抛物线练习题(含答案)
高考数学专题《抛物线》习题含答案解析
专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。
《抛物线》典型例题12例(含标准答案)
《抛物线》典型例题 12例典型例题一例1指出抛物线的焦点坐标、准线方程. (1) X 2=4y(2) X =ay 2(a H 0)分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出 P,再写出焦点 坐标和准线方程.(2)先把方程化为标准方程形式,再对 a 进行讨论,确定是哪一种后,求 P 及 焦点坐标与准线方程.解:(1)寫P =2,.••焦点坐标是(0, 1),准线方程是:y = -1(2)原抛物线方程为:y 2 a 1 ,二2P = — a ①当2时,牛右,抛物线开口向右, 二焦点坐标是(丄,0),准线方程是:x = 4a 4a ②当a <0时,牛-右,抛物线开口向左, 1 1 •••焦点坐标是(丄,0),准线方程是:x =-' 4a 4a 综合上述,当a H0时,抛物线x=ay 2的焦点坐标为(丄,0),准线方程是:x = - 1 4a 4a 典型例题 例2若直线y =kx-2与抛物线y 2=8x 交于A 、B 两点,且AB 中点的横坐标为2, 求此直线方程. 分析:由直线与抛物线相交利用韦达定理列出 k 的方程求解.另由于已知与直线 斜率及弦中点坐标有关,故也可利用 作差法”求k. 解法一:设 A (x 1, y 1)、y = kx — 2B( x 2, y 2),则由:{ 2 可得:k 2x 2-(4k+8)x + 4 = 0 . 2 C l y =8x•••直线与抛物线相交,” k H 0 且 i >0,贝U kA —1 .••• AB 中点横坐标为:解得:k=2或k=—12 (舍去).k 2 =2,故所求直线方程为:y =2x—2 .解法二:设AX,%)、B(X2,y2),则有 y12 =8x1 y/ = 8x2两式作差解:(%-y2)(y1 +丫2)=8(x1 -X2),即*72X1 —X2 y1 + y2打x^i +X2 = 4 二yt + 丫2 =kx1—2 +kx2 —2 = “X t + x?)— 4 = 4k 一4,8/. k=----- 故 k=2或k=—1 (舍去).4k 一4则所求直线方程为:y =2x-2 .典型例题三例3求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切.分析:可设抛物线方程为寸=2px( p>0).如图所示,只须证明则以AB为直径的圆,必与抛物线准线相切.证明:作AA丄I于A i, BB i丄丨于B i . M为AB中点,作MM i丄丨于M i,则由抛物线的定义可知:在直角梯形BB i A i A 中:MM, AB2=MM ,1=2(AA +BB1)=?(|AF|+|BF|)= 2ABAB,故以AB为直径的圆,必与抛物线的准线相切.说明:类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.典型例题四例4 (1)设抛物线y2 =4x被直线y=2x+k截得的弦长为3^5,求k值.(2)以(1)中的弦为底边,以x轴上的点P为顶点作三角形,当三角形的面积为9时,求P点坐标.分析:(1)题可利用弦长公式求k,(2)题可利用面积求高,再用点到直线距离22求p 点坐标.解: (1)由卩 "x 得:4x 2+(4k —4)x + k 2=0 l y =2x+kk设直线与抛物线交于A (x 1, y 1)与B (x 2, y 2)两点.则有:治+ x ? = 1 -k,为凶=一 4 二 AB | = J (1 +22)(X 1 -X 2)2 = j 5(x 1 +X 2)2 -4x 1X 2 ] = 751(1-k)2-k 2】= j 5(1-2k)/. AB|J5(1-2k) =3^5,即 k = —4•••点P 在x 轴上,.••设P 点坐标是(X 0,O )二X o = -1或X o =5,即所求P 点坐标是(—1, 0)或(5, 0).典型例题五例5已知定直线I 及定点A (A 不在I 上),n 为过A 且垂直于I 的直线,设N 为 I 上任一点,AN 的垂直平分线交n 于B,点B 关于AN 的对称点为P,求证P 的 轨迹为抛物线.分析:要证P 的轨迹为抛物线,有两个途径,一个证明 P 点的轨迹符合抛物线 的定义,二是证明P 的轨迹方程为抛物线的方程,可先用第一种方法,由A 为定点,I 为定直线,为我们提供了利用定义的信息,若能证明 PA = PN 且PN 丄丨 即可.寫AB 丄I.二PN 丄丨.则P 点符合抛物线上点的条件:到定点A 的距离与到定直线的距离相等,所以P 点的轨迹为抛物线.2天9 675⑵,S A =9,底边长为矗,•三角形高h y 5则点P 到直线y=2x-4的距离就等于h,即2x 0 — 0 — 4 6yl5证明:如图所示, 连结 PA PN 、NB.由已知条件可知: PB 垂直平分NA,且B 关于AN 的对称点为P. ••• AN 也垂直平分P B.则四边形PABN 为菱形.即有PA=PN .21 2典型例题六例6若线段P 1P 2为抛物线C: y2 * 4=2px (p >0)的一条分析:此题证的是距离问题,如果把它们用两点间 的距离表示出来,其计算量是很大的.我们可以用 抛物线的定义,巧妙运用韦达定理,也可以用抛物 线的定义与平面几何知识,把结论证明出来.证法一:寫F (号,0),若过F 的直线即线段PP 2所在 直线斜率不存在时, 则有 RF =P2F =P ,二… . PF| P 2F设 P (X i , yj, P 2(X 2, y 2).焦点弦,F 为C 的焦点,求证:12RF P 2F根据抛物线定义有: RF =X i十卫 +卫 ,P 2F =X 1 +升.P 1P 2=X i + X2 + P则丄+丄=I RF I+R F L X i +x2 + P RF| |F2F RFlpFl (X i 垮)(X 2埠)X 1X 2请将①②代入并化简得:1+ R F | IP 2F若线段PP 2所在直线斜率存在时,设为k , 则此直线为: y = k (x-^)(kH0),且y =k (X-号) 由{ 2得: y =k (x —夕)I 2k 2X 2 -P (k 2 +2)x + k P2-=04 P (k 2+2)/. % +X 2 =2k又 %丫2 =tana(x i —X 2)典型例题七例7设抛物线方程为y 2=2px(p >0),过焦点F 的弦AB 的倾斜角为a ,求证: 焦点弦长为AB 二一2^ .sin Ct 分析:此题做法跟上题类似,也可采用韦达定理与抛物线定义解决问题. 证法一:抛物线y 2 = 2 px(p >0)的焦点为 导0),过焦点的弦AB 所在的直线方程为:y =tanad-^) 由方程组厂tag(x专)消去y 得:2l y =2 px222224x tan o-4p(tan ^)+ p tan a =02设 A(X i ,y i ),B(x 2,y 2),则{ 2 tan ° [x i 2 十证法二:如图所示,设R 、P 2、F 点在C 的准线I 上的射影分别是P 、F 2、且不妨设|P 2F 21= ncm=|PP|,又设P ?点在FF由抛物线定义知, F 2F =n. RF =m, FF i = p 又' F 2AF s i P 2BP 1,二 即m = m-n m+n ”p(m + n) =2mn 1 1 2——+ —=— ■ m n p故原命题成立.AF BR L ,2% +X 2 = P(t an : +2)= p(1+2cot2a )”AB| = ^(VH tan %t )(x ^x 2)2 =蟲 I 2 「2 2 p 21 =(1+tan a ) I P (1 +cot a ) —4 — IV L 4JIQQnQ=J sec a 4p cot a (1 +cot a ) =J 4 p 2*亠 V sin a2psin 2 a 即 ABsin a证法二:如图所示,分别作AA i 、BB i 垂直于准线I .由抛物线定义有: AF = AA = AF co 少 + PBF = BB 1二 AB = AF + BF=P + P1—cosa 1+ coset —2p21 —cos a _ 2p2sin a故原命题成立.典型例题八例8已知圆锥曲线C 经过定点P(3,2^3),它的一个焦点为F (1, 0),对应于该 焦点的准线为x = -1,过焦点F 任意作曲线C 的弦AB,若弦AB 的长度不超过8, 且直线AB 与椭圆3x 2 +2y 2 =2相交于不同的两点,求 (1) AB 的倾斜角日的取值范围.+ tan 2a )(为 +X 2)2-4皿2 】 于是可得出: AF =—P — 1 -COSaBF| =—P — 1 + cosa=P - BF COSay\4 3 3 4(2)设 CD 中点 M(x,y)、C(X 3,y 3)、 D(X 4,y 4)又0<0<:兀,•所求9的取值范围是:兀 V. 兀 2応 3花(2)设直线AB 与椭圆相交于C 、D 两点,求CD 中点M 的轨迹方程.分析:由已知条件可确定出圆锥曲线 C 为抛物线,AB 为抛物线的焦点弦,设其 斜率为k,弦AB 与椭圆相交于不同的两点,可求出k 的取值范围,从而可得e 的 取值范围,求CD 中点M 的轨迹方程时,可设出M 的坐标,利用韦达定理化简 即可. 