际问题,巩固对 有理数乘除法的掌握。
有理数的运算性质及证明
探讨有理数运算的基本性质和证明方法。通过数学推理和证明题,加深对有理数运算性质的理解和运用。
有理数的约分与通分
教授有理数的约分和通分方法,通过实例演示和练习题,提高对有理数约分 和通分技巧的掌握。
有理数的混合运算
解释有理数的加减乘除混合运算规则,通过实际问题和练习题,提升对有理数混合运算的应用能力。
(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件
5
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
《有理数的乘法》有理数及其运算PPT免费课件(第2课时)
配律对于两个以上的数相加的情形仍然成立.
×18
3 5
.
连接中考
解:(1)999×(-15) =(1000-1)×(-15)
=15-15000
=-14985;
(2)999×118
45+999×( -15)-999
×18
3 5
.
=999×[118
4 5
+( -15
)-18
3 5
]
.
=999×100
=99900.
课堂检测
基础巩固题
1.算式-25×14+18×14-39×(-14)=(-25+18+39)×14是 逆用了( D ) A.加法交换律 B.乘法交换律 C.乘法结合律 D.乘法对加法的分配律
方法点拨:在有理数乘法的运算中,可根据算式的特点, 灵活运用有理数乘法的运算律,如逆用有理数乘法对加法 的分配律.
巩固练习
变式训练
计算:
(1)(-47)× 5×(-134)×(-0.2)(2)(-12)×(14-13)
解:原式= -47× 5×74×15
原式=
1 4
×(-12)-13×(-12) Nhomakorabea=-3+4
课堂检测
拓广探索题
计算: (1+111+113+117)×(111+113+117+119)-(1+111+113+117+119)× (111+113+117)
课堂检测 拓广探索题
解: 原式= [1+(111+113+117)]×(111+113+117+119)-
北师大版七年级数学上册《有理数》有理数及其运算PPT教学课件
重要总结:
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐
晴
4
﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐
晴
4
﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)
《有理数及其运算》课件
《有理数及其运算 》• 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 总结与回顾
01
有理数的概念
什么是有理数
有理数是可以表示为 两个整数之比的数, 包括整数和分数。
有理数是数学中非常 基础和重要的概念, 是数学运算的基础。
有理数包括正数、负 数和零。
、小时、天数等。
金融计算
在金融领域,利息、本 金、贷款和存款等都可 以用有理数进行计算。
比例与百分比
在商业和统计学中,比 例和百分比的计算都涉
及到有理数的应用。
导航与定位
在导航和定位中,经度 和纬度等位置信息都可
以用有理数表示。
05
总结与回顾
有理数及其运算的重要性质和公式
01
02
03
04
总结有理数的定义、分类和性 质,如正数、负数、整数、分
、不等式等。
函数
有理数可以用于定义各种数学 函数,如线性函数、幂函数等
,并研究其性质和图像。
几何学
有理数可以用于描述几何图形 的位置和大小,如长度、角度
、面积等。
数学分析
在数学分析中,有理数被用于 研究函数的极限、连续性和可
微性等概念。
在物理中的应用
测量与计算
有理数在物理中广泛应用于测 量和计算,如速度、加速度、
除法运算
总结词
有理数除法运算的基本法则
详细描述
有理数的除法运算可以通过乘法来实现,即a÷b=a×(1/b)。在进行除法运算时,同样 需要先确定被除数和除数的符号,然后计算绝对值的商,最后根据被除数和除数的符号
确定最终结果的正负号。同时,除法还满足倒数法则,即a÷b=(a×c)÷(b×c)。
03
有理数的混合运算
01
有理数的概念
什么是有理数
有理数是可以表示为 两个整数之比的数, 包括整数和分数。
有理数是数学中非常 基础和重要的概念, 是数学运算的基础。
有理数包括正数、负 数和零。
、小时、天数等。
金融计算
在金融领域,利息、本 金、贷款和存款等都可 以用有理数进行计算。
比例与百分比
在商业和统计学中,比 例和百分比的计算都涉
及到有理数的应用。
导航与定位
在导航和定位中,经度 和纬度等位置信息都可
以用有理数表示。
05
总结与回顾
有理数及其运算的重要性质和公式
01
02
03
04
总结有理数的定义、分类和性 质,如正数、负数、整数、分
、不等式等。
函数
有理数可以用于定义各种数学 函数,如线性函数、幂函数等
,并研究其性质和图像。
几何学
有理数可以用于描述几何图形 的位置和大小,如长度、角度
、面积等。
数学分析
在数学分析中,有理数被用于 研究函数的极限、连续性和可
微性等概念。
在物理中的应用
测量与计算
有理数在物理中广泛应用于测 量和计算,如速度、加速度、
除法运算
总结词
有理数除法运算的基本法则
详细描述
有理数的除法运算可以通过乘法来实现,即a÷b=a×(1/b)。在进行除法运算时,同样 需要先确定被除数和除数的符号,然后计算绝对值的商,最后根据被除数和除数的符号
确定最终结果的正负号。同时,除法还满足倒数法则,即a÷b=(a×c)÷(b×c)。
03
有理数的混合运算
有理数及其运算ppt课件三
正数的任何次方都是正数, 负数的偶数次的幂是正数, 负数的奇数次的幂是负数.
