人教版九年级数学 同步练习 含答案_第二十二章__一元二次方程
最新人教版九年级上册 解一元二次方程 同步练习(含答案)
解一元二次方程同步练习一.选择题1.方程x2-6x+5=0的两个根之和为()A.-6B.6C.-5D.52.下列方程中,没有实数根的是()A.2x2+3x=0B.(x-1)2=2C.x2+3=0D.x2-4x+3=03.已知方程x2-6x+q=0配方后是(x-p)2=7,那么方程x2+6x+q=0配方后是()A.(x-p)2=5B.(x+p)2=5C.(x-p)2=9D.(x+p)2=7 4.关于x的一元二次方程ax2-x+0.25=0有两个不相等的实数根,则a的取值范围是()A.a>0B.a>-1C.a<1D.a<1且a≠05.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2-4ac>0;②若方程两根为-1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④6.使方程2x2-5mx+2m2=5的一根为整数的整数m的值共有()A.1个B.2个C.3个D.4个7.已知实数x满足(x2-2x+1)2+2(x2-2x+1)-3=0,那么x2-2x+1的值为()A.-1或3B.-3或1C.3D.18.定义运算:a*b=2ab,若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.mB.2-2mC.2m-2D.-2m-29.三角形两边的长是6和8,第三边满足方程x2-24x+140=0,则三角形周长为()A.24B.28C.24或28D.以上都不对10.从-2,-1,0,1,2,4,这六个数中,随机抽一个数、记为a,若数a使关于x的一元二次方程x2-2(a-4)x+a2=0有实数解,且关于y的分式方有整数解,则符合条件的a的值的和是()A.-2B.0C.1D.211.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的两倍,则称这样的方程为“2倍根方程”,以下说法不正确的是()A.方程x2-3x+2=0是2倍根方程B.若关于x的方程(x-2)(mx+n)=0是2倍根方程,则m+n=0 C.若m+n=0且m≠0,则关于x的方程(x-2)(mx+n)=0是2倍根方程D.若2m+n=0且m≠0,则关于x的方程x2+(m-n)x-mn=0 是2倍根方程12.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a-1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3B.4C.5D.6二.填空题13.方程(x-3)(x+2)=0的根是.14.已知(x2+y2+1)(x2+y2+3)=8.则x2+y2的值为.15.已知a,b是方程x2+3x-1=0的两根,则a2b+ab2的值是.16.已知关于x的一元二次方程(0.25m-1)x2-x+1=0有实数根,则m的取值范围是.17.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-8x+16=0的两个根,则x1*x2=.三.解答题18.解下列一元二次方程:(1)x2+4x-8=0;(2)(x-3)2=5(x-3);(3)2x2-4x=1(配方法).19.设实数a,b满足a2(b2+1)+b(b+2a)=40,a(b+1)+b=8,求的值.20.已知关于x的一元二次方程有两个不相等的实数根x1,x2.(1)若m为正整数,求m的值;(2)在(1)的条件下,求代数式(x1x2)(x12+x22)的值.21.已知关于x的一元二次方程kx2+(1-2k)x+k-2=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当k取满足(1)中条件的最小整数时,设方程的两根为α和β,求代数式α3+β2+β+2016的值.22.基本事实:“若ab=0,则a=0或b=0”.方程x2-x-6=0可通过因式分解化为(x-3)(x+2)=0,由基本事实得x-3=0或x+2=0,即方程的解为x=3或x=-2.(1)试利用上述基本事实,解方程:3x2-x=0;(2)若实数m、n满足(m2+n2)(m2+n2-1)-6=0,求m2+n2的值.参考答案1-5:BCDDC 6-10:DDDAD 11-12:BC13、x=3或x=-214、115、316、m≤5且m≠417、018、19、820、(1)m=1;(2)21、:(1)k>-0.25且k≠0;(2)2020.22、(2)3。
人教版九年级上册数学22 2二次函数与一元二次方程 同步练习(含答案)
人教版九年级上册数学22.2二次函数与一元二次方程同步练习一、单选题1.抛物线223y x x =+-与x 轴的交点个数有( )A .0个B .1个C .2个D .3个 2.下列二次函数的图象与x 轴有且只有一个交点的是( ) A .239y x x =+ B .244y x x =-++C .2245y x x =++D .221y x x =-+3.已知二次函数()22221y x b x b =----+的图象不经过第二象限,则实数b 的取值范围是( )4.二次函数2y ax bx c =++图象的一部分如图所示,它与x 轴的一交点为()6,0B ,对称轴为直线2x =,则由图象可知,方程20ax bx c ++=的解是( )A .10x =,26x =B .12x =-,26x =C .11x =-,26x =D .12x =-,22x = 5.已知抛物线()243y a x =--的部分图象如图所示,则图象与x 轴另一个交点的坐标是( )A .()5,0B .()6,0C .()7,0D .()8,06.如图是二次函数²y ax bx c =++的部分图像,由图像可知不等式²0ax bx c ++≥的解集是( )A .15x <<B . 5x ≤C .15x -≤≤D . 1x <-或5x >7.二次函数()()2y x a x b =---,()a b <的图像与x 轴交点的横坐标为m 、n ,且m n <,则a ,b ,m ,n 的大小关系是( )A .m a b n <<<B .a m b n <<<C .a m n b <<<D .m a n b <<<8.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论中:①0ac <;①24b ac <;①20a b -=;①930a b c ++>.正确的有( )A .1个B .2个C .3个D .4个二、填空题9.如图,在平面直角坐标系中,抛物线222y x mx m =-++-(m 为常数,且0m >)与直线y =2交于A 、B 两点.若AB =2,则m 的值为______.10.抛物线()231y ax a x =+-+的顶点在x 轴上,则a 的值为________.11.已知二次函数24y x x c =++的图象与x 轴的一个交点坐标是()20,,则它与x 轴的另一个交点坐标是______.12.已知二次函数y =﹣x 2+bx +c 的顶点为(1,5),那么关于x 的一元二次方程﹣x 2+bx +c ﹣m =0有两个相等的实数根,则m =______________.13.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,平移后抛物线的顶点坐标为_____. 14.如图,抛物线2y ax c =+与直线y mx n =+交于()()2,,4,A p B q -两点,则不等式2ax mx c n -+<的解集是___________.15.如图,已知二次函数()20y x m m =-+>的图像与x 轴交于A 、B 两点,与y 轴交于C 点.若AB OC =,则m 的值是______.16.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图.则有以下5个结论:①a <0;①b 2-4ac<0;①b =-2a ;①当0<x <2时,y >0;①a -b +c >0;其中正确的结论有:____________.(写出你认为正确的序号即可)三、解答题17.在平面直角坐标系中,已知抛物线22y x 2mx m 9=-+-.(1)求证:无论m 为何值,该抛物线与x 轴总有两个交点;(2)该抛物线与x 轴交于A ,B 两点,点A 在点B 的左侧,且3OA OB =,求m 的值. 18.如图,抛物线2y x bx c =-++交x 轴于()1,0A -、B 两点,交y 轴于()0,3C ,点P 在抛物线上,横坐标设为m .(1)求抛物线的解析式;求BDC的面积.(1)求抛物线的解析式;(2)若D 是抛物线上一点(不与点C 重合),且ABD ABC S S △△,请求出点D 的坐标.参考答案:。
人教版九年级数学第二十二章一元二次方程单元测试(二)(附答案)
人教版九年级数学第二十二章一元二次方程单元测试(二)学校:___________姓名:___________班级:___________考号:___________一、选择题1.一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根2.关于x 的一元二次方程220x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断3.方程x 2=2x 的解是 ( )A .x=2B .x 1=2,x 2=0C .x 1=2-,x 2=0D .x=04.关于x 的一元二次方程22(1)10m x x m -++-=的一个根是0,则m 的值为A .1B .1-C .1或1-D .125.下列方程中,是关于x 的一元二次方程的是 A.()()12132+=+x x B.02112=-+x xC.02=++c bx axD. 1222-=+x x x 6.关于x 的一元二次方程(m -1)x 2+x+m 2-1=0的一个根是0,则m 的值为( )A .1B .-1C .1或-1D .0.57.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )A .13B .11或13C .11D .128.三角形两边的长分别是4和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的周长是( )A 、20B 、20或16C 、16D 、18或219.已知关于x 的一元二次方程x ²-kx -4=0的一个根为2,则另一根是( )A 、4B 、1C 、-2D 、210.方程)2(3)2(2-=-x x 的解为( ).A .2=xB .5=xC .21=x ,52=xD .21=x ,32=x二、填空题11.已知关于x 的方程0232=+-k x x 的一个根是1,则k = 。
人教版九年级上册第22章一元二次方程单元作业及答案
新世纪教育网精选资料 版权所有 @新世纪教育网22.3实质问题与一元二次方程 (1)教课内容由“倍数关系” 等问题成立数学模型, 并经过配方法或公式法或分解因式法解决实质问题.教课目的掌握用“倍数关系”成立数学模型,并利用它解决一些详细问题.经过复习二元一次方程组等成立数学模型, 并利用它解决实质问题, 引入用“倍数关系”成立数学模型,并利用它解决实质问题.重难点要点1.要点:用“倍数关系”成立数学模型2.难点与要点:用“倍数关系”成立数学模型 教课过程 一、复习引入(学生活动) 问题 1:列方程解应用题下表是某一周甲、乙两种股票每日每股的收盘价(收盘价:股票每日交易结果时的价格):礼拜 一 二 三四五甲12 元 12.5 元 12.9 元 12.45 元 12.75 元 乙13.5 元13.3 元13.9 元13.4 元13.75 元某人在这周内拥有若干甲、 乙两种股票, 若依据两种股票每日的收盘价计算 (不计手续费、税费等),则在他帐户上,礼拜二比礼拜一增添 200 元, ?礼拜三比礼拜二增添 1300 元, 此人拥有的甲、乙股票各多少股?老师评论剖析: 一般用直接设元, 即问什么就设什么, 即设此人拥有的甲、 乙股票各 x 、y 张,因为从表中知道每日每股的收盘价,所以,两种股票当日的帐户总数就是 x 或 y 乘以相应的每日每股的收盘价, 再依据已知的等量关系; 礼拜二比礼拜一增添 200 元,礼拜三比礼拜二增添 1300 元,即可列出等式.解:设此人拥有的甲、乙股票各x 、y 张.0.5x ( 0.2) y 200 x 1000(股) 则0.6 y 1300解得1500(股)0.4x y 答:(略) 二、探究新知上边这道题大家都做得很好,这是一种利用二元一次方程组的数目关系成立的数学模型,那么还有没有益用其余形式, 也就是利用我们前方所学过的一元二次方程成立数学模型解应用题呢?请同学们达成下边问题.(学生活动) 问题 2:某工厂第一季度的一月份生产电视机是1 万台,第一季度生产电视机的总台数是 3.31 万台,求二月份、三月份生产电视机均匀增添的百分率是多少?老师评论剖析: 直接假定二月份、 三月份生产电视机均匀增添率为x .?因为一月份是 1万台,那么二月份应是( 1+x )台,三月份应是在二月份的基础上以二月份比一月份增添的 相同“倍数”增添,即( 1+x ) +( 1+x )x= ( 1+x ) 2,那么就很简单从第一季度总台数列出等式.解:设二月份、 三月份生产电视机均匀增添的百分率为x ,则 1+( 1+x )+( 1+x )2?=3.312去括号: 1+1+x+1+2x+x =3.31整理,得: x2+3x-0.31=0解得: x=10%答:(略)以上这一道题与我们从前所学的一元一次、二元一次方程(组)、分式方程等为背景成立数学模型是相同的,而我们借助的是一元二次方程为背景成立数学模型来剖析实质问题和解决问题的种类.例 1.某电脑企业2001 年的各项经营中,一月份的营业额为200 万元,一月、?二月、三月的营业额共950 万元,假如均匀每个月营业额的增添率相同,求这个增添率.剖析:设这个增添率为x,由一月份的营业额即可列出用x 表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.解:设均匀增添率为x则 200+200( 1+x) +200 (1+x )2=950整理,得: x2+3x-1.75=0解得: x=50%答:所求的增添率为50%.三、稳固练习(1)某林场现有木材 a 立方米,估计在此后两年内年均匀增添 p%,那么两年后该林场有木材多少立方米 ?(2)某化工厂今年一月份生产化工原料15 万吨,经过优化管理,产量逐年上涨,第一季度共生产化工原料60 万吨,设二、三月份均匀增添的百分率相同,均为x,可列出方程为__________ .四、应用拓展例 2.某人将2000元人民币按一年按期存入银行,到期后支取1000 元用于购物,剩下的 1000 元及应得利息又所有按一年按期存入银行,若存款的利率不变,到期后本金和利息共 1320 元,求这类存款方式的年利率.剖析:设这类存款方式的年利率为x,第一次存2000 元取 1000 元,剩下的本金和利息是 1000+2000x · 80%;第二次存,本金就变成1000+2000x ·80%,其余依此类推.解:设这类存款方式的年利率为x则: 1000+2000x · 80%+ ( 1000+2000x · 8%)x· 80%=1320 2 21解得: x1=-2(不符,舍去), x2= =0.125=12.5%8答:所求的年利率是12.5%.五、概括小结本节课应掌握:利用“倍数关系”成立对于一元二次方程的数学模型,并利用适合方法解它.六、部署作业1.教材 P53复习稳固1综合运用1.2.采用作业设计.作业设计一、选择题1. 2005 年一月份越南发生禽流感的养鸡场100 家,此后二、?三月份新发生禽流感的养鸡场共 250 家,设二、三月份均匀每个月禽流感的感染率为x,依题意列出的方程是().22A . 100( 1+x) =250B . 100( 1+x) +100 (1+x) =250C.100( 1-x )2=250D. 100(1+x )22.一台电视机成本价为 a 元,销售价比成本价增添 25%,因库存积压, ?所以就按销售价的70% 销售,那么每台售价为().A .( 1+25% )(1+70% ) a 元B . 70%( 1+25% )a 元C.(1+25% )( 1-70% )a 元D.( 1+25%+70% ) a 元3.某商场的标价比成本高p%,当该商品降价销售时,为了不损失成本,?售价的折扣(即降低的百分数)不得超出d%,则 d 可用 p 表示为().pB .p C.100 p100 pA .D.p100 p1000 p100二、填空题1.某田户的粮食产量,均匀每年的增添率为x,第一年的产量为 6 万 kg,?第二年的产量为_______kg ,第三年的产量为_______,三年总产量为 _______.2.某糖厂 2002 年食糖产量为at,假如在此后两年均匀增添的百分率为x, ?那么估计 2004年的产量将是 ________.3. ?我国政府为认识决老百姓看病难的问题,?决定下调药品价钱,?某种药品在 1999 年涨价 30%? 后, ?2001?年降价70%? 至 a? 元, ? 则这类药品在1999? 年涨价前价钱是__________ .三、综合提升题1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,2000年我省某地退耕还林1600 亩,计划到 2002年一年退耕还林1936 亩,问这两年均匀每年退耕还林的均匀增添率 2.洛阳东方红拖沓机厂一月份生产甲、乙两种新式拖沓机,此中乙型16 台, ?从二月份起,甲型每个月增产10 台,乙型每个月按相同的增添率逐年递加,又知二月份甲、乙两型的产量之比是 3: 2,三月份甲、乙两型产量之和为65 台, ?求乙型拖沓机每个月的增添率及甲型拖沓机一月份的产量.3.某商场于第一年初投入50 万元进行商品经营, ?此后每年年关将当年获取的收益与当年年初投入的资本相加所得的总资本,作为下一年年初投入的资本持续进行经营.( 1)假如第一年的年赢利率为p,那么第一年年关的总资本是多少万元?( ?用代数式年收益来表示)(注:年赢利率=× 100%)年初投入资本(2)假如第二年的年赢利率多 10 个百分点(即第二年的年赢利率是第一年的年赢利率与10%的和),第二年年关的总资本为 66 万元,求第一年的年赢利率.答案 :一、 1.B 2.B3. D二、 1. 6(1+x )6( 1+x )26+6( 1+x )+6( 1+x)22. a(1+x )2t100 a3.39三、 1.均匀增添率为x,则 1600( 1+x)2=1936 , x=10%2.设乙型增添率为x,甲型一月份产量为y:y103y 2 4x 1 4则 16(1x)216x2y 3 x2 2 9 0( y20)16(1 x)265即 16x 2+56x-15=0 ,解得 x= 1=25%, y=20 (台)43.( 1)第一年年关总资本=50( 1+P)2( 2) 50( 1+P)( 1+P+10% ) =66 ,整理得: P +2.1P-0.22=0 ,解得 P=10%。