解:(1)由已知得|PF | =4 .故P 到x = —1的距离d =4,从而|P F |=d •••曲线C 是抛物线,其方程为y 2=4x 设直线AB 的斜率为k,若k 不存在,则直线AB 与3x 2+2y 2=2无交点.••• k 存在.设AB 的方程为y = k (x_1)-4x可得:ky 2-4y_4k=0= k(x-1)4B 坐标分别为(X i ,y i )、(X 2,y 2),贝U: % + y ? =— % 也=*k二 AB | = Jo + k2)(y1 -y2)2、'1 +k 2 匚一;一—=—:—』(%中丫2)-4%丫2 k4(1 +k 2)2•••弦AB 的长度不超过8,.罟兰8即宀由 得:(2k2+3)x 2-4k—••• AB 与椭圆相交于不同的两点,二k 2<3由 k 2>1 和 k^3 可得:1 <^73 或一J 3<k <-1 故 1 <tan 9 < J 3或一 J 3 e tan 9 < -1设A 、k 2由仃::二得:(2k2+3)x—=04k 22(k 2-1)/. X3 +x 4 =—2——,X | M =2k 2+32… X 3 +X 42k -X = ----------- = ------ 2 ----22k 2+3gl-^3—2k +32寫 1 <k 2 v 32.•.5<2k +3v 9 2 1 则2兰1-—5 2k2. 2k 2…X = -- 2 --2k 2 +322亠 (X-1)2化简得:3x 2+2y 2-3x=0 •••所求轨迹方程为:3x2+2y2-3x =o 0x <|)典型例题九例9定长为3的线段AB 的端点A 、B 在抛物线y 2=x 上移动,求AB 的中点到 y 轴的距离的最小值,并求出此时 AB 中点的坐标.分析:线段AB 中点到y 轴距离的最小值,就是其横坐标的最小值.这是中点坐 标问题,因此只要研究 A 、B 两点的横坐标之和取什么最小值即可.解:如图,设F 是y 2=x 的焦点,A 、B 两点到准线的垂线分别是 AC 、BD ,22亠+3(X-1)222k +3C、D和N是垂足,则4 3 3 4 (2)设 CD 中点 M(x,y)、C(X3,y3)、D(X4,y4)等式成立的条件是AB 过点F .5 1当 x =—时,y 讨2 = -p2 =—,故4 4, 、2 2 2 C C 1 C (%+丫2)=* +y 2 +2%丫2 =2x-2 =2,厂运yi+y 2占2,“±牙 所以M(5, ±〈2),此时M 到y 轴的距离的最小值为54 24说明:本题从分析图形性质出发,把三角形的性质应用到解析几何中,解法较简.典型例题十例10过抛物线y=2px 的焦点F 作倾斜角为日的直线,交抛物线于A 、B 两点, 求AB的最小值.分析:本题可分e = 2和° ’2两种情况讨论.g I 时先写出I AB 的表达式, 再求范围.解: (1)若日=2,此时 I AB =2p. (2)若Th I ,因有两交点,所以£工0 . AB : y = tan 日(x-#),即 x = 代入抛物线方程,有y 2- Cytan 。
抛物线课件及练习题含详解
为 y k(x p).
2
又因为A,B两点是直线AB与抛物线的交点,则
y k(x y2 2px
p ), 2
x2
(
2p k2
p)x
p2 4
0,
所以x1·x2=p2 .
4
由|AF|·|BF|=
x1
x2
p 2
x1
x
2
p2 4
1. 3
得 p2 p (4 p) 1 ,
2 23
3
即 2p 所1 ,以 p 1 ,
2p y21p2y1y1y1 y2
x
x1
,
= 2p x y1y2 2p (x y1y2 ),
y1 y2 y1 y2 y1 y2
2p
将y1·y2=-4p2代入上式得y 2p x 2p,
y1 y2
故直线AB恒过定点(2p,0).
【方法技巧】利用抛物线的性质可以解决的问题 (1)对称性:解决抛物线的内接三角形问题. (2)焦点、准线:解决与抛物线的定义有关的问题. (3)范围:解决与抛物线有关的最值问题. (4)焦点:解决焦点弦问题.
|AF|=1,|BF|= 1,求抛物线及直线AB的方程.
3
【解题指南】设出A,B两点的坐标,根据抛物线定义可分别表
示出|AF|和|BF|,进而可求得|AF|+|BF|,求得x1+x2的表达
式,表示出|AF|·|BF|,建立等式求得p,则抛物线方程可得.
再由|AB|=
2p sin 2
得4, sin2θ=
(2)y2=2px(p>0)的焦点为( p,0),由题意得
2
( p 2)2 解9 得 5p,=4或p=-12(舍去).
2
高二抛物线的简单几何性质习题一(附答案)
抛物线的几何性质习题一、选择题1.若A 是定直线l 外的一定点,则过A 且与l 相切圆的圆心轨迹是( ) A.圆 B.椭圆 C.双曲线一支 D.抛物线2.抛物线y 2=10x 的焦点到准线的距离是( )A.2.5B.5C.7.5D.103.已知原点为顶点,x 轴为对称轴的抛物线的焦点在直线2x-4y+11=0上,则此抛物线的方程是( )A.y 2=11xB.y 2=-11xC.y 2=22xD.y 2=-22x4.过抛物线y 2=2px(p >0)的焦点且垂直于x 轴的弦AB ,O 为抛物线顶点,则∠AOB( ) A.小于90° B.等于90° C.大于90° D.不能确定5.以抛物线y 2=2px(p >0)的焦半径|PF |为直径的圆与y 轴位置关系为( ) A.相交 B.相离 C.相切 D.不确定二、填空题6.圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的圆的方程是 .7.若以曲线252x +162y =1的中心为顶点,左准线为准线的抛物线与已知曲线右准线交于A 、B 两点,则|AB |= .8.若顶点在原点,焦点在x 轴上的抛物线截直线y=2x+1所得的弦长为15,则此抛物线的方程是 .三、解答题9.抛物线x 2=4y 的焦点为F ,过点(0,-1)作直线l 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形FABR ,试求动点R 的轨迹方程.10.是否存在正方形ABCD ,它的对角线AC 在直线x+y-2=0上,顶点B 、D 在抛物线y 2=4x 上?若存在,试求出正方形的边长;若不存在,试说明理由.一、选择题1.经过抛物线y 2=2px(p >0)的所有焦点弦中,弦长的最小值为( ) A.p B.2p C.4p D.不确定2.直线y=kx-2交抛物线y 2=8x 于A 、B 两点,若AB 的中点横坐标为2,则|AB |为( )A.15B.415C.215D.423.曲线2x 2-5xy+2y 2=1( ) A.关于x 轴对称 B.关于y 轴对称C.关于原点对称,但不关于y=x 对称D.关于直线y=x 对称也关于直线y=-x 对称4.若抛物线y 2=2px(p >0)的弦PQ 的中点为(x 0,y 0)(y ≠0),则弦PQ 的斜率为( )A.-x pB.y pC.px -D.-px 05.已知抛物线y 2=2px(p >0)的焦点弦AB 的两端点坐标分别为A(x 1,y 1),B(x 2,y 2),则2121x x y y 的值一定等于( ) A.4 B.-4 C.p 2D.-p 2二、填空题6.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 .7.以椭圆52x +y 2=1的右焦点F 为焦点,以原点为顶点作抛物线,抛物线与椭圆的一个公共点是A ,则|AF |= .8.若△OAB 为正三角形,O 为坐标原点,A 、B 两点在抛物线y 2=2px 上,则△OAB 的周长为 .三、解答题9.抛物线y=-22x 与过点M(0,-1)的直线l 相交于A 、B 两点,O 为坐标原点,若直线OA 和OB 斜率之和为1,求直线l 的方程.10.已知半圆的直径为2r ,AB 为直径,半圆外的直线l 与BA 的延长线垂直,垂足为T ,且|TA |=2a(2a <2r),半圆上有M 、N 两点,它们与直线l 的距离|MP |、|NQ |满足条件|MP |=|AM |,|NQ |=|AN |,求证:|AM |+|AN |=|AB |.【素质优化训练】 一、选择题1.过点A(0,1)且与抛物线y 2=4x 有唯一公共点的直线的条数为( ) A.1 B.2 C.3 D.42.设抛物线y=ax 2(a >0)与直线y=kx+b 相交于两点,它们的横坐标为x 1,x 2,而x 3是直线与x 轴交点的横坐标,那么x 1、x 2、x 3的关系是( )A.x 3=x 1+x 2B.x 3=11x +21x C.x 1x 2=x 2x 3+x 3x 1 D.x 1x 3=x 2x 3+x 1x 23.当0<k <31时,关于x 的方程x 2=kx 的实根的个数是( ) A.0个 B.1个 C.2个 D.3个4.已知点A(1,2),过点(5,-2)的直线与抛物线y 2=4x 交于另外两点B 、C ,则△ABC 是( )A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.