离子注入技术课件

合集下载

硅集成电路工艺——离子注入PPT课件

硅集成电路工艺——离子注入PPT课件
第9页/共35页
• 沟道效应的概念(见书) • 沟道效应的消除方法:
• 使晶体的主轴方向偏离注入方向(7度左右,阴影现象) • 在晶体表面覆盖介质膜,散射后改变注入离子的方向 • 表面预非晶化(注入锗)
第10页/共35页
第11页/共35页
第12页/共35页
§4.3 离子注入系统
第13页/共35页
§4.5 热退火 Thermal Annealing
晶格损伤的危害: • 增加散射中心,使载流子迁移率下降 • 增加缺陷中心,使非平衡少数载流子寿命减少,pn结漏电流增大 • 注入离子大多处于间隙位置,起不到施主或者受主的作用,晶格损伤造成的破坏
使之更难处于替位位置,非晶区的形成更使得注入的杂质根本起不到作用。
终端台
1. 扫描器 • 靶静止,离子束X,Y向运动 • 靶X向移动,离子束Y向移动 • 离子束静止,靶X,Y向移动
.
第18页/共35页
2. 偏束板 • 离子束在运动过程中可以和热电子发生电荷交换,形
成中性粒子,影响注入均匀性 • 加入静电偏转电极,一般5度左右,中性束不能偏转
而去除
第19页/共35页
离子束中和系统
第20页/共35页
3. 靶室(工作室) • 样品架 • 法拉第杯(控制注入剂量)
第21页/共35页
§4.4 注入损伤
• 级联碰撞: 不同能量的注入离子与靶原子发生碰撞的情况:
• E<Ed,不会产生移位原子,表现形式为宏观热能; • Ed<E<2Ed,产生一个移位原子和一个空位; • E>2Ed,被撞原子本身移位之后,还有足够高的能量
第29页/共35页
第30页/共35页
第31页/共35页
快速退火 Rapid Thermal Annealing (RTA) • 普通热退火需要经过长时间的高温过程,会导致明显的杂

离子注入获奖课件

离子注入获奖课件

Typical implant voltages: 50~200 KeV, the trend is to lower voltages.
Typical implant dose: 1011~1016 cm2.
离子注入
二、离子注入旳特点
离子经加速,到达半导体表面; 离子经过碰撞损失能量,停留在不同深度旳位置, 此位置与离子能量有关;
Si Displaced Si ato去m 一定旳能量。靶原子也因碰撞 Si Si Si 而取核得碰能撞量,假如取得旳能量不
小于原注子入束离缚子能与,靶就内会原离子开核原间来
所旳在碰晶撞格。位置,进入晶格间隙,
并留下一种空位,形成缺陷。
核碰撞和电子碰撞
核阻止本事:能够了解为能量为E旳一种注入离子,在单位
产生沟道效应旳原因 当离子注入旳方向=沟道方向时,离子因为没有遇到晶格
而长驱直入,故注入深度较大。
沟道效应产生旳影响 在不应该存在杂质旳深度发觉杂质。
离子注入旳沟道效应
离子注入旳通道效应
离子注入旳沟道效应
处理沟道效应旳措施
1.倾斜样品表面,晶体旳主轴方向偏离注入方向,经典值为7°; 2.先重轰击晶格表面,形成无定型层; 3.表面长二氧化硅、氮化硅、氧化铝无定型薄层。
一级近似下,核阻止本事与入射离子旳能量无关。
注入离子在无定形靶中旳分布
注入离子在靶内分布是与注入方向有着一定旳关系, 一般来说,粒子束旳注入方向与靶垂直方向旳夹角比较小。
注入离子在靶内受到旳碰撞是随机过程。假如注入旳 离子数量很小,它们在靶内旳分布是分散旳,但是大量注 入离子在靶内旳分布是按一定统计规律分布。
虽然晶体某个晶向平行于离子注入方向,但注入离子进入晶 体前,在无定形旳介质膜中屡次碰撞后已经偏离了入射方向,偏 离了晶向。

