等差数列的性质ppt.ppt

合集下载

4.2.1 等差数列的性质 课件PPT

4.2.1  等差数列的性质  课件PPT
3.等差中项
如果a,A,b成等差数列.那么A叫做a与b的等
差中项.即 A a b
2
例题分析
例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价 值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设 备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请 确定d的范围.
4.2.1等差数列的性质
知识梳理
1.等差数列概念 an an1 d n 2
2.等差数列通项公式及其变体
通项公式: an a1 n 1d
变体: (1)an=dn+(a1-d)(n∈N*),
(2)an=am+(n-m)d(m,n∈N*),
(3)d=ann--mam(m,n∈N*,且 m≠n).
知识梳理
归纳总结
等差数列的性质1:
等差数列每相邻两项之间插入 kk N* 合适的
数,还可以是等差数列
等差数列中每隔 kk N* 项抽取出来的项,按
照原顺序排列,构成的仍是等差数列
分析:(1){an}是一个确定的数列,只要把a1 ,a2表示为{bn}中的项, 就可以利用等差数列的定义得出的通项公式;(2)设{an}中的第n项是 {bn}中的第cn项,根据条件可以求出n与cn的关系式,由此即可判断b29 是否为{an}的项.
特别的, 若s t 2 p s,t, p N* ,则as at 2ap
(3)应用等差数列解决生活中实际问题
谢谢
小结:
(1)等差数列的性质1:
等差数列每相邻两项之间插入 kk N*个合适的数,还可以
是等差数列
等差数列中每隔 kk N * 项抽取出来的项,按照原顺序排列,
构成的仍是等差数列

等差数列的概念(第二课时)等差数列的性质 课件 高二上学期数学人教A版(2019)选择性必修第二册

等差数列的概念(第二课时)等差数列的性质 课件 高二上学期数学人教A版(2019)选择性必修第二册
(2)由等差数列的性质,得 ,所以 ,解得 ,故 .(3)令 ,因为 , 都是等差数列,所以 也是等差数列.设数列 的公差为 ,由已知得 ,由 ,得 ,解得 ,故 .
思考:若数列 是等差数列,首项为 ,公差为 ,在 中每相邻两项之间都插入4个数,若要使之构成一个新的等差数列,你能求出它的公差吗?
解:
解1:
解2:
探究2 等差数列的综合问题
问题1:对于三个数成等差数列,某班同学给出了以下三种设法:
(1)设这三个数分别为 , , .
(2)设该数列的首项为 ,公差为 ,则这三个数分别为 , , .
(3)设该数列的中间项为 ,公差为 ,则这三个数分别为 , , .那么,哪种方法在计算中可能更便捷一些?
若下标成等差数列,则对应的项成等差数列.
新知运用
例1 (1)已知等差数列 , , ,求 的值;
(2)已知等差数列 , ,求 的值;
(3)已知数列 , 都是等差数列,且 , , ,求 的值.
[解析] (1)(法一)设 的公差为 ,则 解得 故 . (法二)因为 ,所以在等差数列 中有 ,从而 . (法三)因为5, , 成等差数列,所以 , , 也成等差数列,因此 ,即 ,解得 .
2A=a+b
第四章 数列
4.2 等差数列
课时2 等差数列的性质及其应用
学习目标
1.能用等差数列的定义推导等差数列的性质.2.能用等差数列的性质解决一些相关问题.3.能用等差数列的知识解决一些简单的应用问题.
探究:观察等差数列: 2, 4, 6, 8, 10, 12, 14, 16,……说出8是哪两项的等差中项?并找到它们满足的规律?
方法总结 等差数列项的常见设法:(1)通项法.(2)对称项设法.对称项设法的优点是:若有 个数构成等差数列,利用对称项设法设出这个数列,则其各项和为 .

等差数列课件ppt课件

等差数列课件ppt课件
等差数列课件 ppt
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?