将直线x-2y+b=0左移1个单位,再下移2个单位后,它与抛物线y 2=4x 仅有一个公共点,则实数b 的值等于( )A.-1B.1C.7D.9二、填空题6.抛物线y 2=-8x 被点P(-1,1)所平分的弦所在直线方程为 .7.已知抛物线y 2=2x 的弦过定点(-2,0),则弦AB 中点的轨迹方程是 .8.已知过抛物线y 2=2px 的焦点F 的弦AB 被F 分成长度为m 、n 的两部分,则m 1+n1= .三、解答题9.已知圆C 过定点A(0,p)(p >0),圆心C 在抛物线x 2=2py 上运动,若MN 为圆C 在x 轴上截得的弦,设|AM |=m,|AN |=n ,∠MAN=θ.(1)当点C 运动时,|MN |是否变化?写出并证明你的结论?(2)求m n +nm的最大值,并求取得最大值时θ的值和此时圆C 的方程.10.已知抛物线y 2=4ax(0<a <1)的焦点为F ,以A(a+4,0)为圆心,|AF |为半径在x 轴上方作半圆交抛物线于不同的两点M 和N ,设P 为线段MN 的中点,(Ⅰ)求|MF |+|NF |的值;(Ⅱ)是否存在这样的a 值,使|MF |、|PF |、|NF |成等差数列?如存在,求出a 的值,若不存在,说明理由.【生活实际运用】1.已知点P(x 0,y 0)在抛物线含焦点的区域内,求证以点P 为中点的抛物线y 2=2px(p >0)的中点弦方程为yy 0-p(x+x 0)=y 20-2px 0注:运用求中点弦的方法不难求出结论,这一结论和过抛物线y 2=2px 上点的切线方程有什么联系?若P(x 0,y 0)为非对称中心,将抛物线y 2=2px 换成椭圆22a x +22b y =1或双曲线22a x -22by =1,它们的中点弦存在的话,中点弦方程又将如何?证明你的结论.中点弦方程在高考中多以选择题、填空题的形式出现. 2.公园要建造一个圆形的喷水池,在水池中央垂直于水面安装一个柱子OA ,O 恰在圆形水面中心,OA=1.25米.安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路经落下,且在过OA 的任一平面上抛物线路径如图所示,为使水流形状较为漂亮,设计成水流在到OA 距离1米处达到距水面最大高度2.25米.如果不计其它因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?分析 根据图形的对称性,设出并求出一边的抛物线的方程,便可求出水池的半径. 以OA 所在直线为y 轴,过O 点作oy 轴的垂直线ox 轴,建立直角坐标系如图依题意A(0,1.25),设右侧抛物线顶点为则B(1,2.25),抛物线与x 轴正向交点为C ,OC 即圆型水池的半径.设抛物线ABC 的方程为(x-1)2=-2p(y-2.25)将A(0,1.25)代入求得p=21 ∴抛物线方程为(x-1)2=-(y-2.25)令y=0,(x-1)2=1.52,x=2.5(米)即水池的半径至少要2.5米,才能使喷出的水流不致落到池外.【知识验证实验】1.求函数y=136324+--x x x -124+-x x 的最大值.解:将函数变形为y=222)2()3(---x x -222)1(-+x x ,由几何意义知,y 可以看成在抛物线f(x)=x 2上的点P(x,x 2)到两定点A(3,2)和B(0,1)的距离之差,∵|PA |-|PB |≤|AB |,∴当P 、A 、B 三点共线,且P 在B 的左方时取等号,此时P 点为AB 与抛物线的交点,即P 为(6371-,183719-)时,y max =|AB |=10. 2.参与设计小花园的喷水池活动.要求水流形状美观,水流不落池外.【知识探究学习】1.如图,设F 是抛物线的焦点,M 是抛物线上任意一点,MT 是抛物线在M 的切线,MN 是法线,ME 是平行于抛物线的轴的直线.求证:法线MN 必平分∠FME ,即φ1=φ2.解:取坐标系如图,这时抛物线方程为y 2=2px.(p >0),因为ME 平行x 轴(抛物线的轴),∴φ1=φ2,只要证明φ1=φ3,也就是△FMN 的两边FM 和FN 相等.设点M 的坐标为(x 0,y 0),则法线MN 的方程是y-y 0=-p y 0(x-x 0),令y=0,便得到法线与x 轴的交点N 的坐标(x 0+p,0),所以|FN |=|x 0+p-2p |=x 0+2p ,又由抛物线的定义可知,|MF |=x 0+2p,∴|FN |=|FM |,由此得到φ1=φ2=φ3,若M 与顶点O 重合,则法线为x 轴,结论仍然成立.2.课本第124页阅读材料: 圆锥曲线的光学性质及其应用参考答案【同步达纲练习】A 级1.D2.B3.D4.C5.C6.(x-21)2+(y ±1)2=1 7.3100 8.y 2=12x 或y 2=-4x9.解:设R(x,y),∵F(0,1),∴平行四边形FARB 的中心为C(2x ,21+y ),l :y=kx-1,代入抛物线方程,得x 2-4kx+4=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4k,x 1x 2=4,且△=16k 2-16>0,即|k|>1 ①,∴y 1+y 2=42221x x +=42)(21221x x x x -+=4k 2-2,∵C 为AB 的中点.∴⎪⎪⎩⎪⎪⎨⎧-=+=+=+=1222122222121k y y y k x x x ⇒⎩⎨⎧-==3442k y k x 消去k 得x 2=4(y+3),由①得,|x |>4,故动点R 的轨迹方程为x 2=4(y+3)(|x |>4).10.解:设存在满足题意的正方形.则BD :y=x+b,代入抛物线方程得x 2+(2b-4)x+b 2=0,∴△=(2b-4)2-4b 2=16-16b >0,∴b <1, ①,设B(x 1,y 1),D(x 2,y 2),BD 中点M(x 0,y 0),则x 1+x 2=4-2b,∴x 0=2-b,y 0=x 0+b=2,∵M 在AC 直线上,∴(2-b)+2-2=0,∴b=2与①相矛盾,故不存在满足要求的正方形.AA 级1.B2.C3.D4.B5.B6.27.95-188.123p9.解:设l :y=kx-1,代入y=-22x ,得x 2+2kx-2=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-2k,x 1x 2=-2,又11x y +22x y =111x kx -+221x kx -=2k-2121x x x x +=2k-22--k=k=1,∴直线l 的方程为y=x-1.10.证明:由|MP |=|AM |,|NQ |=|AN |知M 、N 在以l 准,A 为焦点的抛物线上,建立直角坐标系,设抛物线方程为y 2=2px ,又|TA |=2a=p,∴抛物线方程为y 2=4ax ,又圆的方程为(x-a-r)2+y 2=r 2,将两方程相减可得:x 2+2(a-r)x+a 2+2ar=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=2r-2a,∴|AM |+|AN |=|PM |+|QN |=x 1+x 2+2a=2r,即|AM |+|AN |=|AB |【素质优化训练】1.C2.C3.D4.C5.C6.4x+y+3=07.y 2=x+2(在已知抛物线内部的部分) 8.2p 9.解:(1)设圆心C(x 0,y 0),则x 20=2py 0,圆C 的半径|CA |=2020)(p y x -+,其方程为(x-x 0)2+(y-y 0)2=x 20+(y 0-p)2,令y=0,并将x 20=2py 0,代入,得x 2-2x 0x+x 20-p 2=0,解得x m =x 0-p,x N =x 0+p,∴|MN |=|x N -x M |=2p(定值)(2)∵m=|AM |=220)(p p x +-,n=|AN |=220)(p p x ++,∴m 2+n 2=4p 2+2x 20,m ·n=4044x p +,∴m n +n m =mn n m 22+=40422424x p x p ++=20202)(4y p p y p p ++=220)(2y p y p ++=222021y p py ++≤22,当且仅当y 0=p 时等号成立,x 0=±2p ,此时△MCN 为等腰直角三角形,且∠MCN=90°,∴∠MAN=21∠MCN=45°,故当θ=45°时,圆的方程为(x-2 p)2+(y-p)2=2p 2或(x+2p)2+(y-p)2=2p 210.解:(1)由已知得F(a,0),半圆为[x-(a+4)]2+y 2=16(y ≥0),设M(x 1,y 1),N(x 2,y 2),则|MF |+|NF |=x 1+x 2+2a=2(4-a)+2a=8(2)若|MF |、|PF |、|NF |成等成数列,则有2|PF |=|MF |+|NF |,另一方面,设M 、P 、N 在抛物线的准线上的射影为M ′、P ′、N ′,则在直角梯形M ′MNN ′中,P ′P是中位线,又有2|P′P|=|M′M|+|N′N|=|MF|+|FN|,因而|PF|=|P′P|,∴P 点应在抛物线上,但P点是线段MN的中点,即P并不在抛物线上,故不存在使|MF|、|PF|、|NF|成等差数列的a值.。
抛物线必做题型(含答案)
y<- 或y> (y≠2 ).