九年级数学上册《第二十二章二次函数与一元二次方程》同步练习题及答案(人教版)
九年级数学上册《第二十二章二次函数与一元二次方程》同步练习题及答案(人教版) 班级姓名学号一、单选题1.二次函数y=ax2+bx+c,若ac<0,则其图象与x轴( )A.有两个交点B.有一个交点C.没有交点D.可能有一个交点2.已知关于x的方程ax−x2+2x−3=0只有一个实数根,则实数a的取值范围是()A.a>0 B.a<0 C.a≠0 D.a为一切实数3.已知二次函数y=x2−2x+m(m为常数)的图象与x轴的一个交点为(3,0),则关于x的一元二次方程x2−2x+m=0的两个实数根是()A.x1=−1,x2=3 B.x1=1C.x1=−1,x2=1 D.x1=34.若二次函数y=ax²+1图象经过点(-2,0),则关于x的方程a(x-2)²+1=0实数根为()A.x1=0,x2=4 B.x1=-2,x2=6C.x1= 32,x2= 52D.x1=-4,x2=05.已知抛物线y=ax2+bx−2与x轴没有交点,过A(−2,y1)、B(−3,y2)、C(1,y2)、D(√3,y3)四点,则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y16.下表示用计算器探索函数y=x2+5x﹣3时所得的数值:x 0 0.25 0.5 0.75 1y ﹣3 ﹣1.69 ﹣0.25 1.31 3则方程x2+5x﹣3=0的一个解x的取值范围为()A.0<x<0.25 B.0.25<x<0.5C.0.5<x<0.75 D.0.75<x<17.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4 B.﹣2 C.1 D.38.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①a﹣3b+2c >0;②3a﹣2b﹣c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题9.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:.10.已知抛物线y=ax2+bx+c与x轴有两个交点,那么一元二次方程ax2+bx+c=0 的根的情况是.11.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=1,则关于x的方程ax2+bx+c=0(a≠0)的解为.12.在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是.13.已知二次函数y=ax2+bx+c(a≠0)自变量x与函数值y之间满足下列数量关系:x ....... ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 ......y ....... 24 15 8 3 0 ﹣1 0 3 8 15 ......观察表中数据,代数式−b+√b2−4ac2a +−b−√b2−4ac2a+(a+b+c)(a﹣b+c)的值是;若s、t是两个不相等的实数,当s≤x≤t时,二次函数y=ax2+bx+c(a≠0)有最小值0和最大值24,那么s t的值是.三、解答题14.在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-m+2的顶点为D.线段AB的两个端点分别为A(-3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.15.某商场出售一种成本为20元的商品,市场调查发现,该商品每天的销售量(千克)与销售价(元/千克)有如下关系:w=-2x+80.设这种商品的销售利润为y (元).(1)求y与x之间的函数关系式;(2)在不亏本的前提下,销售价在什么范围内每天的销售利润随售价增加而增大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?16.设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y)的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成心=2(x-h)2-2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x-m(m是常数),若函数y1的表达式还可以写成y1=2(x-m)(x-m-2)的形式,当函数y=y1-y2的图象经过点(x0,0)时,求x0-m的值.17.已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2+8x+6.二次函数与x轴的正半轴交点为A,与y轴交点为C;点M是中二次函数图象上的动点.在x轴上存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.请求出所有满足条件的点N的坐标.18.某公司生产A种产品,它的成本是6元/件,售价是8元/件,年销售量为5万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x万元,产品的年销售量将是原销售量的y倍,且y与x之间满足我们学过的二种函数(即一次函数和二次函数)关系中的一种,它们的关系如下表:x(万元)0 0.5 1 1.5 2 …y 1 1.275 1.5 1.675 1.8 …(1)求y与x的函数关系式(不要求写出自变量的取值范围)(2)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润W(万元)与广告费用x(万元)的函数关系式,并计算每年投入的广告费是多少万元时所获得的利润最大?(3)如果公司希望年利润W(万元)不低于14万元,请你帮公司确定广告费的范围.19.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)如图建立平面直角坐标系,使抛物线对称轴为y轴,求该抛物线的解析式;(2)若需要开一个截面为矩形的门(如图所示),已知门的高度为1.60米,那么门的宽度最大是多少米(不考虑材料厚度)?(结果保留根号)参考答案1.A2.C3.A4.A5.A6.C7.B8.C9.y=x2﹣32x10.有两个不相等的实数根11.x1=312.﹣1<x2<013.-1;1或2 614.(1)∵y=x2-2mx+m2-m+2=(x-m)2-m+2,∴D点的坐标为(m,-m+2).(2)∵抛物线经过点B(1,m),∴m=1-2m+m2-m+2,解得m=3或m=1.(3)根据题意,∵A点的坐标为(-3,m),B点的坐标为(1,m),∴线段AB为y=m(-3≤x≤1),与y=x2-2mx+m2-m+2联立得x2-2mx+m2-2m+2=0,令y'=x2-2mx+m2-2m+2,若抛物线y=x2-2mx+m2-m+2与线段AB只有1个公共点,即函数y'在-3≤x≤1范围内只有一个零点,当x=-3时,y'=m2+4m+11<0,∵Δ>0,∴此种情况不存在,当x=1时,y'=m2-4m+3≤0,解得1≤m≤3.15.解:(1)y=w(x-20)=(x-20)(-2x+80)=-2x2+120x-1600则y=-2x2+120x-1600.由题意,有{x≥20−2x+80≥0解得20≤x≤40.故y与x的函数关系式为:y=-2x2+120x-1600,自变量x的取值范围是20≤x≤40;(2)∵y=-2x2+120x-1600=-2(x-30)2+200∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元; (3)当y=150时,可得方程-2x 2+120x-1600=150 整理,得x 2-60x+875=0 解得x 1=25,x 2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x 2=35不合题意,应舍去. 故当销售价定为25元/千克时,该农户每天可获得销售利润150元. 16.(1)解:由题意,得y 1=2(x-1)(x-2). 图象的对称轴是直线x= 32(2)解:由题意,得y 1=2x 2-4hx+2h 2-2 ∴b+c=2h 2-4h-2 =2(h-1)2-4∴当h=1时,b+c 的最小值是-4. (3)解:由题意,得y=y 1-y 2 =2(x-m)(x-m-2)-(x-m) =(x-m)[2(x-m)-5]∵函数y 的图象经过点(x 0,0) ∴(x 0-m)[2(x 0-m)-5]=0 ∴x 0-m=0,或x 0-m= 52.17.解:令4x −12=2x 2−8x +6,解得:x 1=x 2=3 当x =3时4x −12=2x 2−8x +6=0 ∴y =ax 2+bx +c 必过(3,0) 又∵y =ax 2+bx +c 过(−1,0){a −b +c =09a +3b +c =0解得:{b =−2ac =−3a ∴y =ax 2−2ax −3a 又∵ax 2−2ax −3a ≥4x −12 ∴ax 2−2ax −3a −4x +12≥0 整理得:ax 2−2ax −4x +12−3a ≥0∴a >0且Δ=0∴(2a +4)2−4a(12−3a)=0 ∴(a −1)2=0∴a =1,b =−2,c =−3∴该二次函数解析式为y =x 2−2x −3令y =x 2−2x −3中y =0,得x =3,则A 点坐标为(3,0) 令x =0,得y =−3,则点C 坐标为(0,−3) 设点M 坐标为(m ,m 2−2m −3) N(n ,0)根据平行四边形对角线性质以及中点坐标公式可得: ①当AC 为对角线时,{x A +x C =x M +xN y A +y C =y M +y N即{3+0=m +n0−3=m 2−2m −3+0 解得:m 1=0(舍去) m 2=2 ∴n =1,即N 1(1,0);②当AM 为对角线时,{x A +x M =x C +xN y A +y M =y C +y N即{3+m =0+n0+m 2−2m −3=−3+0 解得:m 1=0(舍去) m 2=2 ∴n =5,即N 2(5,0);③当AN 为对角线时,{x A +x N =x C +xM y A +y N =y C +y M即{3+n =0+m0+0=−3+m 2−2m −3 解得:m 1=1+√7 m 2=1−√7 ∴n =√7−2或−√7−2∴N 3(√7−2,0),N 4(−√7−2,0);综上所述,N 点坐标为(1,0)或(5,0)或(√7−2,0)或(−√7−2,0). 18.解:(1)设y 与x 的函数关系式为y=ax 2+bx+c ,由题意,得{1=c1.5=a +b +c 1.8=4a +2b +c解得:{a =−0.1b =0.6c =1∴y=﹣0.1x 2+0.6x+1; (2)由题意,得W=(8﹣6)×5(﹣0.1x 2+0.6x+1)﹣x W=﹣x 2+5x+10W=﹣(x ﹣2.5)2+16.25. ∴a=﹣1<0∴当x=2.5时,W 最大=16.25.答:年利润W (万元)与广告费用x (万元)的函数关系式为W=﹣x 2+5x+10,每年投入的广告费是2.5万元时所获得的利润最大为16.25万元. (3)当W=14时 ﹣x 2+5x+10=14 解得:x 1=1,x 2=4∴1≤x ≤4时,年利润W (万元)不低于14万元. 19.(1)由图可设抛物线的解析式为:y =ax 2+2由图知抛物线与轴正半轴的交点为(2,0),则a ×22+2=0 ∴a =−12∴抛物线的解析式为:y =−12x 2+2 (2)当y=1.60时,得:x=±2√55所以门的宽度最大为2√55-(-2√55)=4√55米。
人教版数学九年级上册第22章22.1---22.3同步练习题含答案
【22.1二次函数的图像和性质】一.选择题1.把抛物线y=﹣2x2+4的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣2)2+7B.y=﹣2(x﹣2)2+1C.y=﹣2(x+2)2+7D.y=﹣2(x+2)2+12.已知点(﹣3,y1),(﹣2,y2),(3,y3)在函数y=(x+1)2﹣2的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y2<y1<y3 C.y1<y3<y2 D.y3<y1<y23.将二次函数y=2x2+3x﹣1化为y=(x+h)2+k的形式为()A.y=2(x+)2﹣B.y=2(x+)2﹣C.y=2(x+)2﹣D.y=2(x+)2﹣4.二次函数y=x2﹣4x+3的二次项系数、一次项系数和常数项分别是()A.1,4,3B.0,4,3C.1,﹣4,3D.0,﹣4,35.二次函数y=a(x﹣1)2+b(a≠0)的图象经过点(0,2),则a+b的值是()A.﹣3B.﹣1C.2D.36.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数);⑤3a+c>0.则其中正确的结论有()A.2个B.3个C.4个D.5个7.若二次函数y=ax2+bx+c的图象经过A(x1,y1)、B(x2,y2)、C(2﹣m,n)、D(m,n)(y1≠n)则下列命题正确的是()A.若a>0且|x1﹣1|>|x2﹣1|,则y1<y2B.若a<0且y1<y2,则|1﹣x1|<|1﹣x2|C.若|x1﹣1|>|x2﹣1|且y1>y2,则a<0D.若x1+x2=2(x1≠x2),则AB∥CD8.对于二次函数y=﹣(x+1)2﹣2的图象,下列说法正确的是()A.有最低点,坐标是(1,2)B.有最高点,坐标是(﹣1,﹣2)C.有最高点,坐标是(1,2)D.有最低点,坐标是(﹣1,﹣2)9.不论m取任何实数,抛物线y=a(x+m)2+m+1(a≠0)的顶点都()A.在y=x+1直线上B.在直线y=﹣x﹣1上C.在直线y=﹣x+1上D.不确定10.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小二.填空题11.如果二次函数的图象与已知二次函数y=x2﹣2x的图象关于y轴对称,那么这个二次函数的解析式是.12.将抛物线y=﹣3x2﹣1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为.13.二次函数y=﹣2(x﹣1)2﹣3的最大值是.14.当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.15.若点A(0,y1),B(﹣3,y2),C(1,y3)为二次函数y=(x+2)2﹣9的图象上的三点,则y1,y2,y3的大小关系是.