新人教版高中数学必修一函数的概念页PPT
合集下载
人教版高中数学必修一第一章函数的概念课件PPT
例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
新教材高中数学人教A版(2019)必修第一册第三章第一节函数的概念课件
对于任一时刻t,都有唯一确定的路程S和它对应.
A1 {t 0 t 0.5}
自变量的集合
S=350t 对应关系
B1 {S 0 S 175}
函数值的集合
对于 数集A1中 任一时刻t, 按照对应关系S 3,50t 在数集B1中都有唯一确定的路程S和它对应
问题2 某电器维修公司要求工人每周工作至 少1天,至多不超过6天,公司确定工资标准 是每人每天350元,而且每周付一次工资
3
⑶当a 0时,求 f (a), f (a 1)的值。
例2下列哪个函数与 y = x 是同一函数?
⑴ y ( x)2;
⑵ y 3 x3;
⑶ y x2;
x2 ⑷ y .
x
当定义域、对应法则和值域完全一
致时,两个函数才相同.
牛刀小试:下列各组中的两个函数是否为 相同的函数?
⑴
y1
(
x
3)( x
(4)问题1和问题2中函数的对应关系相同,你 认为它们是同一个函数吗?你认为影响函数的要 素有哪些?
对于 数集A2中 任一个工作天数d, 按照对应关系W 3,50d 在数集B2中都有唯一确定的工资w和它对应
自变量 的集合
对应关系
函数值的 集合
问题3 图3.1-1是北京市2016年11月23日空 气质量指数变化图,如何根据改图确定这一 天内任一时刻t h的空气指数的值I
年份y
2006 2007 2008 2009 2010 2011 2012 2013
恩格尔系数r 36.69 36.81 38.17 35.69 32.15 33.53 33.87 29.89
2014
29.35
2015
28.57
表3.1-1某城镇居民恩格尔系数变化情况
课件_人教版高中数学必修一函数PPT课件_优秀版
y 1是函数吗?
判断下列对应能否表示y是x的函数
(1) y=|x| (3) y=x 2 (5) y2+x2=1
(2)|y|=x (4)y2 =x (6)y2-x2=1
(1)能 (2)不能 (4)不能 (5)不能
(3)能 (6)不能
问题:
如何判断给定的两个变量之间是否具有函
数关系?
(5) y2+x2=1 (6)y2-x2=1 如何判断给定的两个变量之间是否具有函数关系? (3) {x|x ≤ -1} ∩{x| -5 ≤ x<2} (2)、满足不等式a<x<b的实数x的集合叫做开区间,表示为 (a,b)
(3)f(x) x1 1 2x
练 习 : 求 下 列 函 数 的 定 义 域 (1)f(x)= x+1 x-3
(2)f(x)= 5-x x 3
(3)f(x)= (x-1)0 x2 x
两个函数相同:
( 1 ) 对 应 关 系 f , 定 义 域 , 值 域 都 相 同
定义域,定义域到值域的对应关系 相同
②根据所给对应法则,自变量x在其定义域中的每 请阅读课本P48关于区间的内容
(4) {x|x < -9}∪{x| -9 < x<20}
如(4)何不判能断一给定个的两个值变量,之间是是否具否有函都数关有系? 惟一确定的一个函数值y和它对 应。 (5)不能
(2) {x|x ≥9} 判断下列图象能表示函数图象的是( ) 定义域、对应法则、值域 (1){x|5 ≤ x<6} 实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”。 ②根据所给对应法则,自变量x在其定义域中的每一个值,是否都有惟一确定的一个函数值y和它对应。
判断下列对应能否表示y是x的函数
(1) y=|x| (3) y=x 2 (5) y2+x2=1
(2)|y|=x (4)y2 =x (6)y2-x2=1
(1)能 (2)不能 (4)不能 (5)不能
(3)能 (6)不能
问题:
如何判断给定的两个变量之间是否具有函
数关系?