18.解:(1)由题意可知F(a,0),设椭圆方程为 + =1(m>n>0).
= ,m2=2a2,
m2-n2=a2,n2=a2,
∴椭圆方程为 + =1,直线l:y=x-a.
y=x-a,
+ =1,
y=x-a,
y2=4ax,
4g 4.4g-4g
解得:M=40
根据乙炔的相对分子质量为26、丙炔的相对分子质量为40;而混合气体中必含一种相对分子质量小于40的烃,这种炔烃只能是乙炔。由乙炔加成可得乙烷,则所得烷烃中一定有乙烷。
4.取82mL某烷烃和快烃的混合气体在27℃和1.01×105Pa时,测定其质量为85mg,则关于混合气体的不正确叙述是[ ]
A.[- , ]B.[-2,2]
C.[-1,1]D.[-4,4]
3.在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为
A. B.1 C.4 D.2
4.设a≠0,a∈R,则抛物线y=4ax2的焦点坐标为
A.(a,0)B.(0,a)
C.(0, )D.随a符号而定
5.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系为
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.
11.如下图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|= ,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.
12.设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
初中抛物线经典练习题(含详细答案)
初中数学抛物线经典试题集锦【编著】黄勇权【第一组题型】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。
(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A 为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
解:【第一问】因为函数y=x²+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0代入y=x²+bx+c,得0=4+2b+c-----①将x=0,y=-8代入y=x²+bx+c,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将②③代入y=x²+bx+c,所以:二次函数的解析式y=x²+ 2x -8【第二问】△ABP的面积= 12│AB│*│y p│----------------------④因为A、B两点在x轴上,令x²+ 2x -8=0(x-2)(x+4)=0解得:x1=2,x2= -4所以:│AB│=│X1- X2│=│2-(- 4)│=6------⑤又△ABP的面积=15-------------------------------------⑥由④⑤⑥,得:12*6*│y p│=15│y p│=5 故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
抛物线专题练习(含解析)
抛物线专题练习1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.163.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .85.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .56.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )7.A .1 B .2 C .3 D .47.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.538.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .489.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l的斜率为( )A .3B .1C .2D.1210.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .14.(2020·安徽省池州二中模拟)直线y=k(x-1)与抛物线y2=4x交于A,B两点,若|AB|=163,则k=.15.(2020·江苏省淮北中学模拟)已知抛物线y2=2px(p>0)过点A(2,y0),且点A到其准线的距离为4.(1)求抛物线的方程;(2)直线l:y=x+m与抛物线交于两个不同的点P,Q,若OP⊥OQ,求实数m的值.16.(2020·浙江省丽水中学模拟)如图,已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:GF为⊥AGB的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过M作MN⊥F A,垂足为N,求点N的坐标.1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y【答案】D【解析】将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,⊥a =112.当a <0时,准线y =-14a ,则⎪⎪⎪⎪3+14a =6,⊥a =-136. ⊥抛物线方程为x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.16【答案】D【解析】由抛物线y =px 2(其中p 为常数)过点A (1,3),可得p =3,则抛物线的标准方程为x 2=13y ,则抛物线的焦点到准线的距离等于16.故选D.]3.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y 【答案】C【解析】设所求抛物线方程为y 2=kx 或x 2=my ,又点(-4,4)在抛物线上,则有-4k =16或4m =16,解得k =-4或m =4,所求抛物线方程为y 2=-4x 或x 2=4y .故选C.]4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .8【答案】C【解析】设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =16,又p =4,所以x 1+x 2=12,所以点C 的横坐标是x 1+x 22=6.]5.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .5【答案】A【解析】由|AB |=42及AB ⊥x 轴,不妨设点A 的纵坐标为22,代入y 2=4x 得点A 的横坐标为2,从而直线AB 的方程为x =2.又y 2=4x 的焦点为(1,0),所以抛物线的焦点到直线AB 的距离为2-1=1,故选A.]6.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )A .1B .2C .3D .4 【答案】C【解析】依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝⎛⎭⎫12,0,所以x 1+x 2+x 3=3×12=32,则|F A →|+|FB →|+|FC →|=⎝⎛⎭⎫x 1+12+⎝⎛⎭⎫x 2+12+⎝⎛⎭⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3 7.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.53【答案】A【解析】因为直线4x -3y -2p =0过C 1的焦点F (C 2的圆心),故|BF |=|CF |=p 2,所以|AB ||CD |=|AF |-p2|DF |-p2.由抛物线的定义得|AF |-p 2=x A ,|DF |-p2=x D .由⎩⎪⎨⎪⎧4x -3y -2p =0,y 2=2px ,整理得8x 2-17px +2p 2=0,即(8x -p )(x -2p )=0,可得x A =2p ,x D =p 8,故|AB ||CD |=x Ax D =2pp 8=16.故选A 8.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .48【答案】B【解析】由准线方程为x =-2,可知p =4,则抛物线C 的方程为y 2=8x .由抛物线的定义可知,|MN |=|MF |+|NF |=x 1+x 2+4=8,则x 1+x 2=4,即y 218+y 228=4,故y 21+y 22=32.故选B.] 9.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l 的斜率为( )A .3B .1C .2 D.12【答案】B【解析】由于R (2,1)为AB 中点,设A (x A ,y A ),B (x B ,y B ).根据抛物线的定义|F A |+|FB |=x A +x B +p =2×2+p =5,解得p =1,抛物线方程为y 2=2x .y 2A =2x A ,y 2B =2x B,两式相减并化简得y B-y A x B -x A =2y A +y B =22×1=1,即直线l 的斜率为1.故选B.]10.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 【答案】D【解析】由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,消去y 得k 2x 2+(4k 2-8)x +4k 2=0.Δ=(4k 2-8)2-16k 4>0,解得-1<k <1.设A (x 1,y 1),B (x 2,y 2).x 1+x 2=8k 2-4.⊥ x 1x 2=4.⊥ 根据抛物线的定义及|F A |=2|FB |,得x 1+2=2(x 2+2),即x 1=2x 2+2,⊥且x 1>0,x 2>0,由⊥⊥解得x 1=4,x 2=1,代入⊥得k 2=89,k >0,⊥k =223.故选D.11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .【答案】-22【解析】⊥双曲线x 23-y 2=1的右焦点为(2,0),⊥抛物线方程为y 2=8x .⊥|AF |=3,⊥x A +2=3,得x A =1,代入抛物线方程可得y A =±2 2.⊥点A 在第一象限,⊥A (1,22),⊥直线AF 的斜率为221-2=-2 2.]12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .【答案】9【解析】根据题意,抛物线x 2=4y 的准线方程为y =-1,点A 到准线的距离为10,故点A 到x 轴的距离是9.]13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .