华东师大版初三数学下册二次函数单元知识点总结
华师大版九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章 二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零。
二次函数的定义域是全体实数。
2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。
⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,。
华师大版九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章 二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零。
二次函数的定义域是全体实数。
2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。
⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,。
华师大版九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章 二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零。
二次函数的定义域是全体实数。
2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。
⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4.()2y a x h k=-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,。
华东师范大学出版社九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零。
二次函数的定义域是全体实数。
2、二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2。
⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2=的性质:a 的绝对值越大,抛物线的开口越小。
y ax2. 2=+的性质:y ax c Array3. ()2=-的性质:y a x h4. ()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y ax bx c =++的比较从解析式上看,()2y a x h k=-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,。
华师大版九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零。
二次函数的定义域是全体实数。
2、二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2。
⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项。
二、二次函数的基本形式y ax=的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,。
华东师范大学九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零。
二次函数的定义域是全体实数。
2、二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2。
⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2=的性质:a 的绝对值越大,抛物线的开口越小。
y ax2. 2=+的性质:y ax c Array3. ()2=-的性质:y a x h4. ()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y ax bx c =++的比较从解析式上看,()2y a x h k=-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,。
华师大版九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章 二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零。
二次函数的定义域是全体实数。
2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。
⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4.()2y a x h k=-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,。
华东师大版九年级数学下26章二次函数知识点总结及经典例题
二次函数知识点总结一、二次函数概念:1二次函数的概念:一般地,形如y ax2 bx c( a, b , c是常数,a 0 )的函数,叫做二次函数。
里需要强调:和一元二次方程类似,二次项系数 a 0,而b,c可以为零•二次函数的定义域是全体实数•--22. 二次函数y ax bx c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a ,b, c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:y ax2的性质:a的绝对值越大,抛物线的开口越小。
22. y ax c的性质:上加下减。
23. y a x h的性质:左加右减。
六、四、二次函数从解析式上看,b a x2a二次函数 4ac b 24a,其中 ax 2bx c 的性质ax 22axbx c 的比较 bx c 是两种不同的表达形式,4ac b 24a 后者通过配方可以得到前者,a 0向下 h , 0 X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值0 •24. y ax hk 的性质:a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k •a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k •三、二次函数图象的平移1. 平移步骤:⑴将抛物线解析式转化成顶点式⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2y a x h k ,确定其顶点坐标 h, k ;y=ax 2 A y=ax 2+k向右(h>0)【或左(*0)] 平移|k|个单位向右(h>0)【或左(h<0)] 平移|k|个单位2. 平移规律在原有函数的基础上概括成八个字“左加右减, h 值正右移,负左移;上加下减” •k 值正上移,负下移”向上(k>0)【或向下(k<0)】平移|k|个单位 向上(k>0)【或下(k<0)】平移|k 个单位向上(k>0)【或下(k<0)] 平移|k 个单位y=a(x h)2y=a(x h)2+k向右(h>0)【或左(h<0)]平移|k|个单位七、二次函数解析式的表示方法21. 一般式:y ax bx c ( a , b , c 为常数,a 0); 2•顶点式:y a (x h )2 k ( a , h , k 为常数,a 0);3. 两根式(交点式):y a (x x i )(x 血)(a 0, x , X 2是抛物线与x 轴两交点的横坐标) 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示. 二次函数解析式的这三种形式可以互化.二次函数的图象与各项系数之间的关系二次项系数a当a 0时,抛物线开口向上, 当a 0时,抛物线开口向下,九、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 二次方程ax bx c 0是二次函数y x 轴的交点个数: 兀 图象与 2ax x 轴交点情况): bx c 当函数值 y 0时的特殊情况. 