(5) y2+x2=1 (6)y2-x2=1 如何判断给定的两个变量之间是否具有函数关系? (3) {x|x ≤ -1} ∩{x| -5 ≤ x<2} (2)、满足不等式a<x<b的实数x的集合叫做开区间,表示为 (a,b)
(3)f(x) x1 1 2x
练 习 : 求 下 列 函 数 的 定 义 域 (1)f(x)= x+1 x-3
(2)f(x)= 5-x x 3
(3)f(x)= (x-1)0 x2 x
两个函数相同:
( 1 ) 对 应 关 系 f , 定 义 域 , 值 域 都 相 同
定义域,定义域到值域的对应关系 相同
②根据所给对应法则,自变量x在其定义域中的每 请阅读课本P48关于区间的内容
(4) {x|x < -9}∪{x| -9 < x<20}
如(4)何不判能断一给定个的两个值变量,之间是是否具否有函都数关有系? 惟一确定的一个函数值y和它对 应。 (5)不能
(2) {x|x ≥9} 判断下列图象能表示函数图象的是( ) 定义域、对应法则、值域 (1){x|5 ≤ x<6} 实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”。 ②根据所给对应法则,自变量x在其定义域中的每一个值,是否都有惟一确定的一个函数值y和它对应。
高中数学新教材必修一第三章 《函数的概念与性质》全套课件
4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2x
0y 2
x
2
D
0
2x
学习新知
初中我们已知接触过函数的三种表示方法:解析法、列表法和图 象法
问题 2 某电气维修公司一个工人的工资关于天数 d 的函数 w=350d. ②定义域{1,2,3,4,5,6}
学习新知 这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷 大”。满足x≥ a,x>a ,x ≤b, x<b的实数的集合分别表示 为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
我国某省城镇居民恩格尔系数变化情况
时间(年)y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔系数r(%) 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
请仿照前面的方法描述恩格尔系数r和时间(年)y的关系。
对于集合A中的任意一个数x,按照某种确定的对
应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A
高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)
3 两个函数相同:当且仅当三要素相同。
例1 y= x 3 + 2 x 是函数吗?
——函数的定义域和值域均为非空的数集
例2 y=± x 是函数吗?
——对于函数定义域中每一个x,值域中都有 唯一确定的y和它对应。(不是函数)
练习:下列图形哪个可以表示函数的图象?
y
0x
A
y
0x
B
y
0x
C
四、如何求函数的定义域
想 f(1)表示什么意思? 一 想 f(1)与f(x)有什么区别?
一般地,f(a)表示当x=a时的函数值,是一个常量。 f(x)表示自变量x的函数,一般情况下是变量。 14
例:已知函数f(x)=3x2-5x+2.求f(0),f(a)和 f(a+1)
想一想 f[f(0)]等于多少?
练习:f(x)=|x+1|,则f(-1) +f(1)等于多少?
六、小结
1 函数的概念
2 定义域的求法 3 对函数符号y=f(x)的理解
七、布置作业
一、复习回顾
初中时学过函数的概念,它是怎样叙述的? 设在一个变化过程中,有两个变量x和y,
如果对于x的每一个值,y都有唯一的值与 它对应.那么就说y是x的函数. 其中x叫做 自变量,y是函数值。
想一想
y=1(x∈R)是函数吗?
Go to 13
研究函数y 1 x
为了研究的方便,取几组特殊的x值和对应的y值
当x=1时,y=1
当x=2时,y
1 2
当xБайду номын сангаас3时,y 1
3
A
B
y1
x
1
1
1
2
2
人教版高中数学必修一1.2.1函数的的概念_ppt课件
题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;
人教版高中数学必修1《三角函数的概念》PPT课件
• [方法技巧]
• 有关三角函数值符号问题的解题策略
• (1)已知角α的三角函数值(sin α,cos α,tan α)中任意两 个的符号,可分别确定出角α终边所在的可能位置,二者的 公共部分即角α的终边位置.注意终边在坐标轴上的特殊情 况.
• (2)对于多个三角函数值符号的判断问题,要进行分类讨 论.
()
• A.第一象限 二象限
B.第
• C.第三象限
D.第四象限
• (2)判断下列各式的符号:
• ①sin 2 020°cos 2 021°tan 2 022°;
• ②tan 191°-cos 191°;
• ③sin 2cos 3tan 4.