【答案】63【解析】如图,设⊥AOB 的边长为a ,则A ⎝⎛⎭⎫32a ,12a ,⊥点A 在抛物线y 2=3x 上,⊥14a 2=3×32a ,⊥a =6 3.] 14.(2020·安徽省池州二中模拟)直线y =k (x -1)与抛物线y 2=4x 交于A ,B 两点,若|AB |=163,则k = .【答案】±3【解析】设A (x 1,y 1),B (x 2,y 2),因为直线AB 经过抛物线y 2=4x 的焦点,所以|AB |=x 1+x 2+2=163,所以x 1+x 2=103.联立⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1)得到k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2k 2+4k 2=103,所以k =± 3.]15.(2020·江苏省淮北中学模拟)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到其准线的距离为4.(1)求抛物线的方程;(2)直线l :y =x +m 与抛物线交于两个不同的点P ,Q ,若OP ⊥OQ ,求实数m 的值. 【解析】(1)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到准线的距离为4, ⊥2+p2=4,⊥p =4,⊥抛物线的方程为y 2=8x .(2)由⎩⎪⎨⎪⎧y =x +m ,y 2=8x 得x 2+(2m -8)x +m 2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1+y 2=x 1+x 2+2m =8,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=8m . ⊥OP ⊥OQ ,⊥x 1x 2+y 1y 2=m 2+8m =0, ⊥m =0或m =-8.经检验,当m =0时,直线与抛物线交点中有一点与原点O 重合,不符合题意. 当m =-8时,Δ=(-24)2-4×64>0,符合题意. 综上,实数m 的值为-8.16.(2020·浙江省丽水中学模拟)如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为⊥AGB 的平分线. 【解析】(1)由抛物线定义可得|AF |=2+p2=3,解得p =2.⊥抛物线E 的方程为y 2=4x .(2)证明:⊥点A (2,m )在抛物线E 上,⊥m 2=4×2,解得m =±22,由抛物线的对称性,不妨设A (2,22),由A (2,22),F (1,0), ⊥直线AF 的方程为y =22(x -1),由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或12,⊥B ⎝⎛⎭⎫12,-2. 又G (-1,0),⊥k GA =223,k GB =-223,⊥k GA +k GB =0, ⊥⊥AGF =⊥BGF .⊥GF 为⊥AGB 的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.【解析】(1)抛物线y 2=2px (p >0)的准线为x =-p 2,于是4+p 2=5,⊥p =2. ⊥抛物线方程为y 2=4x .(2)⊥点A 的坐标是(4,4),由题意得B (0,4),M (0,2).又⊥F (1,0),⊥k F A =43, ⊥MN ⊥F A ,⊥k MN =-34. ⊥F A 的方程为y =43(x -1), ⊥ MN 的方程为y -2=-34x , ⊥联立⊥⊥,解得x =85,y =45, ⊥点N 的坐标为⎝⎛⎭⎫85,45.。
(完整版)高中抛物线知识点归纳总结与练习题及答案
抛物线y 2 2 px y 2 2 px x 2 2 py x22py ( p0)( p0)( p0)( p0)y y yyl l lFOx O F x F O xO x Fl定义范围对称性焦点极点离心率准线方程极点到准线的距离焦点到准线的距离焦半径A( x1 , y1 )焦点弦长AB 平面内与一个定点 F 和一条定直线l的距离相等的点的轨迹叫做抛物线,点 F 叫做抛物线的焦点,直线 l 叫做抛物线的准线。
{ M MF =点 M到直线 l 的距离 }x 0, y R x 0, y R x R, y 0x R, y0对于 x 轴对称对于 y 轴对称(p,0)(p,0)(0,p)(0,p ) 2222焦点在对称轴上O (0,0)e=1pxp p p x y2y222准线与焦点位于极点双侧且到极点的距离相等。
p2ppAFp pAFp AF x1x1AF y1y1 2222( x1x2 ) p( y1y2 ) p( y1y2 )p ( x1x2 )pyA x1 , y1o FxB x2 , y2焦点弦AB 的几条性质以 AB 为直径的圆必与准线l相切A(x1, y1 ) 2 p 2 p若 AB 的倾斜角为若 AB 的倾斜角为,则 AB,则 ABB(x2 , y2 )sin 2cos2p22x1x2y1 y2p4切线方程11AF BF AB2AF BF AF ? BF AF ? BF py0 y p( x x0 )y0 y p( x x0 )x0 x p( y y0 )x0 x p( y y0 )一.直线与抛物线的地点关系直线,抛物线,,消 y 得:(1)当 k=0 时,直线 l 与抛物线的对称轴平行,有一个交点;(2)当 k≠ 0 时,>0,直线 l 与抛物线订交,两个不一样交点;=0,直线 l 与抛物线相切,一个切点;< 0,直线 l 与抛物线相离,无公共点。
(3)若直线与抛物线只有一个公共点, 则直线与抛物线必相切吗?(不必定)二.对于直线与抛物线的地点关系问题常用办理方法直线 l :y kx b抛物线, ( p0)①联立方程法:y kx bk2 x22(kb p)x b20y2 2 px设交点坐标为(,y1), B( x2 , y2 ) ,则有0, 以及 x1x2 , x1 x2,还可进一步求出A x1y1 y2kx1 b kx2 b k (x1x2 ) 2b,y1 y2( kx1b)(kx2b) k 2 x1 x2kb( x1x2 ) b2在波及弦长,中点,对称,面积等问题时,常用此法,比方1.订交弦 AB的弦长AB 1 k 2 x1x2 1 k 2(x1x2 )24x1x2 1 k 2a或1121 k 2AB1k 2 y1y21k 2( y1y2 ) 4 y1 y2ab. 中点M (x0, y0) , x0x1x2,y0y1y222②点差法:设交点坐标为 A( x1, y1 ) , B(x2 , y2 ) ,代入抛物线方程,得y12 2 px1y22 2 px2将两式相减,可得( y1y2 )( y1y2 ) 2 p(x1 x2 )y1y2 2 px1x2 y1 y2a.在波及斜率问题时,k AB 2 py1y2b.在涉及中点轨迹问题时,设线段 AB 的中点为 M ( x0 , y0 ) ,y1y2 2 p2p p ,x1x2y1 y2 2 y0y0即 k AB p ,y0同理,对于抛物线x 22(p0),若直线 l 与抛物线订交于A、, y0 ) py B 两点,点M ( x0是弦 AB 的中点,则有 k AB x1 x22x0x0 2 p 2 p p(注意能用这个公式的条件: 1)直线与抛物线有两个不一样的交点, 2)直线的斜率存在,且不等于零)抛物线练习及答案1、已知点 P 在抛物线 y 2 = 4x 上,那么点P 到点 Q ( 2,- 1)的距离与点P 到抛物线焦点距离之和获得最小值时,点P 的坐标为。
抛物线基础题(含答案)
抛物线1.在平面内,“点P 到某定点的距离等于到某定直线的距离”是“点P 的轨迹为抛物线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B2.若动点P 到定点F (-4,0)的距离与到直线x =4的距离相等,则P 点的轨迹是( )A .抛物线B .线段C .直线D .射线答案 A3. 已知动点P 到定点(0,2)的距离和它到直线l :y =-2的距离相等,则点P 的轨迹方程为________。
答案 x 2=8y 4. 已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆答案 C5. 对抛物线y =4x 2,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为⎝ ⎛⎭⎪⎫0,116C .开口向右,焦点为(1,0)D .开口向右,焦点为⎝ ⎛⎭⎪⎫0,116答案 B6.抛物线y =ax 2(a ≠0)的准线方程是y =2,则a 的值为( )A.18B .-18 C .8 D .-8解析 因为y =ax 2(a ≠0),化为标准方程为x 2=1a y ,其准线方程为y =2,所以2=1-4a,所以a =-18。
故选B 。
答案 B7. 抛物线y =-116x 2的焦点坐标为( )A.⎝ ⎛⎭⎪⎫-164,0 B .(-4,0) C.⎝ ⎛⎭⎪⎫0,-164 D .(0,-4) 解析 抛物线方程化为x 2=-16y 。
其焦点坐标为(0,-4)。
答案 D8. 抛物线方程为7x +4y 2=0,则焦点坐标为________。
解析 抛物线方程化为y 2=-74x ,所以抛物线开口向左,2p =74,p 2=716,故焦点坐标为⎝ ⎛⎭⎪⎫-716,0。
答案 ⎝ ⎛⎭⎪⎫-716,09.顶点在坐标原点,对称轴为坐标轴,又过点(-2,3)的抛物线方程是( )A .y 2=94xB .x 2=43yC .y 2=-94x 或x 2=-43yD .y 2=-92x 或x 2=43y 答案 D10.已知抛物线y =mx 2(m >0)的焦点与椭圆4y 29+x22=1的一个焦点重合,则m =________。
抛物线同步练习题小题含答案
抛物线基础训练题1. 抛物线y 2=8x 的准线方程是( A )。
(A )x =-2 (B )x =2 (C )x =-4 (D )y =-22. 过抛物线y 2=4x 的焦点F ,作倾斜角为60°的直线,则直线的方程是( B )。
(A )y =33(x -1) (B )y =3 (x -1) (C )y =33(x -2) (D )y =3 (x -2) 3.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( A ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x4. 若抛物线y =x 2与x =-y 2的图象关于直线l 对称,则l 的方程是(B )。
(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =05.AB 是过抛物线y 2=4x 焦点F 的弦,已知A ,B 两点的横坐标分别是x 1和x 2,且x 1+x 2=6则|AB |等于( B ) (A )10 (B )8 (C )7 (D )66.经过(1,2)点的抛物线的标准方程是(C )(A )y 2=4x (B )x 2=21y (C ) y 2=4x 或x 2=21y (D ) y 2=4x 或x 2=4y 7. 过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1, y 1)、B (x 2, y 2)两点,如果AB 与x 轴成45°角,那么|AB |等于( B )。