0的任何次幂等于多少? 1的任何次幂等于多少? 以10为底数的幂有何特点?
0的任何次幂等于0, 1的任何次幂等于1, 10的n次幂等于1的后面有 n个0.
目标检测
1、在 4 中,底数是 4 ,指数 6 ,
6
4 7 读做 -4的7次方或-4的7次幂; 2、
3、 2 的结果是 负 数(填“正”或 “负”);
15
4、计算: 2 = -8
3
;
5、计算:
1 2
4
=
1 16
;
2n
附加题:计算 ( 1)
1
2 n 1
0。
本节课同学们学到了哪些知 识? 乘方运算与四则运算有何联 系? 8指数an源自运算的结果叫做幂底数
读做a 的n次方,看作 是a的n次方结果时, 也可读做a的n次幂。
2
口答练习一 1)在 12 10 中,12是 底 数,10是 指 数,读作 12的10次方 2)
2 的底数是 3 2
3
7
;
2 3
,指数是 7 , ;
读作
的7次方
口答练习二
(1)(-2)10的底数是___,指数是 ____, 读作_________ (2)(-3) 12表示______个_______相乘,读作 _________, (3)(-1/3) 8的指数是________,底数______ 读 作_______, (4)3.6 5 的指数是_________,底数是________, 读作_______, (5)x m 表示____个_____相乘,指数是 ______,底数是_______,读作_________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:小数≠分数
请你将到目前为止学过的数进行
分类,并与你的同伴进行交流。
正有理数
整数
有
0
理
数
正整数:如 1、2、3…… 零: 0 负整数:如-1、-2、-3…
正分数: 如 1/2 、1/3、5.2
负有理数
分数
负分数:如 -1/5、-3.5、-5/6
整数与分数统称为有理数
做一做
随堂练习
2、下表是某日上海发行的部分债券行情表,试说 明各债券当天涨跌情况。
第一题 第二题 第三题 第四题 第五题 最后得分
第一队 第二队 第三队 第四队
+10分 -10分 +10分 +10分 -10分 -10分 +10分 0分 +10分 +10分 +10分 +10分 -10分 -10分 0分 +10分 -10分 +10分 -10分 -10分
+10分 +20分 0分 -10分
获得新知
零上与零下
盈利与亏损 加分与扣分
具有相反意义的量
高出与低于
具有相反意义的量:上升与下降、增与减、收入 与支出、胜与负、进与退、多与少、盈利与亏损 向东与向西、顺与逆、过剩与不足、重与轻等
用正数和负数可以表示具有相反意义的量
例1
知 (1)在知识竞赛中,如果+10分表示加10分,那么
识 扣20分怎样表示?
名称 99国债 99国债 99国债 01通化 01三峡 (1) (2) (3) 债券 债券
涨跌/元 +0.01 -0.05 -1.24 +0.15 -2.01
99国债(1)_涨__0_._0_1_元___;99国债(2)_跌__0_._0_5_元__; 99国债(3)_跌__1_._2_4_元___;01通化债券涨__0_._1_5_元__; 01三峡债券_跌__2_._0_1_元____.