三.解答题16.已知函数y=﹣2x2+8x﹣5.(1)当x时,y随x的增大而增大;(2)当x=时,y有最大值,最大值为;(3)求出该抛物线与直线y=x﹣5的交点坐标.17.已知:二次函数y=x2﹣1.(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象.18.抛物线顶点坐标为(1,﹣4)且过(0,﹣3).(1)求抛物线的解析式;(2)当2≤x≤4时,求y的取值范围.19.如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、C(0,﹣3)两点.(1)求抛物线解析式和顶点坐标;(2)当0<x<3时,请直接写出y的取值范围.20.在平面直角坐标系xOy中,抛物线y=mx2+2mx﹣3m+2.(1)求抛物线的对称轴;(2)①过点P(0,2)作与x轴平行的直线,交抛物线于点M,N.求点M,N的坐标;②横、纵坐标都是整数的点叫做整点.如果抛物线和线段MN围成的封闭区域内(不包括边界)恰有3个整点,求m的取值范围.参考答案一.选择题1.解:由“左加右减”的原则可知,二次函数y=﹣2x2+4的图象向左平移2个单位得到y=﹣2(x+2)2+4,由“上加下减”的原则可知,将二次函数y=﹣2(x+2)2+4的图象向上平移3个单位可得到函数y=﹣2(x+2)2+4+3,即y=﹣2(x+2)2+7,故选:C.2.解:∵点(﹣3,y1),(﹣2,y2),(3,y3)在函数y=(x+1)2﹣2的图象上,∴y1=2,y2=﹣1,y3=14,∴y2<y1<y3,故选:B.3.解:y=2x2+3x﹣1=2(x2+x+)﹣1﹣=2(x+)2﹣,即y=2(x+)2﹣,故选:C.4.解:二次函数y=x2﹣4x+3的二次项系数是1,一次项系数是﹣4,常数项是3;故选:C.5.解:∵二次函数y=a(x﹣1)2+b(a≠0)的图象经过点(0,2),∴a+b=2.故选:C.6.解:∵二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,∴点A(3,0)关于直线x=1对称点为(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故①正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,∴4ac﹣b2<0,故③错误;∵当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确;∵b=﹣2a,a﹣b+c=0,∴a+2a+c=0,即3a+c=0,故⑤错误;综上,正确的有①②④.故选:B.7.解:∵抛物线过点A(m,n),C(2﹣m,n)两点,∴抛物线的对称轴为x==1,若a>0且|x1﹣1|>|x2﹣1|,则y1>y2,故选项A错误,若a<0且y1<y2,则|1﹣x1|<|1﹣x2|,故选项B错误,若|x1﹣1|>|x2﹣1|且y1>y2,则a>0,故选项C错误,若x1+x2=2(x1≠x2),则AB∥CD,故选项D正确.故选:D.8.解:∵二次函数y=﹣(x+1)2﹣2,∴该函数的图象开口向下,对称轴是直线x=﹣1,顶点坐标为(﹣1,﹣2),有最高点,故选项B中的说法正确,选项A、C、D中的说法错误;故选:B.9.解:∵抛物线y=a(x+m)2+m+1(a≠0),∴顶点坐标是(﹣m,m+1),∴顶点在直线y=﹣x+1上.故选:C.10.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.二.填空题11.解:y=x2﹣2x的图象关于y轴对称的抛物线x互为相反数,y不变.得y=(﹣x)2﹣2(﹣x)=x2+2x.故答案为y=x2+2x.12.解:由“上加下减,左加右减”的原则可知,函数y=﹣3x2﹣1的图象向左平移2个单位再向下平移3个单位所得到的图象的函数关系式是:y=﹣3(x+2)2﹣4.故答案为:y=﹣3(x+2)2﹣4.13.解:y=﹣2(x﹣1)2﹣3,∵a=﹣2<0,∴当x=1时,y有最大值,最大值为﹣3.故答案为﹣3.14.解:∵二次函数y=x2﹣3x+m=(x﹣)2+m﹣,∴该函数开口向上,对称轴为x=,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.15.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,∴B(﹣3,y2)关于直线x=﹣2的对称点是(﹣1,y2),∵﹣2<﹣1<0<1,∴y2<y1<y3,故答案为y2<y1<y3.三.解答题16.解:函数y=﹣2x2+8x﹣5=﹣2(x﹣2)2+3,(1)∵函数y=﹣2x2+8x﹣5=﹣2(x﹣2)2+3,∴开口向下,对称轴为直线x=2,∴当x<2时,y随x的增大而增大;故答案为<2;(2))∵函数y=﹣2x2+8x﹣5=﹣2(x﹣2)2+3,∴开口向下,函数有最大值,∴当x=2时,y取得最大值3,故答案为:2,3.(3)由消去y整理得2x2﹣7x=0,解得x=0或x=,∴该抛物线与直线y=x﹣5的交点坐标为(0,﹣5),(,﹣).17.解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)在y=x2﹣1中,令y=0可得0=x2﹣1.解得x=﹣1或1,令x=0可得y=﹣1,结合(1)中的顶点坐标及对称轴,可画出其图象如图所示:.18.解:(1)由抛物线顶点坐标为(1,﹣4)可设其解析式为y=a(x﹣1)2﹣4,将(0,﹣3)代入,得:a﹣4=﹣3,解得:a=1,则抛物线解析式为y=(x﹣1)2﹣4.(2)把x=2代入得y=﹣3;把x=4代入得y=5,∵1<2≤x≤4,∴当2≤x≤4时,﹣3≤y≤5.19.解:(1)将A(﹣1,0)和B(3,0)代入y=x2+bx+c得,解得,∴抛物线的解析式为y=x2﹣2x﹣3;∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(2)∵当x=0时,y=﹣3;当3=0时,y=x2﹣2x﹣3=9﹣6﹣3=0,∴当0<x<3时,y的取值范围为﹣4≤x<0.20.解:(1)∵抛物线y=mx2+2mx﹣3m+2.∴对称轴为直线x=﹣=﹣1;(2)①把y=2代入y=mx2+2mx﹣3m+2得mx2+2mx﹣3m+2=2,解得x=1或﹣3,∴M(﹣3,2);N(1,2);②当抛物线开口向上时,如图1,抛物线和线段MN围成的封闭区域内(不包括边界)恰有3个整点,则封闭区域内(不包括边界)的3个点为(﹣2,1),(﹣1,1),(0,1),将(﹣2,1)代入y=mx2+2mx﹣3m+2,得到m=,将(﹣1,0)代入y=mx2+2mx﹣3m+2,得到m=,结合图象可得<m≤.当抛物线开口向下时,如图2,则封闭区域内(不包括边界)的3个点为(﹣2,3),(﹣1,3),(0,3),将(0,3)代入y=mx2+2mx﹣3m+2,得到m=﹣,将(﹣1,4)代入y=mx2+2mx﹣3m+2,得到m=﹣,结合图象可得﹣≤m<﹣.综上,m的取值范围为.22.2二次函数与一元二次方程一.选择题1.若二次函数y=ax2+bx﹣1的最小值为﹣2,则方程|ax2+bx﹣1|=2的不相同实数根的个数是()A.2B.3C.4D.52.二次函数y=x2+2x+4与坐标轴有()个交点.A.0B.1C.2D.33.在平面直角坐标系中,已知a≠b,设函数y=(x﹣a)(x﹣b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图形与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣14.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.45.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0B.﹣4C.4D.26.已知一个直角三角形的两边长分别为a和5,第三边长是抛物线y=x2﹣10x+21与x轴交点间的距离,则a的值为()A.3B.C.3或D.不能确定7.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个8.若二次函数y=ax2﹣2ax+c的图象经过点A(0,﹣1),B(﹣2,y1),C(3,y2),D(,y3),且与x轴没有交点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y2>y19.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④10.设抛物线y=ax2+bx+c(ab≠0)的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1.()A.y=﹣3(x﹣1)2+1B.y=2(x﹣0.5)(x+1.5)C.y=x+1D.y=(a2+1)x2﹣4x+2(a为任意常数)二.填空题11.抛物线y=ax2+bx+c经过点A(﹣2,0)、B(1,0)两点,则关于x的一元二次方程a(x﹣3)2+c=3b﹣bx的解是.12.若方程ax2﹣2ax+c=0(a≠0)有一个根为x=﹣1,那么抛物线y=ax2﹣2ax+c与x轴两交点间的距离为.13.若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,则整数m的值为.14.已知抛物线y=3x2+2x+c,当﹣1≤x≤1时,抛物线与x轴有且只有一个公共点,则c的取值范围.15.已知关于x的一元二次方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,则抛物线y=m(x﹣h+3)2与直线y=k的交点的横坐标是.三.解答题16.已知二次函数的图象经过点(3,0),对称轴是直线x=﹣2,与y轴的交点(0,﹣3).(1)求抛物线与x轴的另一个交点坐标;(2)求抛物线的解析式.17.已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0,(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(1,0),B(t,0)两点,求m的值.18.已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)画出该二次函数的图象;(2)连接AC、CD、BD,则四边形ABCD的面积为.19.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C.请解答下列问题:(1)求抛物线的函数解析式并直接写出顶点M坐标;(2)连接AM,N是AM的中点,连接BN,求线段BN长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).20.已知抛物线y=x2﹣(4﹣k)x﹣3的对称轴是直线x=1,此抛物线与x轴交于A、B两点,与y轴交于点C.(Ⅰ)求△ABC的面积;(Ⅱ)若抛物线的顶点为P,求线段PC的长.参考答案1.解:由题意可知,二次函数y=ax2+bx﹣1的图象开口向上,经过定点(0,﹣1),最小值为﹣2,则二次函数y=ax2+bx﹣1 的大致图象如图1所示,函数y=|ax2+bx﹣1|的图象则是由二次函数y=ax2+bx﹣1位于x轴上方的图象不变,位于x轴下方的图象向上翻转得到的,如图2所示,由图2可知,方程|ax2+bx﹣1|=2 的不相同实数根的个数是3个,故选:B.2.解:∵二次函数y=x2+2x+4,∴当y=0时,0=x2+2x+4=(x+1)2+3,此时方程无解,当x=0时,y=4,∴二次函数y=x2+2x+4与坐标轴有1个交点,故选:B.3.解:当y=0时,(x﹣a)(x﹣b)=0,解得x1=a,x2=b,抛物线y=(x﹣a)(x﹣b)与x轴的交点为(a,0),(b,0),所以M=2,当y=0时,(ax+1)(bx+1)=0,当a≠0,b≠0,解得x1=﹣,x2=﹣,抛物线y=(ax+1)(bx+1)与x轴的交点为(﹣,0),(﹣,0),此时N=2,当a=0,b≠0,或b=0,a≠0时,函数y=(ax+1)(bx+1)为一次函数,则N=1,所以M=N,M=N+1.4.解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,﹣=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴﹣=1,==c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=﹣,如果b<3,则0<﹣<3,∴﹣<m<0,故结论正确;故选:C.5.解:∵抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,∴抛物线的对称轴为直线x=0,即﹣=0,∴b=0,∴25a+c=0,∵a(x﹣2)2+c=2b﹣bx,a(x﹣2)2+c=0,∴a(x﹣2)2=25a,∴(x﹣2)2=25,解得x1=7,x2=﹣3,即关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的解为x1=7,x2=﹣3.∴x1+x2=4.故选:C.6.解:∵y=x2﹣10x+21=(x﹣3)(x﹣7),∴当y=0时,x1=3,x2=7,∵7﹣3=4,∴直角三角形的第三边长为4,当5为斜边时,a==3,当a为斜边时,a==,由上可得,a的值为3或,故选:C.7.解:(1)如图,抛物线开口方向向下,则a<0,故结论正确;(2)如图,抛物线对称轴位于y轴右侧,则a、b异号,故b>0,故结论正确;(3)如图,当x=﹣1时,y<0,即a﹣b+c<0,故结论错误;(4)由抛物线的对称性质知,对称轴是直线x=﹣>0.结合a<0知,2a+b<0,故结论正确.综上所述,正确的结论有3个.故选:C.8.解:∵抛物线过A(0,﹣1),而抛物线与x轴没有交点,∴抛物线开口向下,即a<0,∵抛物线的对称轴为直线x=﹣=1,而B点到直线x=1的距离最大,D点到直线x=1的距离最小,∴y1<y2<y3.故选:D.9.解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x==2+,∴若k<0,则2+<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.10.解:对于y=﹣3(x﹣1)2+1,M(1,1),N(0,﹣2),直线MN的解析式为y=3x﹣2,直线MN与x轴的交点坐标为(,0),此时S=×2×=;对于y=2(x﹣0.5)(x+1.5),则y=2(x+)2﹣2,M(﹣,﹣2),N(0,﹣),直线MN的解析式为y=x﹣,直线MN与x轴的交点坐标为(,0),此时S=×(﹣)×=;对于y=x2﹣x+1,则y=(x﹣2)2﹣,M(2,﹣),N(0,1),直线MN的解析式为y=﹣x+1,直线MN与x轴的交点坐标为(,0),此时S=×1×=;故选:D.二.填空题11.解:∵a(x﹣3)2+c=3b﹣bx,∴a(x﹣3)2+b(x﹣3)+c=0,∵抛物线y=ax2+bx+c经过点A(﹣2,0)、B(1,0),∴x﹣3=﹣2或1,∴a(x﹣3)2+c=3b﹣bx的解是1或4,故答案为:x1=1,x2=4,12.解:抛物线的对称轴是直线x=﹣=1.∴方程ax2﹣2ax+c=0(a≠0)的另一根为x=3.则两交点间的距离为4.故答案是:4.13.解:当y=0时,x2﹣2mx+4m﹣8=0,∴x=m±;∵抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,∴为整数,∴m2﹣4m+8为整数的完全平方数,即(m﹣2)2+4为整数的完全平方数,∵m为整数,∴m﹣2=0,即m=2.故答案为2.14.解:抛物线为y=3x2+2x+c,与x轴有且只有一个公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c=0,有c=.①当c=时,由方程3x2+2x+=0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+与x轴只有一个公共点(﹣,0);②当c<时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c;由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x=﹣,应有y1<0,且y2≥0即1+c<0,且5+c≥0.解得:﹣5≤c<﹣1.综合①,②得n的取值范围是:c=或﹣5<c≤﹣1,故答案为c=或﹣5≤c<﹣1.15.