(A )10 (B )8 (C )6 (D )48.抛物线的焦点在y 轴上,准线与椭圆4x 2+3y 2=1的左准线重合,并且经过椭圆的右焦点,那么它的对称轴方程是C(A )y =24 (B )y =26 或 y =-26 (C )y =26 (D )y =22或y =-229. 顶点在原点,焦点是F (6, 0)的抛物线的方程是2y 24x =。
10.抛物线x 2=4y 的焦点为F ,A 是抛物线上一点,已知|AF |=4+22,则AF 所在直线方程是21211-122y x y x ++=+=+或。
(完整版)抛物线练习题(含答案)
抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )A.⎝⎛⎭⎫32,±62B.⎝⎛⎭⎫74,±72C.⎝⎛⎭⎫94,±32D.⎝⎛⎭⎫52,±102 3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )A.18 B .-18C .8D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .125.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )A .相交B .相切C .相离D .以上答案都有可能6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )A .20B .8C .22D .248.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离为( )A .2 3 B. 3 C.12 3 D.143 9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-210.抛物线y =1mx 2(m <0)的焦点坐标是( ) A.⎝⎛⎭⎫0,m 4 B.⎝⎛⎭⎫0,-m 4 C.⎝⎛⎭⎫0,14m D.⎝⎛⎭⎫0,-14m 11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12 B .1 C .2 D .4二、填空题13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。
抛物线分类题型(含答案)
1练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式: 2、 下列函数:① y =()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x =+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = 3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221mm y m m x --=+是关于x 的二次函数5、当____m =时,函数()2564mm y m x-+=-+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质21、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm y mx--=的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y随x 的增大而增tttt3大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的? 8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小练习六 c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5 5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点 1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么acb= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积6 为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是 (第5题)(第6题) (第7题) (第10题) 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。
抛物线练习题带答案,知识点总结(基础版)
抛物线重难点复习一.知识点总结2.,,C F p M C 焦抛物线的焦点为为是准距上的点min ;.2pMF OF MF MF p ===(1)(2)若与对称轴垂直,则2000(,)2(0)23p M x y y px p MF x =>=±+±若是抛物线上的点则() 2000(,)224p P x y x py PF y =±=±+若是抛物线上的(点,则) (5).()(90)1cos s ()1co p MF MF pp or MF p MF MF θθθθ≥≤-+==≤ 若与抛物线的为则夹角,对称轴1)2MF MF MF 以为直径的圆与坐标轴相切(的中点到坐标轴的距离为(6)1122(,)(,),.F l A x y B x y l k θ3.过焦点的直线交抛物线于点、,记直线的斜率为倾斜角为221222:2,(),sin 2sin AOB p p C y px AB x x p S θθ∆==++==(1)若抛物线则221222:2,()cos 2cos AOB p p C x py AB y y p S θθ∆==++==(2)若抛物线则, 222222121212124:2,,;:2,,44p p C y px y y p x x C x py x x p y y ==-===-=()若抛物线则若抛物线则112(3)2();p AF BF p+=通焦点弦的最径小值为 (5)以AB 为直径的圆与准线相切12MN AB ⎛⎫=⎪⎝⎭(6)以CD 为直径的圆与AB 相切与焦点F1.已知抛物线22(0)y px p =>上横坐标为 3 的点到其焦点的距离为 4,则p =________. 【答案】2【解析】抛物线y 2=2px (p >0, ∵抛物线y 2=2px (p >04,∴p=2.故答案为2.2.已知F 是抛物线y 2=2x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=11,则线段AB 的中点到y 轴的距离为( ) A. 3 B. 4 C. 5 D. 7 【答案】C 【解析】∵F 是抛物线y 2=2x 的焦点∴F (12,0) ,准线方程x =−12, 设A (x 1,y 1),B (x 2,y 2)∴|AF |+|BF |=x 1+1+x 2+1=11x 1+x 2=10,∴线段AB 的中点横坐标为5∴线段AB 5,所以B 选项是正确的.3.已知抛物线C :的焦点为F ,()00A x y ,是C 上一点,则0x =( )A. 2B. 2±C. 4D. 4± 【答案】D【解析】28x y =,如图,由抛物线的几何意义,可知0022AF Al y y ===+,所以02y =, 所以04x =±,故选D 。
高中数学抛物线练习题(含答案)
抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )A.⎝⎛⎭⎫32,±62B.⎝⎛⎭⎫74,±72C.⎝⎛⎭⎫94,±32D.⎝⎛⎭⎫52,±102 3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )A.18 B .-18C .8D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .125.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )A .相交B .相切C .相离D .以上答案都有可能6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )A .20B .8C .22D .248.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离为( )A .2 3 B. 3 C.12 3 D.143 9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-210.抛物线y =1mx 2(m <0)的焦点坐标是( ) A.⎝⎛⎭⎫0,m 4 B.⎝⎛⎭⎫0,-m 4 C.⎝⎛⎭⎫0,14m D.⎝⎛⎭⎫0,-14m 11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12 B .1 C .2 D .4二、填空题13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。
初中抛物线经典练习题(含详细答案)
初中数学抛物线经典试题集锦【编著】黄勇权【第一组题型】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。
(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A 为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
解:【第一问】因为函数y=x²+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0代入y=x²+bx+c,得0=4+2b+c-----①将x=0,y=-8代入y=x²+bx+c,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将②③代入y=x²+bx+c,所以:二次函数的解析式y=x²+ 2x -8【第二问】△ABP的面积= 12│AB│*│y p│----------------------④因为A、B两点在x轴上,令x²+ 2x -8=0(x-2)(x+4)=0解得:x1=2,x2= -4所以:│AB│=│X1- X2│=│2-(- 4)│=6------⑤又△ABP的面积=15-------------------------------------⑥由④⑤⑥,得:12*6*│y p│=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
初中抛物线经典练习题(含详细答案)
【编著】 黄勇权【第一组题型】1、已知二次函数y=x ²+bx+c 过点A (2,0),C (0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ABP 的面积为15,请直接写出p 点的坐标。
2、在平面直角坐标系xOy 中,抛物线y=2x ²+mx+n 经过点A (5,0),B (2,-6).(1)求抛物线的表达式及对称轴(2)设点B 关于原点的对称点为C ,写出过A 、C 两点直线的表达式。