《等差数列的性质》课件

《等差数列的性质》课件

等差数列的性质
公差定义
等差数列中,相邻两项之间的差值称为公差。
性质2:中间项等于前后两项之和的一 半
等差数列的中间项等于前ห้องสมุดไป่ตู้两项之和的一半。
性质1:差是固定值
任意两项的差是一个固定值。
性质3:前n项和公式
等差数列前n项和的公式是Sn = (n/2)(2a1 + (n 1)d)。
等差数列的应用
等差中数的求解
通过等差数列的中项公式,可以求解等差数列中任 意位置的值。
等差数列和的应用
等差数列的求和公式可以在金融领域中使用,计算 利息和投资回报等。
总结
1 等差数列是什么?
等差数列指的是每个相邻项之间的差值是恒定的数列。
2 等差数列有哪些性质?
等差数列具有固定公差、任意两项的差为固定值,中间项等于前后两项之和的一半等性 质。
3 等差数列有什么应用?
等差数列的应用包括求解等差中数和计算等差数列的前n项和,还可在金融领域中进行利 息和投资回报的计算。
《等差数列的性质》PPT 课件
欢迎来到《等差数列的性质》PPT课件!本课程将带您深入了解等差数列的基 本概念和重要性质,以及其在数学和实际生活中的应用。
什么是等差数列
等差数列是一种数学序列,其中每个相邻的项之间的差值是恒定的。 等差数列的通项公式是:an = a1 + (n - 1)d,其中a1为首项,d为公差。

4.2.1等差数列(第二课时)等差数列的证明与性质PPT课件(人教版)

4.2.1等差数列(第二课时)等差数列的证明与性质PPT课件(人教版)

1
2
1
2
=


2( −2)
= ,为常数( ∈ ∗ ).
1

2
1
2
( > 1, ∈
∗ ),记
∴数列{ }是首项为 ,公差为 的等差数列.
=
1
.求证:数
−2
新知探究
证明:(法二:等差中项法)∵ =
∴+2 =
+1
2(+1 −2)
4
=
4−
4

2(4− −2)
(m,n,p,q∈N*)
特别地,设{an}为等差数列,若m+n=2p,则有am+an=2ap. (m,n,p∈N*)
注意:必须是两项相加等于两项相加,否则不一定成立.
例如,15 ≠ 7 + 8 , 但6 + 9 = 7 + 8 ;1 + 21 ≠ 22 ,但1 + 21 = 211 .
[方法二]由等差数列的性质知30 = 37 ,则7 = 10.
故3 − 25 = 3 − (3 + 7 ) = −7 = −10.
新知探究
例3.(1)数列{an}为等差数列,已知a2+a5+a8=9,a3a5a7=-21,求数列{an}的通项公式;
(2)在等差数列{an}中,a15=8,a60=20,求a75的值.
∴ = 1 + ( − 1) × (−20) = 220 − 20.
故从第12年起,该公司经销此产品将亏损.
04
课堂小结
课堂小结
推广:an=am+(n-m)d (n,m∈N*)
首末项两项之间的关系
任意两项之间的关系
an -a1

4.2.1等差数列的概念PPT课件(人教版)

4.2.1等差数列的概念PPT课件(人教版)

an a1 (n 1)d
结论:等差数列的通项公式的一般情势:an=am+(n-m)d
练习
求下列等差数列的通项公式
(1)9,18,27,36,45,54,63,72...
(1)an=9+(n-1)×9=9n
(2)38,40,42,44,46,48...
(2)an=38+(n-1)×2=2n+36
ab
叫做a与b的等差中项。即 A
2
这个式子叫做这个数列的递推公式.
引入
请看下面几个问题中的数列.
1.北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,
环绕天心石的是9圈扇环形的石板,从内到外各圈的石板数依
次为
9,18,27,36,45,54,63,72,81.①
2.S,M,L,XL,XXL,L型号的女装上衣对应的尺码分别是
38,40,42,44,46,48.②
求an 的公差和首项;(2)求等差数列 8,5, 2, 的第20项.
解: (1)当n 2时,由an 5 2n, 得
an1 5 2(n 1) 7 2n.
于是, d an an1 (5 2n) (7 2n) 2.
当n 1时, a1 5 2 3.
练习
判断下列数列是否为等差数列,若是,求出首项和公差
(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10
×
(2) 3,3,3,3,3,3
a1=3,公差 d=0 常数列
(3) 3x,6x,9x,12x,15x
a1=3x 公差 d= 3x
(4)95,82,69,56,43,30
a1=95 公差 d=-3