• [解析] (1)由点P(sin θ,sin θcos θ)位于第二象限,
则 sin θ+tan θ=3 1100+30;
当 θ 为第二象限角时,sin θ=31010,tan θ=-3,
则 sin θ+tan θ=3
10-30 10 .
(2)直线 3x+y=0,即 y=- 3x 经过第二、四象限. 在第二象限取直线上的点(-1, 3), 则 r= -12+ 32=2, 所以 sin α= 23,cos α=-12,tan α=- 3; 在第四象限取直线上的点(1,- 3), 则 r= 12+- 32=2, 所以 sin α=- 23,cos α=12,tan α=- 3.
• 可得sin θ<0,sin θcos θ>0,可得sin θ<0,cos θ<0,
• 所以角θ所在的象限是第三象限.
答案:C (2)①∵2 020°=1 800°+220°=5×360°+220°, 2 021°=5×360°+221°,2 022°=5×360°+222°, ∴它们都是第三象限角,∴sin 2 020°<0,cos 2 021°<0,tan 2 022°>0, ∴sin 2 020°cos 2 021°tan 2 022°>0. ②∵191°角是第三象限角,∴tan 191°>0,cos 191°<0, ∴tan 191°-cos 191°>0. ③∵π2<2<π,π2<3<π,π<4<32π, ∴2 是第二象限角,3 是第二象限角,4 是第三象限角, ∴sin 2>0,cos 3<0,tan 4>0,∴sin 2cos 3tan 4<0.
人教版高中数学必修一(1.2.1-1函数的概念)ppt课件
定义域
f:x 2x1
值域
函数解析式:f(x)=2x+1或y=2x+1
-3
-5
-2
-3
-1
-1 f(x)2x1
0
1
1
3
2
5
3
7 对应法则
对应法则施
加的运算对
f ( 3 ) 2 ( 3 ) 象 1 5
对应法 则
运算对象
运算内容:乘以2加一
象,即y的值
-3 -2 -1 0 1 2 3
f(a )f,(a 1 )
练习:
g(x) 2x3 5x2 3x2,求g(3),
h(x) | 4x|,求h(8),h(a) x2
1 r(x) 3
x5,求r(3),r(6)
x
已知函数
x 2
f
(x)
x
2
2
x
(1)求 f ( 2 ) , f的( 1值);
2
集合B中有唯一元素和A中某个元素对应
开平方
B
A
3
300
-3
2
450
-2 1
600
-1
900
求正弦
A
一对多不是映射
求平方
B
1
1
-1
一对一是映射
A
乘以2
1
2
4
-2
2
3 -3
9
3
多对一是映射
一对一是映射
集合A中任何一个元素都在B中有对应
乘以2加1
A
1
3
5
1B
2 3 4 5 6 7
集合A中的元素5在集合B中没有元素与之对 应,不能称为映射。
新人教版高中数学必修一3.1.1函数的概念(第二课时)(17张PPT)
(1){x|5 ≤ x<6} (2) {x|x ≥9}
[5,6)
[9,)
(3) {x|x ≤ -1} ∩{x| -5 ≤ x<2} (,1] [5,2)
(4) {x|x < -9}∪{x| 9 < x<20} (,9) (9,20)
练一练 求下列函数的定义域:
(1) f (x) 1 x2
(2) f (x) 3x 2 (3) f (x) x 1 1
√ (4) f (x) x ; g(x) x2
新人教版高中数学必修一3.1.1函数的 概念( 第二课 时)( 17张PP T)
新人教版高中数学必修一3.1.1函数的 概念( 第二课 时)( 17张PP T)
例题3: 求下列函数的值域:
y x2 2x 1
( x 1)2 2
x [1, 2] x [0,) x [1, 3)
不等于零的实数的集合 . (3)如果f(x)是二次根式,那么函数的定义域是使根号
内的式子大于或等于零的实数的集合. (4)a0有意义,a≠0。
(5)如果f(x)是由几个部分的数学式子构成的,那么 函数定义域是使各部分式子都有意义的实数集合(即 求各集合的交集).
(6)满足实际问题有意义。
4.已学函数的定义域和值域
新人教版高中数学必修一3.1.1函数的 概念( 第二课 时)( 17张PP T)
新人教版高中数学必修一3.1.1函数的 概念( 第二课 时)( 17张PP T)
练习 下列各组中的两个函数是否为相同的函数?