初中数学抛物线 经典试题集锦3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。
(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
解:【第一问】因为函数y=x ²+bx+c 过点A (2,0),C (0, -8)分别将x=2,y=0代入y=x ²+bx+c , 得 0=4+2b+c-----①将x=0,y=-8代入y=x ²+bx+c ,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将② ③代入y=x ²+bx+c ,所以:二次函数的解析式 y=x ²+ 2x -8【第二问】△ABP 的面积= 12│AB │*│y p │----------------------④ 因为A 、B 两点在x 轴上,令x ²+ 2x -8=0(x-2)(x+4)=0解得:x 1=2,x 2= -4所以:│AB │=│X 1- X 2│=│2-(- 4)│=6------⑤又△ABP 的面积=--------------------------⑥由 ④ ⑤ ⑥,得 : 12*6*│y p │=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入 y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入 y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
抛物线综合测试(含有详细答案)
高二数学抛物线综合测试满分:150分 时间:100分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目的要求,请将答案填写在题后的表格中.1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( )A.|a |4B.|a |2 C .|a | D .-a 22.[2010·陕西卷] 已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( ) A.12B .1C .2D .4 3.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2) 4.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点( )A .(2,0)B .(1,0)C .(0,1)D .(0,-1)5.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x6.(2011·北京)已知点A (0,2),B (2,0).若点C 在函数y =x 2的图像上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .17.(2011·大纲全国理)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则 cos ∠AFB =( )A.45B.35 C .-35 D .-458.(2010·辽宁)设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( )A .4 3B .8C .83D .169.[2010·山东卷] 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-210.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,经过F 的直线与抛物线交于A 、B 两点,交准线于C 点,点A 在x 轴上方,AK ⊥l ,垂足为K ,若|BC |=2|BF |,且|AF |=4,则△AKF 的面积是( )A .4B .3 3C .4 3D .8高二数学抛物线综合测试选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共5个小题,每小题5分,共25分.请将答案填写在横线上.11.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB |等 于 .12.如果直线l 过定点M (1,2),且与抛物线y =2x 2有且仅有一个公共点,那么l 的方程为 . 13.抛物线y 2=x 上的点到直线x -2y +4=0的距离最小的点的坐标是________.14.[2010·浙江卷] 设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________. 15.[2010·全国卷Ⅱ] 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM →=MB →,则p =________.三、解答题:本大题共5小题,每题14分,共70分.解答应写出文字说明,证明过程或演算步骤. 16.斜率为1的直线l 经过抛物线24y x 焦点F ,且与抛物线相交于A 、B 两点,求线段AB 的长。
3.3.2 抛物线的简单几何性质(同步练习)(附答案)
3.3.2 抛物线的简单几何性质(同步练习)一、选择题1.顶点在原点,焦点为F ⎝ ⎛⎭⎪⎫32,0的抛物线的标准方程是( ) A .y 2=32x B .y 2=3x C .y 2=6x D .y 2=-6x2.已知A ,B 两点均在焦点为F 的抛物线y 2=2px(p>0)上,若|AF|+|BF|=4,线段AB 的中点到直线x =p 2的距离为1,则p 的值为( ) A .1 B .1或3C .2D .2或63.设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A.12B .1 C.32D .2 4.P 为抛物线y 2=2px(p >0)上任意一点,F 为抛物线的焦点,则以|PF|为直径的圆与y 轴的位置关系为( )A .相交B .相离C .相切D .不确定5.已知A ,B 为抛物线y 2=2x 上两点,且A 与B 的纵坐标之和为4,则直线AB 的斜率为( ) A.12 B .-12C .-2D .26.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,点A ∈l ,线段AF 交抛物线C 于点B , 若FA ―→=3FB ―→,则|AF ―→|=( )A .3B .4C .6D .77.已知抛物线x 2=2py(p>0)的焦点为F ,过F 作倾斜角为30°的直线与抛物线交于A ,B 两点,若|AF||BF|∈(0,1),则|AF||BF|=( ) A.15 B .14 C.13 D .128.(多选)设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离可以是( )A.2B.3C.4D.5二、填空题9.已知点F 为抛物线y 2=4x 的焦点,该抛物线上位于第一象限的点A 到其准线的距离为5,则直线AF 的斜率为________10.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,若|AF|=2,则|BF|=________11.抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 2-y 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________12.(2020·福州期末)设抛物线y 2=2px 上的三个点A ⎝ ⎛⎭⎪⎫23,y 1,B(1,y 2),C ⎝ ⎛⎭⎪⎫32,y 3到该抛物线的焦点距离分别为d 1,d 2,d 3.若d 1,d 2,d 3中的最大值为3,则p 的值为________13.(2018·全国卷Ⅲ)已知点M(-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________三、解答题14.根据下列条件分别求抛物线的标准方程.(1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)抛物线的焦点F 在x 轴上,直线y =-3与抛物线交于点A ,|AF|=5.15.已知过抛物线y 2=4x 的焦点F 的弦长为36,求弦所在的直线方程.16.已知AB 是抛物线y 2=2px(p>0)的过焦点F 的一条弦.设A(x 1,y 1),B(x 2,y 2),AB 的中点为M(x 0,y 0).求证:(1)若AB 的倾斜角为θ,则|AB|=2p sin 2θ;(2)x 1x 2=p 24,y 1y 2=-p 2;(3)1|AF|+1|BF|为定值2p.17.已知抛物线y 2=2x.(1)设点A 的坐标为⎝ ⎛⎭⎪⎫23,0,求抛物线上距离点A 最近的点P 的坐标及相应的距离|PA|; (2)在抛物线上求一点M ,使M 到直线x -y +3=0的距离最短,并求出距离的最小值.参考答案及解析:一、选择题1.C 解析:∵抛物线的焦点为⎝⎛⎭⎫32,0,∴p =3,且抛物线开口向右.∴抛物线的标准方程为y 2=6x.2.B 解析:|AF|+|BF|=4⇒x A +p 2+x B +p 2=4⇒x A +x B =4-p ⇒2x 中=4-p ,因为线段AB 的中点到直线x =p 2的距离为1,所以⎪⎪⎪⎪x 中-p 2=1,所以|2-p|=1⇒p =1或3. 3.D 解析:∵y 2=4x ,∴F(1,0).又∵曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,∴P(1,2). 将点P(1,2)的坐标代入y =k x(k >0),得k =2.故选D. 4.C 解析:设PF 的中点M(x 0,y 0),作MN ⊥y 轴于N 点,设P(x 1,y 1),则|MN|=x 0=12(|OF|+x 1)=12⎝⎛⎭⎫x 1+p 2=12|PF|.故相切. 5.A 解析:设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4.由⎩⎪⎨⎪⎧y 21=2x 1,y 22=2x 2,得(y 1+y 2)(y 1-y 2)x 1-x 2=2,即4k AB =2,k AB =12. 6.B 解析:由已知点B 为AF 的三等分点,作BH ⊥l 于点H ,如图,则|BH|=23|FK|=43,所以|BF|=|BH|=43.所以|AF ―→|=3|BF ―→|=4. 7.C 解析:因为抛物线的焦点为F ⎝⎛⎭⎫0,p 2,故过点F 且倾斜角为30°的直线的方程为y =33x +p 2,与抛物线方程联立得x 2-233px -p 2=0,解方程得x A =-33p ,x B =3p ,所以|AF||BF|=|x A ||x B |=13,故选C. 8.BCD 解析:因为抛物线的焦点到顶点的距离为3,所以p 2=3,即p =6.又因为抛物线上的点到准线的距离的最小值为p 2,所以抛物线上的点到准线的距离的取值范围为[3,+∞). 二、填空题9.答案:43解析:由抛物线定义得x A +1=5,x A =4,又点A 位于第一象限,因此y A =4,从而k AF =4-04-1=43. 10.