离子注入技术Implant-PPT精选文档

离子注入技术Implant-PPT精选文档
各向同性
可以独立控制结深和浓 不能独立控制结深和 离子注入与扩散的比较 3 度 浓度
一 言 以 蔽 之 : 可 控 性 好
离子注入的缺点
1、离子注入将在靶中产生大量晶格缺陷; 2、离子注入难以获得很深的结(一般在
1um以 内,例如对于 100keV离子的平均射程的典型值约为 0.1um );
3、离子注入的生产效率比扩散工艺低;
4 总结
未来电子技术发展水平的瓶颈;
未来高精工艺的发展方向;
未来尖端技术如航空航天、军事等领域 所必须的基础。
Thank you!
半导体进行掺杂的方法。将杂质电离成离 子并聚焦成离子束,在电场中加速而获得 极高的动能后,注入到硅中(称为 “靶” )而实现掺杂。
注:离子束(Ion Beam)用途 E < 10 KeV ,刻蚀、镀膜 E = 10 ~ 50 KeV,曝光 E > 50 KeV,注入掺杂
离子束加工方式可分为 1、掩模方式(投影方式) 2、聚焦方式(FIB,Focus Ion Beam) 掩模方式需要大面积平行离子束源,故一般采用等离 子体型离子源,其典型的有效源尺寸为100 m,亮度 为10 ~ 100 A/cm2.sr。 聚焦方式则需要高亮度小束斑离子源,当液态金属离 子源(LMIS , Liquid Metal Ion Source )出现后才得 以顺利发展。LMIS 的典型有效源尺寸为 5 ~ 500 nm, 亮度为 106 ~ 107 A/cm2.sr 。
液态金属离液态金属离液态金属离液态金属离lmislmis的类型结构和发射机理的类型结构和发射机理的类型结构和发射机理的类型结构和发射机理液态金属液态金属针尖的曲率半径为针尖的曲率半径为ro15m改变m改变e2可以调节针尖与引出极之以调节针尖与引出极之间的电场间的电场使液态金属使液态金属间的电场间的电场使液态金属使液态金属在针尖处形成一个圆锥此圆锥顶的曲率半径仅有有10nm的数量级这就是lmis能产生小束斑离子束的关键

第4章IC工艺之离子注入ppt课件

第4章IC工艺之离子注入ppt课件

Beam scan
Mask xj
Mask
Silicon substrate
a) Low dopant concentration (n–, p–) and shallow junction (xj)
Mask xj
Mask
Silicon substrate
b) High dopant concentration (n+, p+) and deep junction (xj)
Scanning disk with wafers
Suppressor aperture
Faraday cup
Ion beam
Current integrator
Scanning direction
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
( dE dx
) nuel
( dE dx
) e
R p ( E )
E 0
dE ( dE tot

E 0
dE S (E
)
dx
E
dE
0 Sn(E) Se(E)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
– 4.3. 注入离子的激活与辐照损伤的消除
P.103~112 1)注入离子未处于替位位置 2)晶格原子被撞离格点
ET(M 4M i iM M tt) E0f()Ea
Ea为原子的位移阈能 大剂量——非晶化 临界剂量(P。111) 与什么因素有关? 如何则量?

离子注入工艺PPT课件

离子注入工艺PPT课件

2021/5/29
8
第8页/共53页


当具有高能量的离子注入到固体靶面以后,这些高能粒子将与固体靶面的原子
与电子进行多次碰撞,这些碰撞将逐步削弱粒子的能量,最后由于能量消失而停止
运动,新城形成一定的杂质分布。