(1) y (x 3)( x 5) 与 y x 5 x3
(2) y x 1 x 1 与 y (x 1)( x 1) (3) f (x) ( 2x 5)2 与 f (x) 2x 5 (1)定义域不同。 (2)定义域不同。 (3)定义域和值域都不同。
新人教版高中数学必修第一册3.2.2函数的奇偶性(课件)
奇(偶)函数的性质及应用
【拓展】(2)奇偶函数的运算性质及符合函数的奇偶性: 设 , 的定义域分别是A和B,在公共定义域上有:
偶
偶
偶
奇
偶
偶
偶
奇
偶
偶
【注】上表中不考虑
和
中需
,
.
奇
奇
奇
偶
奇
奇
偶
奇
奇
偶
的情况;
【1】已知 是偶函数, 是奇函数,将下面的图像补充完整.
【解】根据奇偶函数的对称性,分别将偶函数沿着y轴作对称; 把奇函数沿着原点作中心对称,答案见图上.
【解】(1)首先判断定义域为R,关于y轴对称,再判断:
所以此函数是偶函数;
【解】(2)首先判断定义域为R,关于y轴对称,再判断: 所以此函数是奇函数;
【解】(3)首先判断定义域为
,关于y轴对称,再判断:
判断函数奇 偶性,首先 要看定义域.
【解】(3)首先判断定义域为
所以此函数是奇函数; ,关于y轴对称,再判断: 所以此函数是偶函数.
“ THANKS ”
【2】几何法,函数的图像关于y轴对称,那么函数就是偶函数
要证明某个函数不是偶函数,只需要列举出一个反例x0,证明f(-x0)≠f(x0)即可
偶函数 偶函数
图像关于y轴对称
本资料分享自高中数学 同步资源千人教师QQ群 483122854 本群专注同 代数特步入征资与源分收享集 期待你的加
几何特征
定义中,
函数奇偶性的判断
利用定义判断函数奇偶性的方法: 【1】一看定义域:奇函数和偶函数的定义域一定关于y轴对称,如果一个函数的定
义域关于y轴对称,那么它才有可能是奇函数或者偶函数,否则就没有探究下 去的必要.
人教版数学必修一1.2.1函数的概念精品课件(共21张PPT)
A={t|0≤t≤26} B={h|0≤h≤845}
§1.2.1函数的概念
(2) 近几十年来,大气层中的臭氧迅速减少, 因而出现了臭氧层空洞问题.下图中的曲线显 示了南极上空臭氧空洞的面积从1979~2001年 的变化情况:
§1.2.1函数的概念
根据上图中的曲线可知,时间t的变化范围是 数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化 范围是数集B ={S|0≤S≤26}.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数( % ) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
实例2(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞 问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔 系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表 明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
记作: y=f(x),xA
其中, x叫做自变量, x的取值范围A叫做函数的定义域 (domain);与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的值域(range).
§1.2.1函数的概念
(2) 近几十年来,大气层中的臭氧迅速减少, 因而出现了臭氧层空洞问题.下图中的曲线显 示了南极上空臭氧空洞的面积从1979~2001年 的变化情况:
§1.2.1函数的概念
根据上图中的曲线可知,时间t的变化范围是 数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化 范围是数集B ={S|0≤S≤26}.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数( % ) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
实例2(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞 问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔 系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表 明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
记作: y=f(x),xA
其中, x叫做自变量, x的取值范围A叫做函数的定义域 (domain);与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的值域(range).
高中数学必修一(人教版)《4.2.1 指数函数的概念》课件
[答案] B
[方法技巧] 判断一个函数是指数函数的方法
(1)需判断其解析式是否符合y=ax(a>0,且a≠1)这一结构特征. (2)看是否具备指数函数解析式所具有的所有特征.只要有一个特征不具备, 则该函数就不是指数函数.