有理数及其运算
第一节 有理数
学过的数:
古代猎人打了一只老鹰,用数如何表示一 只老鹰——有了整数
货币购物,用数如何表示10元5
角3分——有了小数。
二人分一只西瓜,用数如何表示 半只西瓜——有了分数
瓦罐没有东西了 有了0
用小学学过的数能表示下列数吗
零上5ºC
零下5ºC
用 小 学 学 过 的 数 能 表 示 下 列 数 吗
红色所表示的得 分比0分低。
带“-”的得分 比0分低。
这里出现了比0分低的得分,我们可以用带有“-” 号的数来表示,如-10(读作:负10)表示比0分低10 分的数;
对于比0分高的得分,可以在前面加上“+”号, 如+10(读作:正10)表示比0分高10的数。
加10分表示+10分 扣10分表示-10分 得0分表示0分
生城市 天气 高温 低温 城市 天气 高温 低温 哈尔滨 小雨 15 6 长春 多云 18 10
沈阳 小雨 19 7 天津 小雨 12 8 西宁 小雪 5 -4 银川 小雪 0 -3 兰州 小雪 3 -3 西安 小雨 16 7
财富全球500强中的主要零售企业
排名 公司 2 沃尔玛 46 麦德龙 66 家乐福
111 特斯科 120 洋华堂 153 大荣 184 佳士客
年收入 166809.0 46663.6 39855.7 30351.9 28670.9 25230.1 22451.3
利润 5377.0 295.1 805.6 1088.4 423.6 -195.2 -25.2
0
数怎么不够用了?
某班进行知识竞赛,评分标准是:答对一题加10分, 答错一题扣10分,不答不得分;每一个队的基础分都是0分
加10分 扣10分 得0分
第1题 第2题 第3题 第4题 第5题 第一队 第二队 第三队 第四队
感谢您的阅读! 为了便于学习和使用,本 文档下载后内容可随意修 改调整及打印。 欢迎下载!
(4)如果向东运动4m记作+4m,那么向西运动 7m应记作什么?若在原地不动又记作什么?
做一做 随堂练习
1、填空题
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
(2)东、西为两个相反方向,如果-4米表示一个 物体向西运动4米,那么+2米表示___________,物 体原地不动记作________。
(3)某仓库运进面粉7.5吨,那么运出3.8吨应记作 _______________。
你会把我们所学过的所 有的数进行分类吗?
分类:
正整数 如1,2,3,…
有
整数
0
0
理
负整数 如-1,-2,-3,…
数
正分数 如5.2,—34 ,—37 , …
分数 负分数 如-5.2, - —34 , - —37 ,…
做一做
随堂练习
3、某厂计划每天生产零件800个,第一天生产零 件850个,第二天生产零件800个,第三天生产零 件750个,
你能正、负数表示该厂每天的超产量吗?
解:第一天超产零件是50个. 第二天超产零件是0个. 第三天超产零件是-50个
关键:以800个零件为正、负数的标准(分界限)
必做题
1、在-2;+1/2;-3.5;11中,正数 是 +1/2、 11 ;负数是-2、 -3。.5
现在我们可以用带有“+”号和“-”号的数表示各 队每道题的得分情况.试完成下表:
第1题 第2题 第3题 第4题 第5题 合计 第一组 +10 -10 +10 +10 - 10 +10
第二组 - 10 +10
0 +10 +10 +20
第三组 +10 +10 - 10 - 10
0
0
第四组 +10 - 10 +10 - 10 - 10 - 10
雇员人数 1140000 171440 297290 134896
97040 47953 34375
资料来源:2002年《财富》全球500统计 单位:百万美元
像10、1.2、17…这样的数叫做正数,它们都 比0大
在正数前面加上“-”号的数叫做负数,例如 -10,-3 …
你认为0应该放在什么地方?
0既不是正数,也不是负数
运 (2)某人转动转盘,如果用+5表示沿逆时针方向转
用
了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标
准质量0.02克记作+0.02,那么-0.03克表示什么?
解 :(1)扣20分记作-20分;
(2)沿顺时针方向转12圈记作-12圈;
(3)-0.03克表示乒乓球的质量低于标 准质量0.03克.