同时,注入离子和晶格原子相互作用,那些吸收了离子能量的电子,可能激
发或从原子之内游离,形成二次电子。
As, N), 能量(keV)
2.单位面积注入电荷:Qss =I t /A, I:注 入束流,t: 时间,A:扫描面积(园片尺 寸)
3.单位面积注入离子数(剂量)N:s
Ns = Qss/q =(I t) /(q A) 2 R
4.最大离子浓度:第22N页/M共5A3X页=
22
*注入离子分布
• •
N(x)=Nmax
2、可能沿某些方向由原子列包围成直通道--沟道,离子进入沟道时,沿沟道前进阻力小,射程要大
得多。
2021/5/29
27
第27页/共53页
3、 沟道效应的存在,将使得对注入离子在深度上难以控制,尤其对大规模集成电路制造更带来麻烦。 如MOS器件的结深通常只有0.4um左右,有了这种沟道效应万一注入距离超过了预期的深度,就使元器件 失效。因此,在离子注入时,要考虑到这种沟道效应,也就是说要抑止这种现象的产生。
2021/5/29
5
第5页/共53页
• (8)离子往往是通过硅表面上的薄膜注入到硅中,因此硅表面上的薄膜 起到了保护膜作用
• (9)化合物半导体是两种或多种元素按 一定组分构成的,这种材料经 高温处理时,组分可能发生变化。采用离子注入技术,基本不存在上述问 题,因此容易实现对化合物半导体的掺杂

离子注入法介绍PPT课件

离子注入法介绍PPT课件

(2)已知离子注入时的注入束流I,靶面积A,注入时解第3步
计算杂质最大浓度:
求解第4步
写出杂质浓度分布公式:
第21页/共32页
4、根据离子注入条件计算杂质浓度的分布
(3)假设衬底为反型杂质,且浓度为NB,计算PN结结深 由N(xj)=NB 可得到结深计算公式:
第22页/共32页
4、根据离子注入条件计算杂质浓度的分布
(4)根据分布公式,计算不同深度位置的杂质浓度
第23页/共32页
5、实际杂质分布偏差描述的改善
■ 对于低浓度区的偏差,采用高斯分布的高次矩描述:
■ 对于硼的分布,采用Pearson IV分布描述。
■ 用蒙特卡洛法模拟杂质分布在 离子注入计算机模拟工具中十 分常见。
(2)质量分析器:
选择注入所需的杂质成分(B+)
■ 分析磁铁:磁场方向垂直于离子束的速度方向
离子运动路径:
离子运动速率:
质量m+m的离子产生的位移量
■ 出口狭缝:只允许一种(m/q)的离子离开分析仪
第8页/共32页
第9页/共32页
(3)加速管:
加速离子,获得所需能量;高真空(<10-6 Torr)
第3页/共32页
二、离子注入工艺设备及其原理
1、离子注入技术的三大基本要素:
(1) 离子的产生 (2) 离子的加速 (3) 离子的控制
2、离子注入系统的三大组成部分:
(1) 离子源——杂质离子的产生 (2) 加速管——杂质离子的加速 (3) 终端台——离子的控制
第4页/共32页
第5页/共32页
(1)离子源:
图5.8 常见杂质的Sn和Se与注入能量的关系
第16页/共32页

离子注入工艺原理ppt课件

离子注入工艺原理ppt课件
降速度越来越快。
7
硅中离子注入能量(KeV)与射程(Å)的对 应关系
入射能量
杂质
B
RP
RP
P
RP
RP
As
RP
RP
20
714 276 255 90 151 34
40
1413 443 488 161 263 59
60
80
100 120 140 160
180
2074 2695 3275 3802 4284 4745 5177
溶解度的限制
4
离子注入的ห้องสมุดไป่ตู้论描述
在离子注入过程中被掺杂的材料一般称为靶,离子轰击靶时, 其中一部分离子在靶的表面被折射出,不能进入靶内,这部 分离子叫做散射离子,进入的部分离子叫做注入离子,为了 精确控制注入的深度,避免沟道效应,往往使靶片的晶轴方 向与入射离子束的方向由一定的角度。
核碰撞 注入离子与靶内原子核之间的相互碰撞 电子碰撞 注入离子与靶内自由电子以及束缚电子之间的碰
(2) 注入剂量增大,靶的晶格损伤越严重。
移位原子 移位阈能 能量淀积过程
12
由于轻离子和重离子引起的晶格损伤
轻离子冲击
重离子冲击
13
(三)、离子注入参数 1、剂量
Q It qnA
Q : 剂量,原子数 / cm2 ;I : 束流,库仑 / 秒 n:每个离子的电荷数;A:注入面积
2、射程:离子穿越硅片的总距离
缺点:缺陷不能完全消除,而且容易产生二次缺陷,杂质 电激活率不高,容易增加表面污染,高温容易导致杂质再分 布,破坏了离子注入的优点。
19
快速退火
优点:通过降低退火温度,缩短退火时间 脉冲激光退火