【对点练清】
1.下列函数是指数函数的是
A.y=π2x C.y=2x-1
B.y=(-8)x D.y=x2
[方法技巧] 实际应用问题中指数函数模型的类型
(1)指数增长模型: 设原有量为N,每次的增长率为p,则经过x次增长,该量增长到y,则y=N(1 +p)x(x∈N). (2)指数减少模型: 设原有量为N,每次的减少率为p,则经过x次减少,该量减少到y,则y=N(1 -p)x(x∈N). (3)指数型函数: 把形如y=kax(k≠0,a>0,且a≠1)的函数称为指数型函数,这是非常有用 的函数模型.
[典例1] 给出下列函数:
①y=2·3x;②y=3x+1;③y=3x;
④y=x3;⑤y=(-2)x.
其中,指数函数的个数是
()
A.0
B.1
C.2
D.4
[解析] ①中,3x的系数是2,故①不是指数函数;②中,y=3x+1的指数是x +1,不是自变量x,故②不是指数函数;③中,3x的系数是1,幂的指数是自变量 x,且只有3x一项,故③是指数函数;④中,y=x3的底数为自变量,指数为常数, 故④不是指数函数.⑤中,底数-2<0,不是指数函数.
(2)若指数函数 f(x)的图象经过点(2,9),求 f(x)的解析式及 f(-1)的值.
[解析] (1)指数函数 y=f(x)=ax(a>0,且 a≠1)的图象经过点-2,14,可 得 a-2=14,解得 a=2,函数的解析式为 y=2x,f(4)f(2)=24·22=64.
人教版(新教材)高中数学第一册(必修1)优质课件:第一课时对数函数的概念及其图象和性质
2.对数函数y=logax(a>0,且a≠1)的图象和性质 a>1
0<a<1
图象
定义域
_(__0_,_+_∞__)___ Nhomakorabea值域
___R___
性 过定点 质 函数值的
变化
过定点(__1_,__0_)_,即 x=1 时,y=0
当 0<x<1 时,__y<__0_, 当 0<x<1 时,__y_>_0_,
当 x>1 时,_y_>__0__, 当 x>1 时,__y_<_0__
单调性 在(0,+∞)上是_增__函__数___ 在(0,+∞)上是_减__函__数__
拓展深化
[微判断]
1.函数 y=logx12是对数函数.( × ) 提示 对数函数中自变量x在真数的位置上,且x>0,所以错误.
2.函数y=2log3x是对数函数.( × ) 提示 在解析式y=logax中,logax的系数必须是1,所以错误.
函数;由于⑥中log4x的系数为2,
∴⑥也不是对数函数.只有③④符合对数函数的定义. (2)由题意设 f(x)=logax(a>0 且 a≠1),则 f(4)=loga4=-2,所以 a-2=4,故 a=12,
f(x)=log1x,所以 f(8)=log18=-3.
2
2
答案 (1)B (2)-3
规律方法 判断一个函数是对数函数的方法
问题 1 考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用 t
=log5 730 1P(P 为碳 14 含量)估算出土文物或古遗址的年代 t,那么 t 是 P 的函数吗?为
2
人教版高中数学必修一1.2.1函数的概念ppt课件
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
例2、求下列函数的定义域。
(1)
f (x)
1
(12x)(x1)
(2) f(x) x4 x2 1
(3) ;f(x) x1 2- x
例3、 已知: f =(xx2)x+3 求:f(-1), f(a),
f(x+1), f(
1 ),f(x2),f(f(x)), x
注意: 1在 y f中(xf)表示对应法则,不同 的函数其含义不一样。
初中已经学过:正比例函数、反比例函数、 一次函数、二次函数等。
1.[引例1](P15)一枚炮弹发射后,经过26s落到地面击
中目标。炮弹的射高为845m,且炮弹距地面的高度h
(单位:m)随时间t(单位:s)变化的规律是
h13t 05t2 (﹡)
提出以下问题: (1) 炮弹飞行1秒、8秒、15秒、25秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范围吗?分别用集合A和 集合B表示出来。 (4) 对于集合A中的任意一个时间t,按照对应关系
• 1930 年库拉托夫斯基(Kuratowski)用集合概念给出现代函数定义为“若对 集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上 定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[1,4] (-1,2] [1,5)
[a,b)
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
课堂小结 1.理解函数的定义,从数集到数集的一 一对应关系.
2.根据函数的定义,判断是否是函数. 3.求函数的定义域,用区间表示集合.