解:由得,m(x﹣h+3)2﹣k=0,∵关于x的一元二次方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,∴方程m(x﹣h+3)2﹣k=0中的根满足x3+3=2,x4+3=5,解得,x3=﹣1,x4=2,即抛物线y=m(x﹣h+3)2与直线y=k的交点的横坐标是﹣1或2,故答案为:﹣1或2.三.解答题16.解:(1)∵抛物线与x轴的一个交点坐标为(3,0),对称轴是直线x=﹣2,∴抛物线与x轴的另一个交点坐标为(﹣7,0);(2)设抛物线解析式为y=a(x+7)(x﹣3),把(0,﹣3)代入得a(0+7)(0﹣3)=﹣3,解得a=,∴抛物线解析式为y=(x+7)(x﹣3),即y=x2+x﹣3.17.解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)将x=1代入一元二次方程x2﹣(m﹣3)x﹣m=0中得12﹣(m﹣3)﹣m=0,解得m=2.18.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,抛物线的顶点坐标为(1,﹣4),解方程x2﹣2x﹣3=0,解得x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0),当x=0时,y=x2﹣2x﹣3=﹣3,则抛物线与y轴的交点坐标为(0,﹣3),如图,(2)连接OD,如图,四边形ABCD的面积=S△AOC +S△OCD+S△OBD=×1×3+×3×1+×3×4=9.故答案为9.19.解:(1)抛物线解析式为y=﹣(x+4)(x﹣2),即y=﹣x2﹣x+2,∵y=﹣(x+1)2+,∴抛物线的顶点坐标为(﹣1,);(2)∵N是AM的中点,∴N点的坐标为(﹣,),∴BN==.20.解:(Ⅰ)由抛物线对称轴是直线x=1得到:﹣=1,得k=2.∴抛物线的解析式为y=x2﹣2x﹣3.解方程x2﹣2x﹣3=0得:x1=3,x2=﹣1.∴AB=4.当x=0时,y=3,∴C(0,﹣3).所以△ABC的面积S==6.(Ⅱ)y=x2﹣2x﹣3=(x﹣1)2﹣4,所以顶点P的坐标为P(1,﹣4).∴PC==.22.3【实际问题与二次函数】一.选择题1.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为()A.18元B.36元C.54元D.72元2.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a3.抛物线y=﹣(x+1)2+3有()A.最大值3B.最小值3C.最大值﹣3D.最小值﹣34.把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为()A.y=320(x﹣1)B.y=320(1﹣x)C.y=160(1﹣x2)D.y=160(1﹣x)25.二次函数y=x2﹣4x+7的最小值为()A.2B.﹣2C.3D.﹣36.关于二次函数y=(x﹣1)2+2,则下列说法正确的是()A.当x=1时,y有最大值为2B.当x=1时,y有最小值为2C.当x=﹣1时,y有最大值为2。
人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案
人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案一、单选题1.根据表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,可以判断方程20ax bx c ++=的一个解x 的范围是( )x0 0.5 1 1.5 2 2y ax bx c =++ -1-0.513.57A .00.5x <<B .0.51x <<C .1 1.5x <<D .1.52x <<2.如表是一组二次函数y =x 2﹣x ﹣3的自变量和函数值的关系,那么方程x 2﹣x ﹣3=0的一个近似根是( )x 1 2 3 4 y ﹣3﹣1 39 A .1.2B .2.3C .3.4D .4.53.下表给出了二次函数()20y ax bx c a =++≠中x ,y 的一些对应值,则可以估计一元二次方程()200ax bx c a ++=≠的一个近似解1x 的范围为( )x … 1.2 1.3 1.4 1.5 1.6 … y…1.16-0.71-0.24-0.250.76…A .11.2 1.3x <<B .11.3 1.4x <<C .11.4 1.5x <<D .11.5 1.6x <<4.已知二次函数()20y ax bx c a =++≠的图象如图所示,有下列4个结论:①0abc >;②24b ac >;③a (m 2−1)+b (m −1)<0(m ≠1);④关于x 的方程21ax bx c ++=有四个根,且这四个根的和为4,其中正确的结论有( )A .①②③B .②③④C .①④D .②③5.根据下列表格中二次函数y =ax 2+bx+c 的自变量x 与y 的对应值,判断关于x 的一元二次方程ax 2+bx+c=0的一个解的大致范围是( )x ﹣1 0 1 2 3 4 y﹣7﹣5﹣151323A .1<x <2B .﹣1<x <1C .﹣7<x <﹣1D .﹣1<x <56.已知二次函数224y x x =-+,下列关于其图象的结论中,错误..的是( ) A .开口向上B .关于直线1x =对称C .当1x >时,y 随x 的增大而增大D .与x 轴有交点7.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标(1,)n ,与y 轴的交点在0203(,),(,)之间(包含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m2(1)(1)0a m b m -+-≤总成立;④关于x 的方程214ax bx c a ++=-无实数根.其中结论正确的个数为( )A .1个B .2个C .3个D .4个8.将抛物线2(1)y x =+的图象位于直线9y =以上的部分向下翻折,得到如图图象,若直线y x m =+与此图象有四个交点,则m 的取值范围是( )A .574m << B .354m << C .495m << D .374m << 9.已知函数f (x )=x 2+2x ,g (x )=2x 2+6x +n 2+3,当x =1时,f (1)=12+2×1=3,g (1)=2+6+n 2+3=n 2+11.则以下结论正确的有( )①若函数g (x )的顶点在x 轴上,则6n = ②无论x 取何值,总有g (x )>f (x );③若﹣1≤x ≤1时,g (x )+f (x )的最小值为7,则n =±3; ④当n =1时,令()()2()g x h x f x =,则h (1)•h (2)…h (2023)=2024.A .1个B .2个C .3个D .4个10.已知,抛物线y =ax 2+2ax 在其对称轴的左侧y 随x 的增大而减小,关于x 的方程ax 2+2ax =m (m>0)的一个根为﹣4,而关于x 的方程ax 2+2ax =n (0<n <m )有两个整数根,则这两个根的积是( ) A .0B .﹣3C .﹣6D .﹣8二、填空题11.若抛物线2=2++y x mx n -与x 轴交于A ,B 两点,其顶点C 到x 轴距离是8,则线段AB 的长为 . 12.根据下列表格的对应值,判断20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的取值范围是x3.23 3.24 3.25 3.26 2ax bx c ++ 0.06-0.02-0.030.0913.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣4,8),B (2,2),则关于x 的方程ax 2﹣bx ﹣c =0的解为 .14.抛物线 2y ax bx c =++ (a ,b ,c 为常数, 0a > )经过两点 ()()2,0,4,0A B - ,下列四个结论:①20b a += ;②若点 ()()2020,,2021,m n - 在抛物线上,则 m n < ;③0y > 的解集为 2x <- 或 4x > ;④方程 ()21a x bx c x +++=- 的两根为 123,3x x =-= .其中正确的结论是 (填写序号).15.若抛物线25y x bx =+-的对称轴为直线2x =,则关于x 的方程25x bx +-213x =-的解为 .16.若一元二次方程()200ax bx c ac ++=≠有两个不相等实根,则下列结论:①240b ac ->;②方程20cx bx a ++=一定有两个不相等实根;③设2bm a=-,当0a >时,一定有22am bm ax bx +≤+;④s ,()t s t <是关于x 的方程()()10x p x q +--=的两根,且p q <,则q t s p >>>,一定成立的结论序号是 .17.抛物线2y ax bx c =++(a ,b ,c 为常数,0)c <经过(11),,(0)m ,和(0)n ,三点,且3n ≥. 下列四个结论:①0b <;②2414ac b a->;③当3n =时,若点(2)t ,在该抛物线上,则>1t ;④若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则10<3m ≤. 其中正确的是 (填序号即可).18.抛物线()20y ax bx c a =++≠的对称轴为1x =,经过点()3,n -,顶点为D ,下列四个结论:21a b +=①;240b ac ->②;③关于x 的一元二次方程2ax bx c n ++=的解是13x =-和25x =;④设抛物线交y 轴于点C ,不论a 为何值,直线CD 始终过定点()15,n -.其中一定正确的是 (填写序号).三、解答题19.已知抛物线的顶点坐标为()2,0,且经过点()1,3-.(1)求该抛物线的解析式;(2)若点(m,−27)在该抛物线上,求m 的值.20. 排球场的长度为18m ,球网在场地中央且高度为2.24.m 排球出手后的运动路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()²(0)y a x h k a =-+<.(1)某运动员第一次发球时,测得水平距离x 与竖直高度y 的几组数据如下:水平距离/x m 0 2 4 6 11 12 竖直高度/y m2.482.722.82.721.821.52①根据上述数据,求这些数据满足的函数关系()²(0)y a x h k a =-+<; ②判断该运动员第一次发球能否过网 ▲ (填“能”或“不能”).(2)该运动员第二次发球时,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()20.024 2.88y x =--+,请问该运动员此次发球是否出界,并说明理由.21.如图,抛物线()2y ax bx c a 0=++≠经过点()A 03,,()B 23,和()C 10-,,直线()y mx n m 0=+≠经过点B ,C ,部分图象如图所示,则:(1)该抛物线的对称轴为直线 ;(2)关于x 的一元二次方程2ax bx c 0++=的解为 ; (3)关于x 的一元二次方程2ax bx c mx n ++=+的解为 .22.已知抛物线y=ax 2+x+1(0a ≠)(1)若抛物线的图象与x 轴只有一个交点,求a 的值; (2)若抛物线的顶点始终在x 轴上方,求a 的取值范围.23.如图,二次函数y =2x +bx +c 的图象与x 轴只有一个公共点P ,与y 轴交于点Q ,过点Q 的直线y=2x +m 与x 轴交于点A ,与这个二次函数的图象交于另一点B ,若S △BPQ =3S △APQ ,求这个二次函数的解析式.24.二次函数解析式为223y ax x a =--.(1)判断该函数图象与x 轴交点的个数;(2)如图,在平面直角坐标系中,若二次函数图象顶点是A ,与x 轴交于B ,C 两点,与y 轴交于D ,点C 的坐标是()3,0,求直线CD 的解析式;(3)请你作一条平行于x 轴的直线交二次函数的图象于点M ,N ,与直线CD 于点R ,若点M ,N ,R 的横坐标分别为m ,n ,r ,且r m n <≤,求m n r ++的取值范围.25.抛物线L :212y x bx c =-+与直线L ':22y kx =+交于A 、B 两点,且()2,0A .(1)求k 和c 的值(用含b 的代数式表示c ); (2)当0b =时,抛物线L 与x 轴的另一个交点为C . ①求ABC 的面积;②当15x -≤≤时,则1y 的取值范围是_________.(3)抛物线L :212y x bx c =-+的顶点(),M b n ,求出n 与b 的函数关系式;当b 为何值时,点M 达到最高.(4)在抛物线L 和直线L '所围成的封闭图形的边界上把横、纵坐标都是整数的点称为“美点”,当20b =-时,直接写出“美点”的个数_________.参考答案1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】B 5.【答案】A 6.【答案】D 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】412.【答案】3.24 3.25x << 13.【答案】x 1=﹣4,x 2=2 14.【答案】①③ 15.【答案】1224x x ==, 16.【答案】①②③④ 17.【答案】②③④ 18.【答案】④③19.【答案】(1)y =−3(x −2)2(2)5m =或1-20.【答案】(1)解:①由表中数据可得顶点()42.8,设2(4) 2.8(0)y a x a =-+<把()02.48,代入得16 2.8 2.48a += 解得:0.02a =-∴所求函数关系为20.02(4) 2.8y x =--+;②能.(2)解:判断:没有出界.第二次发球:()20.024 2.88y x =--+ 令0y =,则()20.024 2.880x --+= ,解得18(x =-舍) 216x =21618x =<∴该运动员此次发球没有出界.21.【答案】(1)x 1=(2)1x 1=- 2x 3= (3)1x 2= 2x 1=-22.【答案】(1)解:由题意得方程ax 2+x+1=0有两等实数根.∴△=b 2-4ac =1-4a =0,∴a =14. ∴当a =14时函数图象与x 轴恰有一个交点; (2)解:由题意得4104a a-> 当a >0时,4a -1>0,解得a >14;当a <0时,4a -1<0,解得a <14.∴a <0.∴当a >14或a <0时,抛物线顶点始终在x 轴上方.23.【答案】y =x 2﹣4x+424.【答案】(1)函数图象与x 轴交点的个数是2(2)3y x =- (3)12m n r ≤++<25.【答案】(1)1k =- 44c b =-(2)10;1421y -≤≤ (3)244n b b =-+- 2b = (4)90。
九年级数学上册第二十二章一元二次方程同步练习新人教版.doc
第二十二章 一元二次方程一。
填空题1、关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。
2、若方程02=++q px x 的两个根是2-和3,则q p ,的值分别为 。
3、若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。
4、已知1322++x x 的值是10,则代数式1642++x x 的值是 。
5、对于方程23520x x -+=,a = ,b = ,c = , 24b ac -= 此方程的解的情况是 。
6、当t 时,关于x 的方程032=+-t x x 可用公式法求解。