等差数列ppt课件

等差数列ppt课件

等差数列的表示方法
通项公式
an = a1 + (n-1)d,其中an是第n项 ,a1是首项,d是公差。
前n项和公式
Sn = n/2 * (2a1 + (n-1)d),其中Sn 是前n项和,a1是首项,d是公差。
等差数列的性质
01
02
03
公差性质
公差d是任意两个相邻项 的差,即an - a(n-1) = d 。
04
等差数列的应用
在数学中的应用
基础概念理解
等差数列是数学中的基础 概念,对于理解数列、函 数等其他数学概念有着重 要作用。
数学运算
等差数列的特性使其在数 学运算中有着广泛的应用 ,例如求和、求差等。
解决数学问题
等差数列可以用来解决一 些复杂的数学问题,例如 求解方程、不等式等。
在物理中的应用
综合练习题
题目:已知一个等差数列的前4项 和为40,前8项和为64,求这个 等差数列的前12项和。
答案:88
解析:根据等差数列的求和公式 ,得到前4项和$S_4 = frac{4}{2} times (2a_1 + (4-1)d) = 40$, 前8项和$S_8 = frac{8}{2} times (2a_1 + (8-1)d) = 64$。解这个 方程组得到首项$a_1=13$,公差 $d=-2$。然后根据等差数列的求 和公式,得到前12项和$S_{12} = frac{12}{2} times (2 times 13 + (12-1) times (-2)) = 88$。
等差数列在日常生活和科学研究中有着广泛的应用,如计算 存款利息、解决几何问题等。
公式中的参数意义
01
02

等差数列的性质公开课PPT课件

等差数列的性质公开课PPT课件

};
(2
){an
2
};
(3
1 ){
an
};
(4){an
an1};
(5){a2k1}
第15页/共26页
第16页/共26页
【变式与拓展1】
1.已知等差数列{an}的前 3 项依次为 a-1,a+1, 2a+3, 则此数列的通项 an 为( B )
A.2n-5
B.2n-3
C.2n-1
D.2n+1
2.数列{an}为等差数列,a2 与 a6 的等差中项为 5,a3 与 a7 的等差中项为 7,则数列的通项 an 为___2_n_-__3_.
第17页/共26页
题型2 等差数列性质及应用 例2:在等差数列{an}中, (1)已知 a2+a3+a23+a24=48,求a13; (2)已知 a2+a3+a4+a5=34,a2·a5=52,求公差d.
自主解答:(1)根据已知条件 a2+a3+a23+a24=48, 得 4a13=48,∴a13=12. (2)由 a2+a3+a4+a5=34, 得 2(a2+a5)=34,即 a2+a5=17. 解aa22·+a5a=5=521,7, 得aa25= =41, 3 或aa52= =41.3, ∴d=a55- -2a2=13- 3 4=3 或 d=a55- -2a2=4-313=-3.
第25页/共26页
感谢您的观看!
第26页/共26页
C.2
D.1或2
解析:由于2b=a+c,则4b2-4ac=(a+ c)2-4ac=(a-c)2≥0,故选D.
答案:D
第23页/共26页
【例 3】
等差数列an的首项为
1,且an
从第
9
项开始各项均大于 25,求公差 d 的取值范围. 错解:设an的公差为 d,第 n 项为 an,则 a9