集成电路工艺基础——离子注入课件

集成电路工艺基础——离子注入课件

2
通过离子注入技术,可以在光学材料中制造出各 种光电子器件,如激光器、光放大器、光调制器 等。
3
离子注入技术还可以用于制造光子晶体、光子集 成电路等新型光电子器件,提高光电子器件的性 能和集成度。
离子注入在传感器中的应用
传感器是实现智能化、自动化 的重要器件,离子注入技术在 传感器制造中也有着重要的应 用。
通过离子注入技术,可以在传 感器材料中制造出各种敏感元 件,如压力传感器、温度传感 器、气体传感器等。
离子注入技术还可以用于制造 生物传感器、化学传感器等新 型传感器,提高传感器的灵敏 度和稳定性。
CHAPTER
04
离子注入的未来发展
新型离子注入设备的研究
研发更高效、精确的 离子注入设备是未来 的重要研究方向。
与硅材料相比,化合物半导体材 料的离子注入工艺较为复杂,需
要更高的技术和设备条件。
离子注入化合物半导体材料在光 电子器件、高速电子器件和微波 器件等领域具有广泛的应用前景

离子注入金属材料
金属材料在集成电路制造中主要用于 互连线、电极和引脚的制造,离子注 入金属材料可以改变其表面特性和导 电性能。
离子注入硅材料的方法具有较高的精度和可重复性,可以实现对硅材料的微细加工 。
离子注入硅材料还可以提高硅材料的机械性能和化学稳定性,使其更适应于集成电 路制造中的各种工艺条件。
离子注入化合物半导体材料
化合物半导体材料是集成电路制 造中的另一种重要材料,离子注 入化合物半导体材料可以改变其
电子结构和光电性能。
开发具有自主知识产 权的离子注入设备, 打破国外技术垄断。
利用新材料和新技术 提高设备的稳定性和 可靠性,降低生产成 本。
离子注入与其他微纳加工技术的结合

离子注入最详细的PPT课件

离子注入最详细的PPT课件

两种质量分析器的比较 在 E B 质量分析器中,所需离子不改变方向,但在输出 的离子束中容易含有中性粒子。磁质量分析器则相反,所需离 子要改变方向,但其优点是中性粒子束不能通过。
第29页/共131页
三、加速器 产生高压静电场,用来对离子束加速。该加速能量是决定 离子注入深度的一个重要参量。
Electrode
第32页/共131页
扫描系统
第33页/共131页
全电扫描和混合扫描系统示意
全电 扫描
第34页/共131页
混合 扫描
六、工作室(靶室) 放置样品的地方,其位置可调。
第35页/共131页
七、离子束电流的测量
Sampling slit in disk
ayt 2
从上式消去时间 t ,并将 ay 代入,得
第23页/共131页
y
1 2
qs
B
2qsVa
1 2
qs
Vf d
z2 2qsVa
1 z2 4 Va
B
2qsVa
1
2
Vf d
由此可得偏转量 Db 为 Db y(Lf ) y(Lf )Ld
B
2qsVa
1 2
Vf d
1 4
L2f Va
LMIS 的类型、结构和发射机理
V形
针形 螺旋形
类 型
同轴形
毛细管形
液态金属 钨针
第13页/共131页
对液态金属的要求 (1) 与容器及钨针不发生任何反应; (2) 能与钨针充分均匀地浸润; (3) 具有低熔点低蒸汽压,以便在真空中及不太高的温度 下既保持液态又不蒸发。 能满足以上条件的金属只有 Ga、In、Au、Sn 等少数几种, 其中 Ga 是最常用的一种。

半导体制造技术--离子注入工艺PPT课件( 134页)