7、设1x 、2x 是方程23520x x -+=的两个根,则1x +2x = ,12x x ⋅=8、已知关于x 的一元二次方程022=++m x x 有两个不相等的实数根,则m9、 当_________k 时,方程0)12(22=+-++k k x k x 有实数根;10、当_________m 时,方程032)1(2=+++-m mx x m 有两个实数根;二、选择题(1.下列方程中是一元二次方程的是( ).A.xy +2=1B. 09212=-+x x C. x 2=0 D.02=++c bx ax 2.配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 3.若1762+--x x x 的值等于零,则x 的值是( ) A 7或-1 B -7或1 C 7 D -14.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 25、若12+x 与12-x 互为倒数,则实数x 为( )(A )±21 (B )±1 (C )±22 (D )±2 6.若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )(A )1- (B )1 (C )21- (D )21 7、.关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的是( )(A )0,0==n m (B )0,0≠=n m (C )0,0=≠n m (D )0,0≠≠n m8.关于x 的一元二次方程02=+k x 有实数根,则( )(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤09、等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三角形的周长是( )A .8B .10C .8或10D . 不能确定10、.若关X 的一元二次方程036)1(2=++-x x k 有实数根,则实数k 的取值范围( )A.k ≤4,且k ≠1B.k <4, 且k ≠1C. .k <4D. k ≤411. 一元二次方程022=-+x ax 方程有两个相等实数根,则a -------------( ) A 81-< B 81-= C 81-> D 0≠ 12. 若方程0522=+-m x x 有两个相等实数根,则m = -------------------( )A 2-B 0C 2=D 81313、 方程07)1(82=----k x k x 的一个根为零,则=k -----------( )A 1-B 163 C4 D 714、关于x 的方程0132=-+x kx 有实数根,则K 的取值范围是( )A 、49-≤kB 、0k 49≠-≥且kC 、49k -≥D 、0k 49k ≠->且 三.解下列方程1. 选用合适的方法解下列方程(1))4(5)4(2+=+x x (2)x x 4)1(2=+(3)22)21()3(x x -=+ (4)31022=-x x(5)(y +3)(1-3y )=1+2y 2; (6)(x -7)(x +3)+(x -1)(x +5)=38;2、用配方法(1)3x 2+8 x -3=0 (2) (x +2) 2=8x四、解答题1、.(1)已知关于x 的方程2x 2-mx -m 2=0有一个根是1,求m 的值;(2)已知关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0,求另一个根和m 的值.2、已知:x 2+3x +1=0 求x +x 1的值;3.已知m 是一元二次方程x 2–2005x +1=0的解,求代数式22200520041m m m -++的值.4.已知x = –5是方程x 2+m x –10=0的一个根,求x =3时,x 2+mx –10的值.5.已知关于x 的方程2(2)210x m x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解6、已知关于x 的方程0)2(4122=+--m x m x ⑴若方程有两个相等的实数根,求m 的值,并求出此时方程的根;⑵是否存在正数m ,使方程的两个实数根的平方和等于224 ?若存在,求出满足条件的m 的值; 若不存在,请说明理由。
人教版九年级数学上册第二十二单元一元二次方程同步练习1带答案
人教版九年级数学上册第二十二单元《一元二次方程》同步练习1带答案◆随堂检测1、判定以下方程,是一元二次方程的有____________.(1)32250x x -+=; (2)21x =; (3)221352245x x x x --=-+; (4)22(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=.(提示:判定一个方程是不是一元二次方程,第一要对其整理成一样形式,然后依照概念判定.)二、以下方程中不含一次项的是( )A .x x 2532=-B .2916x x =C .0)7(=-x xD .0)5)(5(=-+x x3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.4、一、以下各数是方程21(2)23x +=解的是( ) A 、6 B 、2 C 、4 D 、0五、依照以下问题,列出关于x 的方程,并将其化成一元二次方程的一样形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x .(2)一个矩形的长比宽多2,面积是100,求矩形的长x .(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x . ◆典例分析已知关于x 的方程22(1)(1)0m x m x m --++=.(1)x 为何值时,此方程是一元一次方程?(2)x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。
分析:此题是含有字母系数的方程问题.依照一元一次方程和一元二次方程的概念,别离进行讨论求解. 解:(1)由题意得,21010m m ⎧-=⎨+≠⎩时,即1m =时,方程22(1)(1)0m x m x m --++=是一元一次方程210x -+=.(2)由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0m x m x m --++=21m -、一次项系数是(1)m -+、常数项是m . ◆课下作业●拓展提高一、以下方程必然是一元二次方程的是( )A 、22310x x +-= B 、25630x y --= C 、220ax x -+= D 、22(1)0a x bx c +++= 二、2121003m x x m -++=是关于x 的一元二次方程,那么x 的值应为( ) A 、m =2 B 、23m =C 、32m =D 、无法确信 3、依照以下表格对应值:判定关于x 的方程0,(0)ax bx c a ++=≠的一个解的范围是( )A 、x <B 、<x <C 、<x <D 、<x <4、假设一元二次方程20,(0)ax bx c a ++=≠有一个根为1,那么=++c b a _________;假设有一个根是-1,那么b 与a 、c 之间的关系为________;假设有一个根为0,那么c=_________.五、下面哪些数是方程220x x --=的根?-3、-2、-1、0、1、2、3、六、假设关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值是多少? ●体验中考一、(2020年,武汉)已知2x =是一元二次方程220x mx ++=的一个解,那么m 的值是( )A .-3B .3C .0D .0或3(点拨:此题考查一元二次方程的解的意义.)二、(2020年,日照)假设(0)n n ≠是关于x 的方程220x mx n ++=的根,那么m n +的值为( )A .1B .2C .-1D .-2(提示:此题有两个待定字母m 和n ,依照已知条件不能别离求出它们的值,故考虑运用整体思想,直接求出它们的和.)参考答案:◆随堂检测一、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在知足0a ≠的条件下才是一元二次方程.二、D 第一要对方程整理成一样形式,D 选项为2250x -=.应选D.3、3;-11;-7 利用去括号、移项、归并同类项等步骤,把一元二次方程化成一样形式231170x x --=,同时注意系数符号问题.4、B 将各数值别离代入方程,只有选项B 能使等式成立.应选B.五、解:(1)依题意得,2425x =,化为一元二次方程的一样形式得,24250x -=.(2)依题意得,(2)100x x -=,化为一元二次方程的一样形式得,221000x x --=.(3)依题意得,222(2)10x x +-=,化为一元二次方程的一样形式得,22480x x --=.◆课下作业●拓展提高一、D A 中最高次数是三不是二;B 中整理后是一次方程;C 中只有在知足0a ≠的条件下才是一元二次方程;D 选项二次项系数2(1)0a +≠恒成立.故依照概念判定D.二、C 由题意得,212m -=,解得32m =.应选D. 3、B 当<x <时,2ax bx c ++的值由负持续转变到正,说明在<x <范围内必然有一个x 的值,使20ax bx c ++=,即是方程20ax bx c ++=的一个解.应选B.4、0;b a c =+;0 将各根别离代入简即可.五、解:将3x =-代入方程,左式=2(3)(3)20----≠,即左式≠3x =-不是方程220x x --=的根.同理可得2,0,1,3x =-时,都不是方程220x x --=的根.当1,2x =-1,2x =-都是方程220x x --=的根. 六、解:由题意得,21010m m ⎧-=⎨-≠⎩时,即1m =-时,012)1(22=-++-m x x m 的常数项为0.●体验中考一、A 将2x =带入方程得4220m ++=,∴3m =-.应选A.二、D 将x n =带入方程得220n mn n ++=,∵0n ≠,∴20n m ++=,∴2m n +=-.应选D.。
2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)
2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y=﹣112x 2+23x+53.则他将铅球推出的距离是( )m . A .8B .9C .10D .112.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,…,为了投资少而获利大,每个每天应提高( ) A .4元或6元B .4元C .6元D .8元3.为了响应“足球进校园”的目标,兴义市某学校开展了多场足球比赛.在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式 ℎ=−5t 2+v 0t 表示,其中t(s)表示足球被踢出后经过的时间,v 0(m /s)是足球被踢出时的速度,如果要求足球的最大度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /sB .10m /sC .20m /sD .40m /s4.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月5.小杰把班级勤工俭学挣得的班费500元按一年期存入银行,已知年利率为x ,一年到期后银行将本金和利息自动按一年定期转存,设两年到期后,本利和为y 元,则y 与x 之间的函数关系式为( ) A .y=500(x+1)2B .y=x 2+500C .y=x 2+500xD .y=x 2+5x6.一个球从地面竖直向上弹起时的速度为8米/秒,经过t 秒时球的高度为h 米,h 和t 满足公式:表示球弹起时的速度,g 表示重力系数,取 g =10 米/秒2) ,则球不低于3米的持续时间是( ) A .0.4 秒B .0.6 秒C .0.8 秒D .1秒7.如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为 y =−125x 2 ,当水面宽度 AB 为20m 时,此时水面与桥拱顶的高度 DO 是( )A.2m B.4m C.10m D.16m8.如图,已知二次函数y=mx2-4mx+3m(m>0)的图像与x轴交于A,B两点,与y轴交于点C,连接AC、BC,若CA平分∠OCB,则m的值为()A.√3B.√2C.√22D.√33二、填空题9.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=−2x2+4x+1喷出水珠的最大高度是m .10.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=−140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)11.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为3m处达到最高,高度为5m,水柱落地处离池中心距离为9m,则水管的长度OA是m.三、解答题13.建立适当的坐标系,运用函数知识解决下面的问题:如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF为3米时,水面宽AB为6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2√6米,此时水位上升了多少米?14.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.15.某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:种 品价 目出厂价(元/吨) 成本价(元/吨)排污处理费甲种生活用纸48002200200(元/吨)每月还需支付设备管理、维护费20000元乙种生活用纸7000﹣10x1600400(元/吨) (1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y 1元和y 2元,分别求出y 1和y 2与x 的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?16.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a 为15米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S .(1)求S 与x 的函数关系式;(2)并求出当AB 的长为多少时,花圃的面积最大,最大值是多少?17.某水晶厂生产的水晶工艺品非常畅销,某网店专门销售这种工艺品.成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,当x=40时,y=300;当x=55时,y=150. (1)求y 与x 之间的函数关系式;(2)如果规定每天工艺品的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该工艺品销售单价的范围.18.如图,抛物线L :y=ax 2+bx+c 与x 轴交于A 、B (3,0)两点(A 在B 的左侧),与y 轴交于点C (0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.参考答案1.C2.C3.C4.D5.A6.A7.B8.D9.310.8√511.√512.15413.解:以点E为原点、EF所在直线为y轴,垂直EF的直线为x轴建立平面直角坐标系根据题意知E(0,0)、A(﹣3,﹣3)、B(3,﹣3)设y=kx2(k<0)将点(3,﹣3)代入,得:k=﹣13x2∴y=﹣13将x=√6代入,得:y=﹣2∴上升了1米.14.(1)解:设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82 答:每套课桌椅的成本为82元(2)解:60×(100﹣82)=1080(元)答:商店获得的利润为1080元15.解:(1)依题意得:y 1=(4800﹣2200﹣200)x ﹣20000=2400x ﹣20000 y 2=(7000﹣10x ﹣1600﹣400)x=﹣10x 2+5000x ;(2)设该月生产乙种生活用纸m 吨,则生产甲种生活用纸(300﹣m )吨,总利润为W 元 依题意得:W=2400(300﹣m )﹣20000﹣10m 2+5000m =720000﹣2400 m ﹣20000﹣10 m 2+5000m =﹣10 m 2+2600 m+700000 ∵W=﹣10(m ﹣130)2+869000. ∵﹣10<0∴当m=130时,W 最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元. 16.(1)解:∵围成中间隔有一道篱笆的长方形花圃 AB=EF=CD=x 米,BC=(24-3x )米 S=(24-3x )x =-3x 2+24x (平方米) ∵x > 0,且 15≥24-3x > 0 ∴3≤x <8S=-3x 2+24x ( 3≤x <8 )(2)解:S=(24-3x )x =-3x 2+24x =-3(x-4)2+48 ∵a=-3<0,二次函数图形开口向下,函数有最大值 当x=4时,S 最大=48平方米∴当AB 长为4m ,宽BC 为12m 时,有最大面积,最大面积为48平方米. 17.