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件

实例
总结词
等差数列的实例包括正整数序列、负数序列、斐波那契数列等。
详细描述
正整数序列1, 2, 3, ...是一个等差数列,其中首项a=1,公差d=1;负数序列-1, 2, -3, ...也是一个等差数列,其中首项a=-1,公差d=-1;斐波那契数列0, 1, 1, 2, 3, 5, ...也是一个等差数列,其中首项a=0,公差d=1。
01
求等差数列3, 6, 9, ..., 3n的前n项和。
进阶习题2
02
求等差数列-2, -4, -6, ..., -2n的前n项和。
进阶习题3
03
求等差数列5, 10, 15, ..., 5n的前n项和。
高阶习题
1 2
Байду номын сангаас
高阶习题1
求等差数列-3, -6, -9, ..., -3n的前n项和。
高阶习题2
总结词
等差数列是一种特殊的数列,其 中任意两个相邻项的差是一个常 数。
详细描述
等差数列通常表示为“an”,其 中a是首项,n是项数,d是公差 (任意两个相邻项的差)。
性质
总结词
等差数列的性质包括对称性、递增性、递减性等。
详细描述
等差数列的对称性是指任意一项与它的对称项相等,即a_n=a_(n+2m),其中 m是整数;递增性是指如果公差d>0,则数列是递增的;递减性是指如果公差 d<0,则数列是递减的。
PART 04
等差数列前n项和的变式 与拓展
REPORTING
变式公式
01
02
03
04
公式1
$S_n = frac{n}{2} (2a_1 + (n-1)d)$

《等差数列》课件(公开课)

《等差数列》课件(公开课)

等差数列的性质
前n项和
等差数列的前n项和可以通过求 和公式来计算。
通项公式
等差数列的通项公式可以帮助 我们快速计算任意项的值。
逆向思维
通过逆向思维,我们可以利用 等差数列的性质解决一些复杂 的问题。
等差数列的应用
1
数学中的应用
等差数列可以用于数学模型和方程的推导和解决。
2
物理中的应用
在物理学中,等差数列可以用于描述物体在等时间间隔内的运动。
同余数列
1 定义
同余数列是指等差数列的 项数与公差均为整数倍的 数列。
2 性质
同余数列具有一些特殊的 性质,在数论和密码学领 域有广泛的应用。
3 应用
同余数列的应用范围广泛, 涵盖了数据加密、随机数 生成等方面。
总结
等差数列的重要性
等差数列在数学和实际生活中起 着重要的作用,帮助我们解决问 题和规划未来。
《等差数列》PPT课件(公 开课)
欢迎来到《等差数列》的公开课!今天我们将深入探讨等差数列的定义、性 质、应用以及解题技巧,让我们一起开启这个数学世界的探索之旅吧!
什么是等差数列
定义
等差数列是指每一项与其前 一项之间的差都是相等的数 列。
表示方式
等差数列可以通过首项和公 差项称为项 数,公差表示相邻两项之间 的差。
3
生活中的应用
等差数列可以帮助我们规划时间、财务预算,甚至管理团队。
如何求解等差数列
求和公式的推导
我们将讲解等差数列求和公式 的推导过程,帮助你理解其原 理。
求出第n项
通过已知的首项和公差计算任 意项的值,我们将演示具体的 计算方法。
求出一般项
通过已知的首项和公差计算通 项公式,帮助你快速计算数列 的任意项。