半导体制造技术--离子注入工艺PPT课件( 134页)
• 引起一个不是想得到的掺杂物分部轮廓
多数的碰撞
非常少的碰撞
31
通道离子
碰撞离子
q
晶圆表面
通道效应
晶格原子
32
碰撞后的通道效应
碰撞的
通道的
碰撞的
q
晶圆表面
33
碰撞后的通道效应
碰撞
通道
碰撞
掺杂物浓度
到表面的距离
34
注入制程:通道效应
• 避免通道效应的方法
– 晶圆倾斜, 通常倾斜角度是7° – 屏蔽氧化层 – 硅或锗的非晶态注入制程
8
沉积掺杂氧化层
沉积掺杂氧化层 二氧化硅 硅基片
9
氧化
二氧化硅 硅基片
10
驱入
二氧化硅 硅基片
掺杂接面
11
剥除和清洗
二氧化硅 硅基片
掺杂接面
12
掺杂半导体:离子注入
• 用在原子和核的研究 • 1950年代观念便已被提出 • 在1970年代中期才被引进到半导体制造.
13
掺杂半导体:离子注入
• 离子能量控制接面深度 • 掺杂物浓度是非等向性
19
离子注入的应用
应用
掺杂
预先非晶化 深埋氧化层 多晶阻挡层
离子 N 型: 磷, 砷,锑 硅或锗


P 型: 硼
20
其他的应用
• 氧离子注入为了硅覆盖绝缘层(SOI)组件 • 锗预先非晶化注入在钛薄膜为较好的退
火 • 锗预先非晶化注入在硅基片做为轮廓控
• 阴影效应
– 离子被结构阻挡
• 藉旋转晶圆或在注入后退火期间的小量 掺杂物扩散解决阴影效应
35
阴影效应
离子束
多晶硅 基片