(1)解:设y 与x 之间的函数关系式: y =kx +b 由题意得: {40k +b =30055k +b =150 ,解得: {k =−10b =700∴y 与x 之间的函数关系式为: y =−10x +700 (2)解:设利润为 w 元由题意,得 −10x +700≥240 ,解得 x ≤46 则 w =(x −30)(−10x +700) =−10x 2+1000x −21000=−10(x −50)2+4000 ∵−10<0∴x <50 时, w 随 x 的增大而增大 ∴x =46 时答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元 (3)解: w −150=−10x 2+1000x −21000−150=3600 −10(x −50)2=−250 解得: x 1=55 结合二次函数图象可得:当 45≤x ≤55 时,捐款后每天剩余利润不低于3600元 18.(1)解:∵抛物线的对称轴x=1,B (3,0) ∴A (﹣1,0)∵抛物线y=ax 2+bx+c 过点C (0,3) ∴当x=0时,c=3.又∵抛物线y=ax 2+bx+c 过点A (﹣1,0),B (3,0) ∴{a −b +3=09a +3b +3=0 ∴{a =−1b =2∴抛物线的解析式为:y=﹣x 2+2x+3 (2)解:∵C (0,3),B (3,0) ∴直线BC 解析式为y=﹣x+3 ∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4 ∴顶点坐标为(1,4)∵对于直线BC :y=﹣x+1,当x=1时,y=2;将抛物线L 向下平移h 个单位长度 ∴当h=2时,抛物线顶点落在BC 上; 当h=4时,抛物线顶点落在OB 上∴将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界)则2≤h≤4(3)解:设P(m,﹣m2+2m+3),Q(﹣3,n)①当P点在x轴上方时,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N 点,如图所示:∵B(3,0)∵△PBQ是以点P为直角顶点的等腰直角三角形∴∠BPQ=90°,BP=PQ则∠PMQ=∠BNP=90°,∠MPQ=∠NBP在△PQM和△BPN中∴△PQM≌△BPN(AAS)∴PM=BN∵PM=BN=﹣m2+2m+3,根据B点坐标可得PN=3﹣m,且PM+PN=6∴﹣m2+2m+3+3﹣m=6解得:m=1或m=0∴P(1,4)或P(0,3).②当P点在x轴下方时,过P点作PM垂直于l于M点,过B点作BN垂直于MP的延长线于N点同理可得△PQM≌△BPN∴PM=BN∴PM=6﹣(3﹣m)=3+m,BN=m2﹣2m﹣3则3+m=m2﹣2m﹣3解得m= 3+√332或3−√332.∴P(3+√332,−√33−92)或(3−√332,√33−92).综上可得,符合条件的点P的坐标是(1,4),(0,3),(3+√332,−√33−92)和(3−√332,√33−92).。
九年级数学上册《第二十二章-二次函数与一元二次方程》同步练习题及答案(人教版)
九年级数学上册《第二十二章二次函数与一元二次方程》同步练习题及答案(人教版) 一、单选题1.根据抛物线y=x2+3x-1与x轴的交点的坐标,可以求出下列方程中哪个方程的近似解()A.x2+3x-1=0 B.x2+3x+1=0C.3x2+x-1=0 D.x2-3x+1=()2.已知m>0,关于x的一元二次方程(x+1)(x﹣2)﹣m=0的解为x1,x2(x1<x2),则下列结论正确的是()A.x1<﹣1<2<x2B.﹣1<x1<2<x2C.﹣1<x1<x2<2 D.x1<﹣1<x2<23.下列关于二次函数y=ax2−2xa+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧4.若二次函数y=ax2+1的图象经过点(−2,0),则关于x的方程a(x−2)2+1=0的实数根是()A.x1=−2,x2=6B.x1=2,x2=−6C.x1=0,x2=4D.x1=0,x2=−45.根据下表的对应值,试判断一元二次方程ax2+bx+c=0的一解的取值范围是()x 3.23 3.24 3.25 3.26ax2+bx+c-0.06 -0.02 0.03 0.07A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.266.已知抛物线y=ax2+bx+c经过点(−4,m),(−3,n)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且−4<x1<−3,x2>0则下列结论一定正确的是()>0A.m+n>0B.m−n<0C.m⋅n<0D.mn7.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(−2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=−2有两个不相等的实数根D.当x>0时,y随x的增大而减小8.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于点A,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0;②a+ 12b+14c=0;③ac+b+1=0;④2+c是关于x的一元二次方程ax2+bx+c=0的一个根.其中正确的有()A.1个B.2个C.3个D.4个二、填空题9.方程x2﹣4x+3a2﹣2=0在区间[﹣1,1]上有实根.则实数a的取值范围是.10.已知抛物线y=ax2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax2﹣2ax+c=0的根为.11.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx=m有实数根,则m的最小值为.12.如图所示,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(3,0),对称轴为直线x= 1 .则方程cx2+bx+a=0的两个根为.13.已知y=ax2+bx+c(a≠0),y与x的部分对此值如下表:x ……-2 -1 0 2 ……y ……-3 -4 -3 5 ……则一元二次方程ax2+bx+c+3=0的解为.三、解答题14.利用函数的图象,求方程x2=2x+3的解.15.一元二次方程x2+7x+9=1的根与二次函数y=x2+7x+9的图象有什么关系?试把方程的根在图象上表示出来.16.已知二次函数y1=mx2﹣nx﹣m+n(m>0).(Ⅰ)求证:该函数图象与x轴必有交点;(Ⅱ)若m﹣n=3(ⅰ)当﹣m≤x<1时,二次函数的最大值小于0,求m的取值范围;(ⅱ)点A(p,q)为函数y2=|mx2﹣nx﹣m+n|图象上的动点,当﹣4<p<﹣1时,点A在直线y=﹣x+4的上方,求m的取值范围.17.利用函数图象判断方程2x2﹣3x﹣4=0有没有解.若有解,求出它的近似解(精确到0.1).18.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y={ax2,0≤x≤30b(x−90)2+n,30≤x≤90,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?19.已知二次函数y=x2−2mx+m−1(m是常数).(1)求证:不论m为何值,该函数的图象与x轴有2个公共点;(2)如图,若该函数与x轴的一交点是原点,求另一交点A的坐标及顶点C的坐标;(3)在(2)的条件下,y轴上是否存在一点P,使得PA+PC最小?若存在,求出点P的坐标;若不存在,请说明理由.参考答案1.【答案】A2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】C7.【答案】D8.【答案】B9.【答案】﹣√153≤a≤√15310.【答案】x1=-1,x2=311.【答案】-312.【答案】x1=−1,x2=1313.【答案】x1=−214.【答案】解:抛物线y=x2﹣2x﹣3的图象如图所示:抛物线与x轴交点横坐标分别是﹣1、3.则方程x2=2x+3的根是x1=﹣1,x2=3.15.【答案】解:一元二次方程x2+7x+9=1的根是二次函数y=x2+7x+9图象中y=1时,所对应的x的值;当y=1时,x2+7x+9=1∴作出二次函数y=x2+7x+9的图象如图,由图中可以看出,当y=1时,x≈﹣5.6或﹣1.4∴一元二次方程x2+7x+9=1的根为x1≈﹣5.6,x2≈﹣1.4.16.【答案】(Ⅰ)证明:∵△=(﹣n)2﹣4m(﹣m+n)=(n﹣2m)2≥0,∴该函数图象与x轴必有交点;解:(Ⅱ)(ⅰ)∵m﹣n=3,∴n=m﹣3.∴y1=mx2−nx−m+n=mx2﹣(m﹣3)x﹣3.当y1=0时,mx2﹣(m﹣3)x﹣3=0,解得x1=1,x2=−3m.∴二次函数图象与x轴交点为(1,0)和(−3m ,0)∵当﹣m≤x<1时,二次函数的最大值小于0,∴−3m<−m<1.又∵m>0,∴0<m<√3;(ⅱ)∵y2=|mx2−nx−m+n|,m﹣n=3,∴当x<−3m或x>1时,y2=mx2﹣(m﹣3)x﹣3,当−3m≤x≤1时,y2=﹣mx2+(m﹣3)x+3.∵当﹣4<p<﹣1时,点A在直线y=﹣x+4上方,∴当−1<−3m,即m>3时,有m×(﹣1)2﹣(m﹣3)×(﹣1)﹣3≥﹣(﹣1)+4,解得m≥112.当−3m<−4,即m <34时,有﹣m×(﹣1)2+(m﹣3)×(﹣1)+3≥﹣(﹣1)+4 且﹣m×(﹣4)2+(m﹣3)×(﹣4)+3≥﹣(﹣4)+4,∴m≤720.又∵m>0,∴0<m≤720.综上,0<m≤720或m≥11217.【答案】解:根据函数y=2x2﹣3x﹣4列表如下:x …﹣1 0 1 2 3 …y … 1 ﹣4 ﹣5 ﹣2 5 …描点,连线,画出函数y=2x2﹣3x﹣4的图象,如答图所示故方程2x2﹣3x﹣4=0的解为x1≈﹣0.8,x2≈1.8.18.【答案】(1)解:由图象可知,300=a×302,解得a= 13,n=700,b×(30﹣90)2+700=300,解得b=﹣19∴y={13x2,0≤x≤30−19(x−90)2+700,30≤x≤90(2)解:由题意﹣19(x﹣90)2+700=684,解得x=78,∴684−6244=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟19.【答案】(1)证明:令y=0,即x2−2mx+m−1=0∴a=1,b=−2m∴Δ=b2−4ac=(−2m)2−4(m−1)∴Δ=4m2−4m+4=(2m−1)2+3>0∴不论m为何值,该函数的图象x轴有2个公共点;(2)解:已知函数y=x2−2mx+m−1过O(0,0)∴0=m−1解得:m=1∴y=x2−2x当y=0时解得: x 1=0 ∴A(2,0)由 y =x 2−2x 可得 y =(x −1)2−1 ∴C(1,−1) ; (3)存在.解:如图所示作 A(2,0) 关于 y 轴的对称点 A ′(−2,0) 设直线 A ′C : y =kx +b ,且 A ′(−2,0) ∴{0=−2k +b −1=k +b解得: {k =−13b =−23∴y =−13x −23 当 x =0 时 ∴P(0,−23) .。
一元二次方程测试题和答案
九年级数学第二十二章一元二次方程测试题〔人教版〕一、选择题 (每题3分,共30分):1.以下方程中不一定是一元二次方程的是( )A.(a-3〕x 2=8 (a ≠3) 2+bx+c=0 C.(x+3)(x-2)=x+5232057x +-= 2.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的选项是( )A. 23162x ⎛⎫-= ⎪⎝⎭;B.2312416x ⎛⎫-= ⎪⎝⎭;C. 231416x ⎛⎫-= ⎪⎝⎭; 3.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,那么a 值为〔 〕A 、1B 、1-C 、1或1-D 、124.三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 那么这个三角形的周长为( )A.11B.17C.17或19D.195.一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,那么这个直角三角形的斜边长是〔 〕AB 、3C 、6D 、96、〔x 2+y 2+1〕〔x 2+y 2+3〕=8,那么x 2+y 2的值为〔 〕.A .-5或1B .1C .5D .5或-12561x x x --+ 的值等于零的x 是( )A.6B.-1或62-4y-3=3y+4有实根,那么k 的取值范围是( ) A.k>-74≥-74 且k ≠≥-74 D.k>74 且k ≠022=+x x ,那么以下说中,正确的选项是〔 〕〔A 〕方程两根和是1 〔B 〕方程两根积是2〔C 〕方程两根和是1- 〔D 〕方程两根积比两根和大210.某超市一月份的营业额为200万元,第一季度的总营业额共1000万元, 如果平均每月增长率为x,那么由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2=1000二、填空题:(每题3分,共30分)11方程3(x-2)2=2x-4的解为________.12.如果2x 2+1与4x 2-2x-5互为相反数,那么x 的值为________.21x -2x -8=0,那么1x 的值是________2+bx+c=0(a ≠0)有一个根为-1,那么a 、b 、c 的关系是______.2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 那么a= ______, b=______.2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.x 2+mx+7=0的一个根,那么m=________,另一根为_______.α,β是方程x 2+2006x+1=0的两个根,那么〔1+2021α+α2〕〔1+2021β+β2〕的值为___________.x x 12,是方程x x 2210--=的两个根,那么1112x x +等于__________.x 的二次方程20x mx n ++=有两个相等实根,那么符合条件的一组,m n 的实数值可以是 m = __________.n = __________..三、用适当方法解方程:〔每题4分,共12分〕21.22(3)5x x -+=22.230x ++= 23.〔x+3〕2+3〔x+3〕-4=0.四、列方程解应用题:〔每题5分,共48分〕24.某电视机厂方案用两年的时间把某种型号的电视机的本钱降低36%, 假设每年下降的百分数一样,求这个百分数.围墙养鸡场18m 25.如下图,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,〔互相垂直〕,把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?26.如图、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙〔墙长18m 〕,另三边用木栏围成,木栏长35m 。
人教版九年级数学上册解一元二次方程 同步练习含答案【优选范本】