等差数列ppt课件

等差数列ppt课件

(4)通项公式可变形为an=dn+(a1-d),当d≠0时可把an 看作自变量为n的一次函数.
2.等差数列的通项公式常用的推导方法: (1)方法一(叠加法):因为{an}是等差数列, 所以an-an-1=d,an-1-an-2=d, an-2-an-3=d,…, a3-a2=d,a2-a1=d. 将以上各式相加得:an-a1=(n-1)d, 所以an=a1+(n-1)d.
2.2 等差数列 第1课时 等差数列
【知识提炼】
1.等差数列的定义 (1)从第_2_项起
条件 (2)每一项与它的_前__一__项__的差等于_同__一__个__常__数__ 结论 这个数列就叫做等差数列 有关 这个常数叫做等差数列的_公__差__,通常用字母_d_ 概念 表示
2.等差中项
(1)条件:三个数a,A,b成等差数列.
2.已知实数m是1和5的等差中项,则m等于( )
A. 5
B.± 5
C.3
D.±3
【解析】选C.由题意得2m=1+5,解得m=3.
3.等差数列{an}中,a2=-4,d=3,则a1为( )
A.-9
B.-8
C.-7
D.-4
【解析】选C.由题意得,a2=a1+d, 所以a1=a2-d=-4-3=-7.
(2)结论:A叫做a,b的等差中项. (3)关系:_A___a_2_b_.
3.等差数列的通项公式
(1)条件:等差数列{an}的首项为a1,公差为d. (2)通项公式:an=_a_1+_(_n_-_1_)_d_.
【即时小测】 1.判断 (1)常数列是等差数列.( ) (2)若一个数列从第2项起每一项与前一项的差都是常 数,则这个数列是等差数列.( )

等差数列的前n项和公式的性质ppt课件

等差数列的前n项和公式的性质ppt课件

可编辑课件
22
『变式探究』
1.数列{an}中,a1=8,a4=2,且满足 an+2-2an+1+an=0,n∈N*. (1)求数列{an}的通项; (2)设Sn=|a1|+|a2|+…+|an|,求Sn.
解析:(1)由an+2-2an+1+an=0得,2an+1=an+an+2,
所以数列{an}是等差数列,d= a 4 a 1 = -2,
Sna 1a 2a 5(a 6a 7a n) (a 1a 2a 3a n)2 (a 1a 2a 5)
n 9n40 Sn=2-25+9·5+n-52+2 2n-10=n2-9n+40.
由①,②可得
Sn=-n2-n2+9n+9n,40,
1≤n≤5 n≥6
可编辑课件
,n∈N*.
24
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
可编辑课件
25
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!

Sn Tn
7n 2 n3
,则
a5 b5
65 12
.
可编辑课件
13
『变式探究』
1.已知两个等差数列{an}和{bn}的前n项和分别为An和
Bn,且
An Bn
7n 45,则使得 n3
a b
n n
为整数的正整数n的
个数是( D )
A.2
B.3
C.4
D.5
可编辑课件
14
【题型分类 深度剖析】
题型1:等差数列前n项和性质的简单应用
一般地若数列abn那么数列a为等差数列那么是什么数列为等差数列即等差数列a项的平均值组成的数列仍然是等差数列且公差是数列aa0b2011201120112009200720092007知识探究二等差数列前n项和的性质思考1

4.2.1等差数列的概念(1)PPT课件(人教版)