新人教版高中数学必修一函数的概念 页PPT
(4) 函数 f x 2x 6 的定义域是?
x 1
x x 3且x 1
总结:被开方数大于等于零,分母不为零
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
课堂练习(课本19页) 1.求下列函数的定义域:
(1) f (x) 1 4x 7
(2) f (x) 1 x x 3 1
新人教版高中数学必修一函数的概念 页PPT
练习 判断下列对应是不是从数集A到数集B的函数.
f
A1
2B
2
4
3
6
7
(1)
不是
f
A1
B
2
1
3
(2)
是
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
下列图形哪个可以表示函数的图象?
y
0
x
A
新人教版高中数学必修一函数的概念 页PPT
b 2a
4ac b2 4a
4ac b2 4a
b 2a
R
R
R
R
{y
|
y
4ac 4a
b2}{y
|
y
4ac4a b2}
新人教版高中数学必修一函数的概念 页PPT
求下列函数的定义域
(1) 函数 f(x)=2x-3 的定义域是? R
(2) 函数 f x 1 的定义域是? x x 1 x 1
(3) 函数 f x 2x 6 的定义域是? x x 3
y
0
x
√B
y
0
x
C
新人教版高中数学必修一函数的概念 页PPT
已学函数的定义域和值域
反比例函数 一次函数
y
k x
y axb (a 0)
(k 0)
二次函数
y ax2 bxc (a 0)
a> 0
a< 0
图像
定义域 {x| x 0} 值域 {y| y 0}
新人教版高中数学必修一函数的概念 页PPT
么就称f:A→B为从集合A到集合B的一个函
数,记作:
y=f(x) x∈A.
x叫作自变量,集合A叫作函数的定义域, 集合{f(x)|x∈A} 叫作函数的值域.
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
思维实验
数集A
输入
x
加工设备 输出
fy
数集B
函数的三要素: 定义域 对应关系
3.1.1 函数的概念
新人教版高中数学必修一函数的概念 页PPT
学习目标
1. 通过实例,使学生建立起函数概念的背景. 2. 体会函数是描述变量之间的依赖关系的重
要数学模型.(重点、难点) 3. 会求一些简单函数的定义域.(重点)
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
值域
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
例1 结合函数的定义,判断下列对应是不是从数集
A到数集B的函数.
f
A1
2B
2
4
3
6
(1) 7
f A1
2B
2
4
3
6
4 (2)
f
A1
2B
2
4
3
(3)
f A1
2B
2
4
3
6
(4) 8
新人教版高中数学必修一函数的概念 页PPT
•某“复兴号”高速列车加速到350km/h后保持
匀速运行半小时.路程y(单位:km)与运行时间 x(单位:h)的关系可以表A1示=为{x|0≤x≤0.5}
y=350x ①
B1={y|0≤y≤175}
•某公司要求工人每周工作至少1天,至多不超过
6天.工资标准是每人每A天1=35{10,元2,3,而,4且,5,每6}周付一次
ab ab
实数集R可以表示为(-∞,+ ∞)
x≥a
x >a
x≤b
x<b
[a,+∞) (a,+∞) ( -∞ ,b] (-∞,b)
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
练习:用区间表示下列集合
1.{x|1≤x≤4} 2x|a≤x<b}
工资,工资y与一周工作天数x的关系可以表示为
y=350x ②
B2={350,700,1050,140 0,1750,2100}
你认为它们是同一个函数吗?为什么?
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
函数的概念:
设A、B是非空的数集,如果按照某个确定
的对应关系f,使对于集合A中的任意一个数x, 在集合B中都有唯一确定的数y和它对应,那
回顾:
在初中我们学过哪几类函数?
1、一次函数: y kx b (k 0)
2、二次函数: y ax2 bx c(a 0) 3、反比例函数: y k (k 0)
x
特征:有两个变量x,y
y随着x的变化而变化
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
新人教版高中数学必修一函数的概念 页PPT
区间:
定义
{x|a≤x ≤ b}
{x|a<x < b}
名称 闭区间 开区间
符号 [a,b]
(a,b)
数轴表示 ab ab
{x|a≤x < b} 半开半闭区间 [a,b) {x|a<x ≤ b} 半开半闭区间 (a,b]