2b 4ac 0时,图象与x 轴交于两点A X i , 0 , B x 2 , 0 (X i X 2),其中的X i , X 2是一元二次方2ax bx 0的两根.. 1' 2' 0时, 0时, 当a 当a x 轴只有一个交点; x 轴没有交点. 图象与 图象与 0时,图象落在x 轴的上方,无论 0时,图象落在x 轴的下方,无论x 为任何实数,都有 x 为任何实数,都有2•当a2时,2a 2时,2a2ba 时, y 随x 的增大而减小; y 随x 的增大而增大;y 有最小值 24ac b4a0时,抛物线开口向下, 对称轴为暑,顶点坐标为b 4ac b 2 2a' 4a•当x —时,y 随2ax的增大而增大;当x时,y 随x 的增大而减小;当 x2—时,y 有最大值4^-b -2a4a八、 1. ⑴ ⑵a 的值越大,开口越小,反之 a 的值越小,开口越大; a 的值越小,开口越小,反之 a 的值越大,开口越大.2. 一次项系数b在二次项系数a 确定的前提下, 3. 常数项c⑴当c ⑵当c ⑶当c总结起来, b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)抛物线与y 轴的交点在x 轴上方,即抛物线与 抛物线与y 轴的交点为坐标原点,即抛物线与 抛物线与0时,0时, 0时, c 决定了抛物线与y 轴交点的位置.y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为正; y轴交点的纵坐标为0 ; y 轴交点的纵坐标为负.22. 抛物线y ax bx c的图象与y 轴一定相交,交点坐标为(0 , c);二次函数对应练习试题一、选择题1. 二次函数y x2 4x 7的顶点坐标是()A.(2, —11)B. (- 2, 7)C. (2, 11)D. (2, - 3)2. 把抛物线y 2x2向上平移1个单位,得到的抛物线是( )2 2 2 2A. y 2(x 1)B. y 2(x 1)C. y 2x 1D. y 2x 12 k3. 函数y kx k和y (k 0)在同一直角坐标系中图象可能是图中的()x4.已知二次函数y ax2bx c(a 0)的图象如图所示当x 1和x 3时,函数值相等;③4a b 0④当y确的个数是()A.1个B.2 个C. 35.已知二次函数ax2 bx c(a由图象可知关于兀二次方程axA. — 1 .6.已知二次函数A.第一象限C.第三象限7.方程2x x2A.0个8.已知抛物线过点,则下列结论:①a,b同号;②2时,x的值只能取0.其中正个个D. 4B.-2.3C.-0.3D.-3.32ax bx c的图象如图所示,则点(ac,bc)在(B.第二象限D.第四象限-的正根的个数为( )xB. 1C.2A(2,0),B(-1,0), 与y轴交于点C,且OC=2.则这条抛物线的解析式为2A.y2x2x 2B.y2x2x 2C.y x2 x 2 或y 2 小x x 2 D.y2 2x x 2 或y x x 2二、填空题9•二次函数y x2 bx 3的对称轴是x 2,则b ______________ 。
华师大版九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章 二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零。
二次函数的定义域是全体实数。
2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。
⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二、二次函数的基本形式1。
二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4。
()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,。
华师大版九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章 二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y axbx c=++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c,可以为零。
二次函数的定义域是全体实数。
2、二次函数2y ax bx c=++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。
⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,。
华师大版九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做二次函,,是常数,0数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零。
二次函数的定义域是全体实数。
2、二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2。
⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2=的性质:a 的绝对值越大,抛物线的开口越小。
y ax2. 2=+的性质:y ax c3. ()2=-的性质:y a x h4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,。
华师大版九年级下册数学知识点总结
华师大版九年级下册数学知识点总结第二十六章二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2=++(a b cy ax bx ca≠)的,,是常数,0函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零。
二次函数的定义域是全体实数。
2、二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2。
⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2=的性质:a 的绝对值越大,抛物线的开口越y ax小。
2. 2=+的性质:y ax c3. ()2=-的性质:y a x h4. ()2=-+的性质:y a x h k三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师大版初三数学下册二次函数单元知识点
总结
一般式y=ax2+bx+c(其中a,b,c为常数,且a 0)中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件。
初中频道为大家整理了二次函数单元知识点,希望对大家有帮助!
一、二次函数
二次函数的概念:
一般地,y=ax^2+bx+c(a,b,c为常数,a 0),则称y为x的二次函数。
二次函数的结构特征:
一般地,y=ax^2+bx+c,
⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
⑵a,b,c是常数,
二、二次函数的图象与性质
一般地,自变量x和因变量y之间存在如下关系:
函数图像
y=ax^2+bx+c
(a,b,c为常数,a 0,且a决定函数的开口方向,a 0时,开口方向向上,a 0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
三、实践与探索
1、任务型教学重在沟通信息,不强调语言形式。
2、任务型教学重在解决某些问题。
3、任务型教学是老师设置的活动。
4、任务型教学重在如何完成任务。
5、任务型教学评价的标准看任务完成的情况。
二次函数单元知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家可以更好的学习,取得优异的成绩。