答案:2解析:设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F(1,0),|AF|=x 1+1=2,x 1=1,直线AF 的方程是x =1,此时弦AB 为抛物线的通径,故|BF|=|AF|=2.11.答案:2 3解析:由抛物线可知焦点F ⎝⎛⎭⎫0,p 2,准线y =-p 2,由于△ABF 为等边三角形,设AB 与y 轴交于M ,则 |FM|=p ,不妨取B ⎝⎛⎭⎪⎫p 2+42,-p 2,|FM|=3|MB|,即p =3⎝ ⎛⎭⎪⎫p 2+42,解得p =2 3. 12.答案:3解析:根据抛物线的几何性质可得d 1=p 2+23,d 2=p 2+1,d 3=p 2+32,由题意可得p>0,因此可判断d 3最大,故d 3=p 2+32=3,解得p =3. 13.答案:2解析:设点A(x 1,y 1),B(x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2),∴k =y 1-y 2x 1-x 2=4y 1+y 2. 设AB 中点M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足为A ′,B ′,则|MM ′|=12|AB|=12(|AF|+|BF|)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 的中点,∴M 为A ′B ′的中点,∴MM ′平行于x 轴,∴y 1+y 2=2,∴k =2.三、解答题14.解:(1)双曲线方程可化为x 29-y 216=1,左顶点为(-3,0), 由题意设抛物线方程为y 2=-2px(p>0)且-p 2=-3,∴p =6,∴抛物线的方程为y 2=-12x. (2)设所求焦点在x 轴上的抛物线的方程为y 2=2px(p ≠0),A(m ,-3),由抛物线定义得5=|AF|=⎪⎪⎪⎪m +p 2. 又(-3)2=2pm ,∴p =±1或p =±9,故所求抛物线方程为y 2=±2x 或y 2=±18x.15.解:∵过焦点的弦长为36,∴弦所在的直线的斜率存在且不为零.故可设弦所在直线的斜率为k ,且与抛物线交于A(x 1,y 1),B(x 2,y 2)两点.∵抛物线y 2=4x 的焦点为F(1,0),∴直线的方程为y =k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,整理得k 2x 2-(2k 2+4)x +k 2=0(k ≠0).∴x 1+x 2=2k 2+4k 2. ∴|AB|=|AF|+|BF|=x 1+x 2+2=2k 2+4k 2+2. 又|AB|=36,∴2k 2+4k 2+2=36,∴k =±24. ∴所求直线方程为y =24(x -1)或y =-24(x -1).16.证明:(1)设直线AB 的方程为x =my +p 2,代入y 2=2px ,可得y 2-2pmy -p 2=0, 则y 1y 2=-p 2,y 1+y 2=2pm ,∴y 21+y 22=2p(x 1+x 2)=(y 1+y 2)2-2y 1y 2=4p 2m 2+2p 2,∴x 1+x 2=2pm 2+p. 当θ=90°时,m =0,x 1+x 2=p ,∴|AB|=x 1+x 2+p =2p =2p sin 2θ; 当θ≠90°时,m =1tan θ,x 1+x 2=2p tan 2θ+p ,∴|AB|=x 1+x 2+p =2p tan 2θ+2p =2p sin 2θ. ∴|AB|=2p sin 2θ. (2)由(1)知,y 1y 2=-p 2,∴x 1x 2=(y 1y 2)24p 2=p 24. (3)1|AF|+1|BF|=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24=x 1+x 2+p p 2(x 1+x 2+p )=2p .17.解:(1)设抛物线上任一点P(x ,y),则|PA|2=⎝⎛⎭⎫x -232+y 2=⎝⎛⎭⎫x -232+2x =⎝⎛⎭⎫x +132+13, 因为x ≥0,且在此区间上函数单调递增,所以当x =0时,|PA|min =23, 故距点A 最近的点P 的坐标为(0,0).(2)设点M(x 0,y 0)是y 2=2x 上任一点,则M 到直线x -y +3=0的距离为d =|x 0-y 0+3|2=⎪⎪⎪⎪y 20-2y 0+622=|(y 0-1)2+5|22, 当y 0=1时,d min =522=524,所以点M 的坐标为⎝⎛⎭⎫12,1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线练习题
一、选择题
1.在直角坐标平面内,到点 (1,1)和直线 x + 2y = 3 距离相等的点的轨迹是 () A .直线
B .抛物线
C .圆
D .双曲线
2.抛物线 y 2
= x 上一点 P 到焦点的距离是 2,则 P 点坐标为 (
)
3,± 6
B. 7,± 7 9,± 3
5,± 10
A.22
42
C. 4
2
D. 2
2 3.抛物线 y = ax 2
的准线方程是 y = 2,则 a 的值为 ( )
1
1
A. 8
B .- 8
C . 8
D .- 8
4.设抛物线 2
上一点 P 到 y 轴的距离是 4,则点 P 到该抛物线焦点的距离是 ( )
y = 8x A .4
B . 6
C . 8
D . 12
5.设过抛物线的焦点 F 的弦为 AB ,则以 AB 为直径的圆与抛物线的准线的位置关系是
()
A .相交
B .相切
C .相离
D .以上答案都有可能
6.过点 F(0,3)且和直线 y + 3=0 相切的动圆圆心的轨迹方程为 ( )
A .y 2
= 12x
B .y 2
=- 12x
C . x 2
= 12y
D .x 2
=- 12y
7.抛物线 y 2
= 8x 上一点 P 到 x 轴距离为 12,则点 P 到抛物线焦点 F 的距离为 (
)
A .20
B .8
C . 22
D . 24
8.抛物线的顶点在坐标原点,焦点是椭圆
4x 2
+ y 2
= 1 的一个焦点,则此抛物线的焦点到准线的距离
为 (
)
1
1
A .2 3
B. 3
C.2
3
D.4 3
9.设抛物线的顶点在原点,其焦点
F 在
y 轴上,又抛物线上的点
(k ,- 2)与
F 点的距离为
4,则
k 的
值是 (
)
A . 4
B .4 或- 4
C .- 2
D .2 或- 2
10.抛物线
y = m1x 2(m<0)的焦点坐标是
( )
m
m
1
1
A. 0,4
B. 0,-
4
C. 0, 4m
D. 0,- 4m
11.抛物线的顶点在原点,对称轴是
x 轴,抛物线上的点
(-5,2
5) 到焦点的距离是
6,则抛物线的方
程为 (
)
A . y
2=- 2x
B .y 2=- 4x
C . y 2= 2x
D . y 2=- 4x 或 y 2=- 36x
12.已知抛物线
y 2=2px(p>0) 的准线与圆
(x - 3)2+ y 2= 16 相切,则
p 的值为 (
)
1
A. 2
B . 1
C .2
D .4
二、填空题
13.过抛物线焦点 F 的直线与抛物线相交于A、 B 两点,若 A、 B 在抛物线准线上的射影是A1、 B1,则∠ A1FB1= 。
14.已知圆x2+ y2+ 6x+8= 0 与抛物线 y2= 2px(p>0) 的准线相切,则p=________.
2 -y 2
x = 1 的中心为顶点,左焦点为焦点的抛物线方程是__________ .
15.以双曲线16 9
16.抛物线y2= 16x 上到顶点和焦点距离相等的点的坐标是________.
17.抛物线y2= 4x 的弦 AB 垂直于 x 轴,若 AB 的长为 4 3,则焦点到AB 的距离为 ________.
抛物线练习题(答案)
1、 [答案 ] A [解析 ] ∵定点 (1,1)在直线 x + 2y = 3 上,∴轨迹为直线.
2、 [答案 ]
B
[解析 ]
设 P(x 0, y 0),则 |PF|= x 0+ p = x 0+ 1=2,∴ x 0= 7,∴ y 0= ± 7
.
2 4 4 2
3、 [答案 ]
B
[解析 ]
2 2 1
y = 2,∴ a<0,2= 1 1 ∵ y = ax ,∴ x = y ,其准线为 ,∴ a =- .
a - 4a 8 4、 [答案 ] B [解析 ] 本题考查抛物线的定义.
5、 [答案 ]
C
[解析 ]
由题意,知动圆圆心到点
F(0,3)的距离等于到定直线 y =- 3 的距离,
故动圆圆心的轨迹是以 F 为焦点,直线 y =- 3 为准线的抛物线.
6、 [答案 ]
B
[解析 ]
特值法:取 AB 垂直于抛物线对称轴这一情况研究.
由抛物线的定义可知,点 P 到抛物线焦点的距离是 4+ 2= 6.
7、 [答案 ]
A
[解析 ]
设 P(x 0,12),则 x 0= 18,∴ |PF|=x 0+ p
= 20.
2
8、[答案 ] B
[解析 ]
p
= c = 3
,∴ p = 3.
2
2
9、 [答案 ]
B
[解析 ] 由题意,设抛物线的标准方程为:
x 2
=- 2py ,
p
2
2
由题意得, + 2= 4,∴ p = 4, x =- 8y.又点 (k ,- 2)在抛物线上,∴ k = 16, k = ±4.
10、[答案 ]
A [解析]
2
m 0,- p ,即 0, m
.
∵ x = my(m<0) ,∴
2p =- m , p =- ,焦点坐标为
2 4
2
11、[答案 ]
B
[解析 ] 由题意,设抛物线的标准方程为:
y 2
=- 2px( p>0) ,
由题意,得 p
+ 5= 6,∴ p = 2,∴抛物线方程为 y 2=- 4x.
2
12、[答案 ]
C [解析] 本题考查抛物线的准线方程,直线与圆的位置关系.
抛物线 y 2
=2px(p>0) 的准线方程是 x =- p ,由题意知, 3+ p
= 4,p = 2.
2 2
13、[答案 ] 90° [解析 ] 由抛物线的定义得,
|AF|= |AA 1|, |BF|= |BB 1|,
∴∠ 1=∠ 2,∠ 3=∠ 4,又∠ 1+∠ 2+∠ 3+∠ 4+∠ A 1AF +∠ B 1BF = 360 °,
且∠ A 1AF +∠ B 1BF = 180 °,∴∠ 1+∠ 2+∠ 3+∠ 4= 180 °,∴ 2(∠ 2+∠ 4)= 180 °,
即∠ 2+∠ 4= 90,故∠ A 1FB = 90°.
14、[答案 ]
4 或 8
[ 解析 ] 抛物线的准线方程为: x =- p
,圆心坐标为 (- 3,0),半径为 1,
2
由题意知 3- p 2= 1 或 p
2- 3=1,∴ p = 4 或 p =8.
15、 [ 答案 ] y 2
=- 20x [解析 ] ∵双曲线的左焦点为 (- 5,0),故设抛物线方程为 y 2
=- 2px(p>0),
又 p =10,∴ y 2=- 20x.
16、 [答案 ] (2, ±4 2)
[ 解析 ] 设抛物线 y 2
=16x 上的点 P(x , y)
由题意,得 (x + 4)2
= x 2
+ y 2
= x 2
+ 16x ,∴ x = 2,∴ y = ±4 2.
17、 [ 答案 ]2[ 解析 ]由题意,设 A 点坐标为 (x,2 3),则 x = 3,又焦点
F(1,0) , ∴焦点到 AB 的距离为 2.。