4.2.1等差数列的概念(1)PPT课件(人教版)
当d=-2时,这三个数分别为6,4,2.
解惑提高
几个数成等差数列的设项方法与技能
(1)当已知条件中出现与首项、公差有关的内容时,可直接设首项为a1,
公差为d,利用已知条件建立方程求出a1和d,即可确定数列.
(2)当已知数列有3项时,可设为a-d,a,a+d,此时公差为d.
(3)当已知数列有4项时,可设为a-3d,a-d,a+d,a+3d,此时公
是等差数列.
应用举例
例4 三数成等差数列,它们的和为12,首尾二数的积也为12,求此三数.
解:设这三个数分别为a-d,a,a+d, 则
(a-d)+a+(a+d)=12,即3a=12
∴a=4
又∵ (a-d)(a+d)=12,即(4-d)(4+d)=12
解得 d=±2
∴当d=2时,这三个数分别为2,4,6;
化,其价值会逐年减少.经验表明,每经过一年其价值就会减少d(d为正常数)
万元.已知这台设备的使用年限为10年,超过10年,它的价值将低于购进价
值的5%,设备将报废.请确定d的取值范围.
解:设使用n年后,这台设备的价值为an万元,则可得数列{an} 是一个公差
为-d的等差数列.
因为购进设备的价值为220万元,所以a1 =220-d,
设备将报废.请确定d的取值范围.
分析:这台设备使用n年后的价值构成一个数列
{an}.由题意可知,10年之内(含10年),这台设备的
价值应不小于(220×5%=)11万元;而10年后,这台
设备的价值应小于11万元.可以利用{an}的通项公
式列不等式求解.
应用举例
例6 某公司购置了一台价值为220万元的设备,随着设备在使用过程中老
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即 m+n=p+q am an ap aq (m、 n、p、 q ∈Z﹢)
证明:am an a1 (m 1)d a1 (n 1)d 2a1 (n m)d 2d, ap aq a1 ( p 1)d a1 (q 1)d 2a1 ( p q)d 2d, am an ap aq.
变式训练2
已知等差数列 { an }中,a2 a6 a10 1, 求a3 a9
的 值。
性质3
对于等差数列an=a1+(n-1)d (1)当d>0时,{an}为 递增数列 ; (2)当d<0时,{an}为 递减数列 (3)当d=0时,{an}为 常数列.
; 且an=a1
例 3、数列an 的通项公式为an =-3n+5,这个数列有什么特点?
观察在数列 an =2n+1 中, a1 =3, a2 =5, a3 =7、 a4 =9、 a5 =11,a6 =13
a1 a6 16
a2 a5 16
a3 a4 16
a2 a4 14
a1 a5 14Leabharlann 猜想脚标与两项数列之和的关系
猜想:在等差数列an中,若 m+n=p+q,则am an ap aq
例 1、等差数列an中,公差 d=3,a11 =29,求数列的通项公式an 。
解:由题可知,数列an为等差数列,则有
an a11 (n 11)d
即 an 29 (n 11) 3
=3n-4 ( n∈Z﹢)
变式训练1
在等差数列an 中,已知a5 10 ,a12 31 求它的通项公式.
性质 2、在等差数列 an中,若 m+n=p+q,则 am an ap aq
课堂小结
1.等差数列推广公式的应用 an am (n m)d 2.在等差数列中, m+n=p+q am an a p aq (m, n, p, q ∈N )
特别地,若 m+n=2p,则 am an 2ap 3.若公差 d 0 ,则为递增等差数列
若公差 d 0 ,则为递减等差数列 若公差 d 0 ,则为常数列, an = a1
授课人:吴美晨
复习回顾
1.等差数列的定义
一般地,如果一个数列从第二项起,每一项与它前一项的
差等于同一个常数,那么这个数列就叫做等差数列,这个常数
就叫做等差数列的公差(常用字母“d”表示).
2.等差数列的通项公式为
an=a1+(n-1)d,推广:an=am+(n-m)d(m,n∈N+). 计算公差d
特别地,若 m+n=2p,则 am an 2ap
例 2、在等差数列{ an }中,若 a1 + a6 =9, a4 =7, 求a3 及通项公式 an .
解:∵ {an }是等差数列 ∴ a1 + a6 = a4 + a3 =9 a3 =9- a4 =9-7=2 ∴ d= a4 - a3 =7-2=5 ∴ an = a3 +(n-3)d=2+(n-3)·5 =5n-13 ∴ a3 =2, an =5n-13
① d= an - an1
② d= an a1 n 1
③ d= an am nm
复习回顾
3.等差中项 如果在a与b中间插入一个数A,使 a,A,b成等差数列 ,
那么A叫作a与b的等差中项,且A=
或 2A a b
a+b 2.
性质一、等差数列通项公式的推广 an=am+(n-m)d(m,n∈N+).
相关文档
最新文档