21.2专题训练 一元二次方程的解法及配方法的应用一、一元二次方程的解法1.用直接开平方法解方程:(1)(4x -1)2=225;解:x 1=4,x 2=-72(2)13(x -2)2=8; 解:x 1=2+26,x 2=2-2 6(3)9x 2-6x +1=9;解:x 1=43,x 2=-23(4)3(2x +1)2-2=0.解:x 1=-12+66,x 2=-12-662.用配方法解方程:(1)2t 2-3t =-1;解:t 1=12,t 2=1(2)2x 2+5x -1=0;解:x 1=-5+334,x 2=-5-334(3)(2x -1)(3x -1)=3-6x ;解:x 1=12,x 2=-23(4)(2x -1)2=x(3x +2)-7.解:x 1=4,x 2=23.用公式法解方程:(1)x 2=6x +1;解:x 1=3+10,x 2=3-10(2)0.2x 2-0.1=0.4x ;解:x 1=2+62,x 2=2-62(3)2x -2=2x 2.解:原方程无实数根4.用因式分解法解方程:(1)(x -1)2-2(x -1)=0;解:x 1=3,x 2=1(2)5x(x -3)=(x -3)(x +1);解:x 1=3,x 2=14(3)(x +2)2-10(x +2)+25=0.解:x 1=x 2=35.用适当的方法解方程:(1)2(x -3)2=x 2-9;解:x 1=3,x 2=9(2)(2x +1)(4x -2)=(2x -1)2+2;解:x 1=-1+62,x 2=-1-62(3)(x +1)(x -1)+2(x +3)=8.解:x 1=1,x 2=-3二、配方法的应用(一)最大(小)值6.利用配方法证明:无论x 取何实数值,代数式-x 2-x -1的值总是负数,并求出它的最大值.解:-x 2-x -1=-(x +12)2-34,∵-(x +12)2≤0,∴-(x +12)2-34<0,故结论成立.当x =-12时,-x 2-x -1有最大值-347.对关于x 的二次三项式x 2+4x +9进行配方得x 2+4x +9=(x +m)2+n.(1)求m ,n 的值;(2)求x 为何值时,x 2+4x +9有最小值,并求出最小值为多少?解:(1)∵x 2+4x +9=(x +m)2+n =x 2+2mx +m 2+n ,∴2m =4,m 2+n =9,∴m =2,n =5(2)∵m=2,n=5,∴x2+4x+9=(x+2)2+5,∴当x=-2时,有最小值是5(二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值.解:∵a2+b2+4a-2b+5=0,∴(a2+4a+4)+(b2-2b+1)=0,即(a+2)2+(b-1)2=0,∴a=-2,b=1.∴3a2+5b2-4=3×(-2)2+5×12-5=129.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b+c-5+25=0,请根据已知条件判断其形状.解:等式变形为a2-6a+9+b2-8b+16+c-5=0,即(a-3)2+(b-4)2+c-5=0,由非负性得(a-3)2=0,(b-4)2=0,c-5=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形。
人教版-数学-九年级上册--第二十二章 一元二次方程 单元测试 含答案
九年级(上)第二十二章水平测试 一、选择题(每小题2分,共20分) 1.下列方程中,是关于x 的一元二次方程的是( )A .2110x x -+= B .21x x -+= C .2(2)x x x x -=+D .210(0)ax x a +-=≠ 2.方程x (x +3)=x 的根是( )A .-2B .0C .无实根D .0或-2 3.用配方法解方程22103x x -+=,正确的解法是( ) A .21839x ⎛⎫-= ⎪⎝⎭,12233x =± B .21839x ⎛⎫-=- ⎪⎝⎭,无实根 C .22539x ⎛⎫-= ⎪⎝⎭,25x ±=D .22539x ⎛⎫-=- ⎪⎝⎭,无实根 4.若(2a -1)与(2a +1)互为倒数,则实数a 为( )A .±1B .±12C .±22D .±0或-25.解方程x 2-9x +18=0,比较简便的方法是( )A .直接开平方B .配方C .公式D .因式分解6.若一元二次方程ax 2+bx +c =0中满足a +b +c =0,那么方程必有一个根是( )A .0B .1C .-1D .±17.要使分式2544x x x -+-的值为0,x 应等于( ) A .1 B .4或1 C .4 D .-4或-18.关于x 的方程(a 2-a -2)x 2+ax +b =0是一元二次方程的条件是( )A .a ≠-2且a =1B .a ≠2C .a ≠2且a ≠-1D .a =-19.关于x 的一元二次方程x 2-ax -3a =0的一个根为6,另一根为( )A .2B .-2C .-6或2D .6或-210.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图1所示,如果要使整幅挂图的面积是5 400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .x 2+130x -1 400=0B .x 2+65x -350=0C .x 2-130x -1 400=0D .x 2-65x -350=0二、填空题(每小题2分,共20分)11.把方程(x +3)(x -2)=4化为一般形式为,其中二次项系数为 ,常数项是 .12.若关于x 的方程x 2-3x +m =0有一根为0,则m = .13.[]222(____)(____)3y y y -+=+. 14.若代数式x 2-7x +13的值为31,则x = .15x = .16.要使9a n 2-4n +6与3a n 是同类项,则n 的值是 .17.一元二次方程ax 2+bx +c =0(a ≠0)有实数根,若b =0,则两根x 1与x 2之间的关系是 .18.方程2320x x -+=,当x >0时,其解是 .19.若两个连续偶数的积是288,则这两个数的和等于 .20.餐桌桌面是长160cm ,宽为100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽,小刚设四周垂下的边宽为x cm ,则应列得的方程为 .三、解答题(本大题共60分)21.(每小题5分,共20分)用适当的方法解方程:(1)(5x +3)2-4=0;(2)2x 2-4x +1=0;(3)2x 2+4x -3=0;(4)2(3x -2)=(2-3x )(x +1);22.(本题12分)已知a ,b ,c 21(3)0b c +++=,求方程ax 2+bx +c =0的根.23.(本题14分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几年来通过拆旧房,植草、栽树,修建公园等措施,使城区绿地面积不断增加,如图2,(1)根据图中提供的信息,回答下列问题:2005年底的绿地面积为 公顷;比2004年底增加了 公顷;在2003年、2004年、2005年这三年中绿地面积增加最多的一年是 .(2)为了满足城市发展的需要,计划在2007年底使绿地面积达到72.6公顷,试求2006年、2007年两年绿地面积的年平均增长率.24.(本题14分)某商场第一年年初投入50万元进行商品经营,以后每年年终将当年获得的年利润与当年年初投入资金相加所得的总资金,作为下一年年初投入资金继续进行经营.(1)如果第一年的年获利率为p ,则第一年年终的总资金可用代数式表示为 万元(注:100=⨯年利润年获利率年初投入资金%);(2)如果第二年的年获利率比第一年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元.求第一年的年获利率.附加题(本题20分,不计入总分)25.如图3,用同样规格黑白两色的正方形瓷砖铺设矩形地面.请观察下列图形并解答有关问题:(1)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,若黑瓷砖每块4元,白瓷砖每块3元,问一共需花多少元钱购买瓷砖?(2)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算说明为什么?参考答案:一、1~5.DDBCD 6~10.BACBB二、11.2100x x +-=,1,10-12.0 13.19,13- 14.9或2- 15.5-或3 16.2或3 17.互为相反数18.12x =,21x = 19.34或34-20.(1602)(1002)1601002x x ++=⨯⨯三、21.(1)115x =-,21x =-;(2)112x =+,212x =-;(3)1x =,2x =; (4)123x =,23x =-. 22.当2a =,1b =-,3c =-时,方程的根为32,1-;当1a =,1b =-,3c =- 23.(1)60,4,2 004;(2)2006年,2007年两年绿地面积的年平均增长率为10%.24.(1)50(1)p +;(2)第一年的年获利率为10%.25.(1)1 604(元).(2)因为n 的值不为正整数,所以不存在黑、白瓷砖块数相等的情形.。
九年级数学上册《第二十二章 二次函数与一元二次方程》同步训练题及答案(人教版)
九年级数学上册《第二十二章二次函数与一元二次方程》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=−1,x2=2那么抛物线y=x2+bx+c的对称轴为直线()A.x=1B.x=12C.x=32D.x=−122.根据表格中代数式ax2+bx+c=0与x的对应值,判断方程ax2+bx+c=0(其中a,b,c是常数,且a ≠A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.203.若函数y=ax2+bx的图象如图所示,则关于x的一元二次方程ax2+bx+5=0的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.已知m>0,关于x的一元二次方程(x+1)(x−2)−m=0的解为x1,x2(x1<x2)则下列结论正确的是( )A.x1<−1<2<x2B.−1<x1<2<x2C.−1<x1<x2<2D.x1<−1<x2<25.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(−2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=−2有两个不相等的实数根D.当x>0时,y随x的增大而减小6.关于x的一元二次方程ax2+bx+12=0有一个根是﹣1,若二次函数y=ax2+bx+12的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.14<t<12B.−1<t≤14C.−12≤t<12D.−1<t<127.已知函数y=3−(x−m)(x−n),并且a,b是方程3−(x−m)(x−n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b 8.二次函数y=x2+bx的图象如图,对称轴为直线x=1 .若关于x的一元二次方程x2+bx−t=0(t为实数)在−2<x<3的范围内有解,则t的取值范围是()A.t≥−1B.−1≤t<3C.−1≤t<8D.3<t<8二、填空题:(本题共5小题,每小题3分,共15分.)9.已知二次函数y=x2+2x﹣7的一个函数值是8,那么对应的自变量x的值是.10.二次函数y=mx2+(m+2)x+ 14m+2的图象与x轴只有一个交点,那么m的值为.112则方程ax的解是.的解是.12.在平面直角坐标系中,抛物线y=x2+bx+5的对称轴为直线x=1.若关于x的一元二次方程x2+ bx+5−t=0(t为实数)在-1<x<4的范围内有实数根,则t的取值范围为.13.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0的两个实数根异号,则m的取值范围为.三、解答题:(本题共5题,共45分)14.利用图象法求一元二次方程x2﹣2x﹣2=0的近似根.(精确到0.1)15.若二次函数y=x2+bx−3的对称轴为直线x=1,求关于x的方程x2+bx−3=5的解.16.已知二次函数y=﹣x2+2x+m的部分图象如图所示,你能确定关于x的一元二次方程﹣x2+2x+m=0的解?17.已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).(1)求证无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.18.如图,已知关于x的二次函数y=x2+mx的图象经过原点O,并且与x轴交于点A,对称轴为直线x=1.(1)常数m= ,点A的坐标为;(2)若关于x的一元二次方程x2+mx=n(n为常数)有两个不相等的实数根,求n的取值范围;(3)若关于x的一元二次方程x2+mx﹣k=0(k为常数)在﹣2<x<3的范围内有解,求k的取值范围.参考答案:1.B 2.C 3.A 4.A 5.D 6.D 7.D 8.C9.﹣5或310.111.x1=−6x2=2x1=−712.4≤t<1313.m<014.解:方程x2﹣2x﹣2=0根是函数y=x2﹣2x﹣2与x轴交点的横坐标.作出二次函数y=x2﹣2x﹣2的图象,如图所示由图象可知方程有两个根,一个在﹣1和0之间,另一个在2和3之间.先求﹣1和0之间的根当x=﹣0.7时,y=﹣0.11;当x=﹣0.8时,y=0,24;因此,x=﹣0.7是方程的一个近似根同理,x=2.7是方程的另一个近似根.故一元二次方程x2﹣2x﹣2=0的近似根为x=﹣0.7或2.7.15.解:∵二次函数y=x2+bx−3的对称轴为直线x=1∴x=−b2a =−b2×1=1解得b=−2.将b=−2代入x2+bx−3=5中,得:x2−2x−3=5解得x1=−2x2=4.16.解:根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(3,0),所以该点适合方程y=﹣x2+2x+m,代入,得﹣32+2×3+m=0解得,m=3 ①把①代入一元二次方程﹣x2+2x+m=0,得﹣x2+2x+3=0,②解②,得x1=3,x2=﹣117.(1)证明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴无论k为何值,方程总有两个不相等实数根(2)解:∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,∵△=(k﹣3)2+12>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=5﹣k>0,x1x2=1﹣k≥0,解得k≤1,即k的取值范围是k≤1 (3)解:设方程的两个根分别是x1,x2,根据题意,得(x1﹣3)(x2﹣3)<0,即x1x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<5.则k的最大整数2值为2.18.(1)-2;(2,0)(2)解:∵一元二次方程x2﹣2x=n有两个不相等的实数根∴△=4+4n>0n>﹣1(3)解:一元二次方程x2﹣2x﹣k=0有解则△=4+4k≥0k≥﹣1方程的解为:x=1±√1+k∵方程在﹣2<x<3的范围内有解1﹣√1+k>﹣2,k<81+ √1+k<3,k<3∴﹣1≤k<8。
九年级数学上册 第22章《一元二次方程》同步练习(二) 人教新课标版
九年级数学上册 第22章《一元二次方程》同步练习(二)人教新课标版一、填空题1.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.2.当x = 时,分式2233x x x ---的值为零;当x=______时,代数式3x 2-6x 的值等于12.3.方程(3)(1)3x x x -+=-的解是 .方程0)3(2)3(2=-+-x x x 的解是 . 4.已知m 是方程x 2-x -2=0的一个根,则代数式m 2-m 的值是________.5.已知关于x 的一元二次方程02=--m x x 有两个不相等的实数根,则实数m 的取值范 围是 ;关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根,则实数k 的取值范围是 ;已知一元二次方程4x 2+mx+9=0有两个相等的实数根, 则m= ,此时相等的两个实数根为6.等腰三角形的底和腰是方程2680x x -+=的两根,则这个三角形的周长为 。
7.要用一条长为24cm 的铁丝围成一个斜边长是10cm 的直角三角形,则两条直角边的长 分别为 。
8.在一次同学聚会时,大家一见面就相互握手。
有人统计了一下,大家一共握了45次手, 参加这次聚会的同学共有 人。
9.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 10.某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2 万元,则平均每年的增长率是__________.11.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由 原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分 率为x ,则根据题意可列方程为 .12.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.若某小组共有x 个队,共赛了90场,则列出正确的方程是 。
数学:人教版九年级上 第22章 一元二次方程(同步练习).pdf
是一元二次方程
ax2
+ bx
+
c
=
0
的两根,那么有
x1
+
x2
=
−
b a
,
x1 x2
=
c a
.
这是一元 二 次 方 程 根 与 系 数 的 关 系 , 我 们 利 用 它 可 以 用 来 解 题 :
设 x1 , x2 是 方 程 x2 + 6x − 3 = 0 的 两 根 , 求 x12 + x22 的 值 .
所以 a=b.即 a=b=c,△ABC 为等边三角形.