离子注入技术ppt课件

离子注入技术ppt课件

Z 1 Z 2
M 1 e V c m 2
Z 1 23 Z 2 23M 1 M 2
忽略外围电子屏蔽作用,注入
离子与靶内原子之间势函数:
ቤተ መጻሕፍቲ ባይዱ
M——质量
V (r) q2Z1Z2 r
Z ——原子序数
下标1——离子 下标2——靶
整理版课件
10
核碰撞
考虑电子屏蔽时离子
与靶核之间相互作用势 函数
最简屏蔽函数
f
r
角度的散射(背散射),整会理版引课起件 在峰值位置与表面一侧有 32 较多的离子堆积;重离子散射得更深。
6.4注入损伤
晶格损伤:高能离子注入硅片后与靶原子发生一系列碰
撞,可能使靶原子发生位移,被位移原子还可能把能量依 次传给其它原子,结果产生一系列的空位-间隙原子对及 其它类型晶格无序的分布。这种因为离子注入所引起的简 单或复杂的缺陷统称为晶格损伤。
❖ 增加注入剂量(晶格损失增加,非晶层形成, 沟道离子减少)
❖ 表面用SiO2层掩膜
整理版课件
28
沟道效应的防止方法
(111)硅一般采取偏离晶向7°,平行偏转15°的注入方法
整理版课件
29
6.3.4影响注入离子分布的其它因素
❖ 实际上高能离子入射到衬底时,一小部分与 表面晶核原子弹性散射,而从衬底表面反射 回来,未进入衬底,这叫背散射现象.
➢ 同一平面上杂质掺杂分布非常均匀(±1% variation across an 8’’ wafer)
➢ 非平衡过程,不受固溶度限制,可做到浅结低浓度 或深结高浓度
➢ 注入元素通过质量分析器选取,纯度高,能量单一
➢ 低温过程(因此可用多种材料作掩膜,如金属、光刻胶、介质); 避免了高温过程引起的热扩散;易于实现对化合物半导体的掺杂;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N. Doped Polysilicon
O. Doped SiO2
Dopant
B B P B P P B B As As BF2 BF2 Si
P or B
P or B
Method
Diffusion Diffusion
Ion Implant Ion Implant Ion Implant Ion Implant Ion Implant Ion Implant Ion Implant Ion Implant Ion Implant Ion Implant Ion Implant Ion Implant or Diffusion Ion Implant or Diffusion
p– p+
STI
n– n+
n– n+
STI
p+
n
n+ n++
F
n-well
E
C
p
H
p+
G D
p-well p++
B p– epitaxial layer A p+ silicon substrate
Process Step
A. p+ Silicon Substrate B. p- Epitaxial Layer C. Retrograde n-Well D. Retrograde p-well E. p-Channel Punchthrough F. p-Channel Threshold Voltage (VT) Adjust G. p-Channel Punchthrough H. p-Channel VT Adjust I. n-Channel Lightly Doped Drain (LDD) J. n-Channel Source/Drain (S/D) K. p-Channel LDD L. p-Channel S/D M. Silicon
Low energy Low dose Fast scan speed
Ion implanter
High energy High dose Slow scan speed
Beam scan
Mask xj
Mask
Silicon substrate
a) Low dopant concentration (n–, p–) and shallow junction (xj)
Neutrals Heavy ions
Graphite
Figure 17.14
4.2. 沟道效应和卢瑟福背散射 6. 2. 1.沟道效应(page 101)
沟道峰
– 沟道效应的消除(临界角)
– 4. 2. 2.卢瑟福背散射RBS-C 作用?。。。
Ion Implant in Process Flow
Wafer fabrication (front-end)
Wafer start
Thin Films
Polish
Unpatterned wafer
Completed wafer
Test/Sort
Diffusion Anneal after implant
Photo
Etch
Photoresist mask Implant
Hard mask (oxide or nitride)
4.1. 离子注入原理
4.1.1. 物理原理(P.90-98) 通过改变高能离子的能量,控制注入离子在靶材
料中的位置。
Ion implanter
Dopant ions Beam scan
x Rp Rp
2
为高斯分布
Rp
2 3
R
p
MiMt Mi Mt
– 97页 图4.8
R – 平均射程
p
Page 107
– 多能量、多剂量注入
– 4.1.2. 设备
Analyzing Magnet
Ion source Extraction assembly
Analyzing magnet Ion beam Lighter ions
– 离子注入技术的优缺点 – 剂量和射程在注入工艺中的重要性 – 离子注入系统的主要子系统 –
CMOS Structure with Doped Regions
p-channel Transistor
N
O
M
K
p+
L LI oxide
n-channel Transistor
I
J
n+
n+
STI
p– p+
第四章:离子注入技术
问题的提出: – 短沟道的形成? – GaAs等化合物半导体?(低温掺杂) – 低表面浓度? – 浅结? – 纵向均匀分布或可控分布? – 大面积均匀掺杂? – 高纯或多离子掺杂?
要求掌握: – 基本工艺流程(原理和工艺控制参数) – 选择性掺杂的掩蔽膜(Mask) – 质量控制和检测 – 后退火工艺的目的与方法 – 沟道效应 – 在器件工艺中的各种主要应用
Mask xj
Mask
Silicon substrate
b) High dopant concentration (n+, p+) and deep junction (xj)
– 重离子在材料中与靶原子的碰撞是“弹性”
库仑散射
ET
4M i M t (Mi M
)E0
t
f
( )
– 级联散射
Energy Loss of an Implanted Dopant Atom
Electronic collision
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Energetic dopant ion
Silicon crystal lattice
Si
Si
Si
X-rays
Si
Si
Si
Atomic collision
Si
Si
Displaced Si atom
Si
Si
Si
Si
Figure 17.9
– 能量损失: 散射路径R,靶材料密度,阻止本领S
dEtot dx
(
dE dx
) nuel
(
dE dx
) e
Rp
(E)
E 0
(
dE dEtot)源自E 0dE S(E)
dx
E
dE
0 Sn(E) Se(E)
– 能量损失
– 注入离子的分布N(x)(无电子散射) 注入剂量0(atom/cm-2),射程:Rp 标准偏差Rp
Sampling slit in disk
Scanning disk with wafers
Suppressor aperture
Faraday cup
Ion beam
Current integrator
Scanning direction
– 对于无定型材料,
– 有:
N(x)
0
2 Rp
exp
1 2
相关文档
最新文档