点拨:先根据题意,列出关于 x,x 的二元一次方程组,可以求出方程的两个根 0 和-1.进
而把这两个根代入原方程,判断 a、b、c 的关系,确定三角形的形状.
20.解:设该产品的成本价平均每月 应降低 x. 625(1-20%)(1+6%)-500(1-x)2=62 5-500 整理,得 500(1-x)2=405,(1-x)2=0.81.
点拨:先解这两个方程,求出方程的根,再用两边的和与第三边相比较等来判断.
19.解:(1)设方程的两根为 x1,x2(x1>x2),则 x1+x1=-1,x1-x2=1,解得 x1=0,x2=-1. (2)当 x=0 时,(a+c)×02+2b×0-(c-a)=0. 所以 c=a.当 x=-1 时,(a+c)×(-1)2+2b×(-1)-(c-a)=0.a+c-2b-c+a=0,
x1 x2 答案: 一、 1.B 点拨:方程①与 a 的取值有关;方程②经过整理后,二次项系数为 2,•是一元二次
学无 止 境
方 程;方程③是分式方程;方程④的二次项系数经过配方后可化为(a+ 1 )2+ 3 .不论 a 24
第22章《一元二次方程》全章同步练习(人教新课标初三上)doc初中数学
第22章《一元二次方程》全章同步练习(人教新课标初三上)doc初中数学一元二次方程 (2)第1课时一元二次方程 (2)答案 (3)第2课时一元二次方程 (5)答案 (6)第3课时花边有多宽 (7)答案 (9)同步练习一元二次方程第1课时一元二次方程1、一元二次方程(1-3x)(x+3)=2x2+1的一样形式是它的二次项系数是;一次项系数是;常数项是。
2、方程2(m+1)x2+4mx+3m-2=0是关于x的一元二次方程,那么m的取值范畴是。
3、关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,那么m= 。
4、关于x的一元二次方程(k-1)x2+2x-k2-2k+3=0的一个根为零,那么k= 。
5、关于x的方程(m+3)x2-mx+1=0,当m 时,原方程为一元二次方程,假设原方程是一元一次方程,那么m的取值范畴是。
6、关于x的方程(m2-1)x2+(m+1)x+m-2=0是一元二次方程,那么m的取值范畴是;当m= 时,方程是一元二次方程。
7、把方程a(x2+x)+b(x2-x)=1-c写成关于x的一元二次方程的一样形式,再写出它的二次项系数、一次项系数和常数项,并求出是一元二次方程的条件。
8、关于x的方程(m+3)x2-mx+1=0是几元几次方程?9、210.01 4y=10、53x0.22=-11、(x+3)(x-3)=912、(3x+1)2-2=013、(x+2)2=(1+2)214、0.04x2+0.4x+1=015、(2x-2)2=616、(x-5)(x+3)+(x-2)(x+4)=4917、一元二次方程(1-3x)(x+3)=2x2+1的一样形式是它的二次项系数是;一次项系数是;常数项是。
18、方程:①2x 2-3=0;②1112=-x;③131212=+-yy;④ay2+2y+c=0;⑤(x+1)(x-3)=x2+5;⑥x-x2=0 。
其中,是整式方程的有,是一元二次方程的有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若{ EMBED Equation.3 |x xm -m +-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3) (4) A .1个 B .2个 C .3个 D .4个 8.在方程:3x 2-5x =0,7x 2-6xy +y 2=0,=0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0. 13. 14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______.17.若方程2kx2+x-k=0有一个根是-1,则k的值为______.二、选择题18.下列方程:(x+1)(x-2)=3,x2+y+4=0,(x-1)2-x(x+1)=x,其中是一元二次方程的有( ).A.2个B.3个C.4个D.5个19.形如ax2+bx+c=0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A.a是任意实数B.与b,c的值有关C.与a的值有关D.与a的符号有关20.如果是关于x的方程2x2+3ax-2a=0的根,那么关于y的方程y2-3=a的解是( ).A.B.±1 C.±2 D.21.关于x的一元二次方程(x-k)2+k=0,当k>0时的解为( ).A.B.C.D.无实数解三、解答题(用直接开平方法解下列方程)22.(3x-2)(3x+2)=8.23.(5-2x)2=9(x+3)2.24.25.(x-m)2=n.(n为正数)拓广、探究、思考26.若关于x的方程(k+1)x2-(k-2)x-5+k=0只有唯一的一个解,则k=______,此方程的解为______.27.如果(m-2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( ).A.2或-2 B.2 C.-2 D.以上都不正确28.已知关于x的一元二次方程(m-1)x2+2x+m2-1=0有一个根是0,求m的值.29.三角形的三边长分别是整数值2cm,5cm,k cm,且k满足一元二次方程2k2-9k-5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1._________=(x-__________)2.2.+_________=(x-_________)2.3._________=(x-_________)2.4.+_________=(x-_________)2.5.关于x的一元二次方程ax2+bx+c=0(a≠0)的根是______.6.一元二次方程(2x+1)2-(x-4)(2x-1)=3x中的二次项系数是______,一次项系数是______,常数项是______.二、选择题7.用配方法解方程应该先变形为( ).A.B.C.D.8.用配方法解方程x2+2x=8的解为( ).A.x1=4,x2=-2 B.x1=-10,x2=8C.x1=10,x2=-8 D.x1=-4,x2=29.用公式法解一元二次方程,正确的应是( ).A.B.C.D.10.方程mx2-4x+1=0(m<0)的根是( ).A.B.C.D.三、解答题(用配方法解一元二次方程)11.x2-2x-1=0.12.y2-6y+6=0.四、解答题(用公式法解一元二次方程)13.x2+4x-3=0.14.五、解方程(自选方法解一元二次方程)15.x2+4x=-3.16.5x2+4x=1.综合、运用、诊断一、填空题17.将方程化为标准形式是______________________,其中a=______,b=______,c=______.18.关于x的方程x2+mx-8=0的一个根是2,则m=______,另一根是______.二、选择题19.若关于x的二次三项式x2-ax+2a-3是一个完全平方式,则a的值为( ).A.-2 B.-4 C.-6 D.2或620.4x2+49y2配成完全平方式应加上( ).A.14xy B.-14xyC.±28xy D.021.关于x的一元二次方程的两根应为( ).A.B.,C.D.三、解答题(用配方法解一元二次方程)22.3x2-4x=2.23.x2+2mx=n.(n+m2≥0).四、解答题(用公式法解一元二次方程)24.2x-1=-2x2.25.26.2(x-1)2-(x+1)(1-x)=(x+2)2.拓广、探究、思考27.解关于x的方程:x2+mx+2=mx2+3x.(其中m≠1)28.用配方法说明:无论x取何值,代数式x2-4x+5的值总大于0,再求出当x取何值时,代数式x2-4x+5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax2+bx+c=0(a≠0)根的判别式为 =b2-4ac,(1)当b2-4ac______0时,方程有两个不相等的实数根;(2)当b2-4ac______0时,方程有两个相等的实数根;(3)当b2-4ac______0时,方程没有实数根.2.若关于x的方程x2-2x-m=0有两个相等的实数根,则m=______.3.若关于x的方程x2-2x-k+1=0有两个实数根,则k______.4.若方程(x-m)2=m+m2的根的判别式的值为0,则m=______.二、选择题5.方程x2-3x=4根的判别式的值是( ).A.-7 B.25 C.±5 D.56.一元二次方程ax2+bx+c=0有两个实数根,则根的判别式的值应是( ).A.正数B.负数C.非负数D.零7.下列方程中有两个相等实数根的是( ).A.7x2-x-1=0 B.9x2=4(3x-1)C.x2+7x+15=0 D.8.方程有( ).A.有两个不等实根B.有两个相等的有理根C.无实根D.有两个相等的无理根三、解答题9.k为何值时,方程kx2-6x+9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a-1)x2+2(a+1)x+a+5=0有两个实根,求正整数a的值.11.求证:不论m取任何实数,方程都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax2+bx+c=0(a≠0)根的判别式是( ).A.B.C.b2-4ac D.abc13.若关于x的方程(x+1)2=1-k没有实根,则k的取值范围是( ).A.k<1 B.k<-1 C.k≥1 D.k>114.若关于x的方程3kx2+12x+k+1=0有两个相等的实根,则k的值为( ).A.-4 B.3 C.-4或3 D.或15.若关于x的一元二次方程(m-1)x2+2mx+m+3=0有两个不等的实根,则m的取值范围是( ).A.B.且m≠1C.且m≠1 D.16.如果关于x的二次方程a(1+x2)+2bx=c(1-x2)有两个相等的实根,那么以正数a,b,c 为边长的三角形是( ).A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形二、解答题17.已知方程mx2+mx+5=m有相等的两实根,求方程的解.18.求证:不论k取任何值,方程(k2+1)x2-2kx+(k2+4)=0都没有实根.19.如果关于x的一元二次方程2x(ax-4)-x2+6=0没有实数根,求a的最小整数值.20.已知方程x2+2x-m+1=0没有实根,求证:方程x2+mx=1-2m一定有两个不相等的实根.拓广、探究、思考21.若a,b,c,d都是实数,且ab=2(c+d),求证:关于x的方程x2+ax+c=0,x2+bx+d=0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根)1.x(x-3)=0.______ 2.(2x-7)(x+2)=0.______3.3x2=2x.______ 4.x2+6x+9=0.______5.______ 6.______7.(x-1)2-2(x-1)=0.______.8.(x-1)2-2(x-1)=-1.______二、选择题9.方程(x-a)(x+b)=0的两根是( ).A.x1=a,x2=b B.x1=a,x2=-bC.x1=-a,x2=b D.x1=-a,x2=-b10.下列解方程的过程,正确的是( ).A.x2=x.两边同除以x,得x=1.B.x2+4=0.直接开平方法,可得x=±2.C.(x-2)(x+1)=3×2.∵x-2=3,x+1=2,∴x1=5,x2=1.D.(2-3x)+(3x-2)2=0.整理得3(3x-2)(x-1)=0,三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程)11.3x(x-2)=2(x-2).12.*13.x2-3x-28=0.14.x2-bx-2b2=0.*15.(2x-1)2-2(2x-1)=3.*16.2x2-x-15=0.四、解答题17.x取什么值时,代数式x2+8x-12的值等于2x2+x的值.综合、运用、诊断一、写出下列一元二次方程的根18..______________________.19.(x-2)2=(2x+5)2.______________________.二、选择题20.方程x(x-2)=2(2-x)的根为( ).A.-2 B.2 C.±2 D.2,2 21.方程(x-1)2=1-x的根为( ).A.0 B.-1和0 C.1 D.1和0 22.方程的较小的根为( ).A.B.C.D.三、用因式分解法解下列关于x的方程23.24.4(x+3)2-(x-2)2=0.25.26.abx2-(a2+b2)x+ab=0.(ab≠0)四、解答题27.已知关于x的一元二次方程mx2-(m2+2)x+2m=0.(1)求证:当m取非零实数时,此方程有两个实数根;(2)若此方程有两个整数根,求m的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根)1.3(x-1)2-1=0.__________________2.(2x+1)2-2(2x+1)=3.__________________3.3x2-5x+2=0.__________________4.x2-4x-6=0.__________________二、选择题5.方程x2-4x+4=0的根是( ).A.x=2 B.x1=x2=2 C.x=4 D.x1=x2=46.的根是( ).A.x=3 B.x=±3 C.x=±9 D.7.的根是( ).A.B.C.x1=0,D.8.(x-1)2=x-1的根是( ).A.x=2 B.x=0或x=1C.x=1 D.x=1或x=2三、用适当方法解下列方程9.6x2-x-2=0.10.(x+3)(x-3)=3.11.x2-2mx+m2-n2=0.12.2a2x2-5ax+2=0.(a≠0)四、解下列方程(先将你选择的最佳解法写在括号中)13.5x2=x.(最佳方法:______)14.x2-2x=224.(最佳方法:______)15.6x2-2x-3=0.(最佳方法:______)16.6-2x2=0.(最佳方法:______)17.x2-15x-16=0.(最佳方法:______)18.4x2+1=4x.(最佳方法:______)19.(x-1)(x+1)-5x+2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式的值是0,则x=______.21.关于x的方程x2+2ax+a2-b2=0的根是____________.二、选择题22.方程3x2=0和方程5x2=6x的根( ).A.都是x=0 B.有一个相同,x=0C.都不相同D.以上都不正确23.关于x的方程abx2-(a2+b2)x+ab=0(ab≠0)的根是( ).A.B.C.D.以上都不正确三、解下列方程24.(x+1)2+(x+2)2=(x+3)2.25.(y-5)(y+3)+(y-2)(y+4)=26.26.27.kx2-(k+1)x+1=0.四、解答题28.已知:x2+3xy-4y2=0(y≠0),求的值.29.已知:关于x的方程2x2+2(a-c)x+(a-b)2+(b-c)2=0有两相等实数根.求证:a+c=2b.(a,b,c是实数)拓广、探究、思考30.若方程3x2+bx+c=0的解为x1=1,x2=-3,则整式3x2+bx+c可分解因式为__________ ____________.31.在实数范围内把x2-2x-1分解因式为____________________.32.已知一元二次方程ax2+bx+c=0(a≠0)中的两根为请你计算x1+x2=____________,x1·x2=____________.并由此结论解决下面的问题:(1)方程2x2+3x-5=0的两根之和为______,两根之积为______.(2)方程2x2+mx+n=0的两根之和为4,两根之积为-3,则m=______,n=______.(3)若方程x2-4x+3k=0的一个根为2,则另一根为______,k为______.(4)已知x1,x2是方程3x2-2x-2=0的两根,不解方程,用根与系数的关系求下列各式的值:①②③|x1-x2|;④⑤(x1-2)(x2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。