等差数列的性质课件(公开课)
合集下载
等差数列的性质(52张PPT)课件
第二章 2.2 第2课时
系列丛书
[点评] 本题考查等差数列的两个基本性质.解题时应 注意题中所给各项的关系,注意第(2)题应有两组结果.
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
变式训练 1 (1)设{an}为等差数列,若 a3+a4+a5+a6 +a7=450,求 a2+a8;
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
课堂 互 动 探 究
例 练 结 合 ········································· 素 能 提 升
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
典例导悟
类型一 等差数列的性质及应用 [例 1] 已知等差数列{an}, (1)若 a2+a3+a25+a26=48,求 a14; (2)若 a2+a3+a4+a5=34,a2a5=52,求公差 d.
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
联立解得 a2=4,a5=13,或 a2=13,a5=4. 当 a2=4,a5=13 时,d=a55--a22=3; 当 a2=13,a5=4 时,d=a55--a22=-3. ∴公差 d 为 3 或-3.
人教A版·数学·必修5
进入导航
(2)在等差数列{an}中,a3+a5+a7+a9+a11=100,求 3a9 -a13 的值.
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
解:(1)a3+a7=a4+a6=2a5=a2+a8, ∴a3+a4+a5+a6+a7=5a5=450. ∴a5=90,∴a2+a8=2a5=180. (2)由a3+a5+a7+a9+a11=5a7=100得a7=20. ∴3a9-a13=3(a7+2d)-(a7+6d)=2a7=40.
等差数列课件ppt课件
等差数列课件 ppt
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?
等差数列的性质 课件
类型 1 利用等差数列的通项公式或性质解题 [典例 1] 在等差数列{an}中: (1)若 a2+a4+a6+a8+a10=80,求 a7-12a8; (2)已知 a1+2a8+a15=96,求 2a9-a10. 解:(1)a2+a4+a6+a8+a10=5a6=80, 所以 a6=16, 所以 a7-12a8=12(2a7-a8)=12(a6+a8-a8)=12a6=8. (2)因为 a1+2a8+a15=4a8=96, 所以 a8=24.所以 2a9-a10=a10+a8-a10=a8=24.
数列 {c+an} {can} {an+an+k}
{pan+qbn}
结论
公差为d的等差数列(c为常数)
公差为cd的等差数列(c为常数)
公差为2d的等差数列(k为常数, k∈N*)
公差为pd+qd′的等差数列(p,q为 常数)
(3){an}的公差为 d,则 d>0⇔{an}为递增数列;d<0 ⇔{an}为递减数列;d=0⇔{an}为常数列.
等差数列的性质
1.等差数列的图象 等差数列的通项公式 an=a1+(n-1)d,当 d=0 时, an 是关于 n 的常数函数;当 d≠0 时,an 是关于 n 的一次 函数;点(n,an)分布在以 d 为斜率的直线上,是这条直 线上的一系列孤立的点. 2.等差数列的项与序号的关系 (1)等差数列通项公式的推广:在等差数列{an}中,已 知 a1,d,am,an(m≠n),则 d=ann--a11=ann--mam,从而有 an=am+(n-m)d.
又因为是递增数列,所以 d>0,
所以解得 a=±72,d=32, 所以此等差数列为-1,2,5,8 或-8,-5,-2,1.
[迁移探究] 若将典例 2 改为:已知三个数成等差数 列并且数列是递增的,它们的和为 18,平方和为 116,求 这三个数.
《等差数列》PPT课件(公开课)
不是
公差d是每一项(第2项起)与它的前一项的 差,防止把被减数与减数弄颠倒,而且公差可以 是正数,负数,也可以为0
H
7
通项公式的推导一 :
an-an-1=d
已知等差数列{an}的首项是a1,公差是d
a2-a1=d
a2=a1+d
a3-a2=d
a3=a2+d =(a1+d)+d =a1+2d
a4-a3=d a5呢? a9呢?
a1=11 d=-1
所以:a12=a1+11d=11+11×(-1)=0
H
14
例题讲解
例3 已知数列的通项公式为an=6n-1,问这个数列 是等差数列吗?若是等差数列,其首项与公差分 别是多少?
H
15
课堂小结
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想
即等差数列的首项为-2,公差为3
点评:利用通项公式转化成首项和公差
联立方程求解
H
12
题后点评
求通项公式的关键步骤:
求基本量a1和d :根据已知条件列方程,由 此解出a1和d ,再代入通项公式。
像这样根据已知量和未知量之间的关系,列出 方程求解的思想方法,称方程思想。
这是数学中的常用思想方法之一。
H
等差数列(第一课时) 等差数列的概念及其简单表示
H
1
引入
请同学们仔细观察一下,看看以下 数列有什么共同特征?
H
2
引例一
1.一个剧场设置了20排座位,这个剧场从第1 排起各排的座位数组成数列:
38,40,42,44,46,…
公差d是每一项(第2项起)与它的前一项的 差,防止把被减数与减数弄颠倒,而且公差可以 是正数,负数,也可以为0
H
7
通项公式的推导一 :
an-an-1=d
已知等差数列{an}的首项是a1,公差是d
a2-a1=d
a2=a1+d
a3-a2=d
a3=a2+d =(a1+d)+d =a1+2d
a4-a3=d a5呢? a9呢?
a1=11 d=-1
所以:a12=a1+11d=11+11×(-1)=0
H
14
例题讲解
例3 已知数列的通项公式为an=6n-1,问这个数列 是等差数列吗?若是等差数列,其首项与公差分 别是多少?
H
15
课堂小结
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想
即等差数列的首项为-2,公差为3
点评:利用通项公式转化成首项和公差
联立方程求解
H
12
题后点评
求通项公式的关键步骤:
求基本量a1和d :根据已知条件列方程,由 此解出a1和d ,再代入通项公式。
像这样根据已知量和未知量之间的关系,列出 方程求解的思想方法,称方程思想。
这是数学中的常用思想方法之一。
H
等差数列(第一课时) 等差数列的概念及其简单表示
H
1
引入
请同学们仔细观察一下,看看以下 数列有什么共同特征?
H
2
引例一
1.一个剧场设置了20排座位,这个剧场从第1 排起各排的座位数组成数列:
38,40,42,44,46,…
等差数列的性质课件
(2)根据已知条件 a2+a3+a23+a24=48,得 4a13=48, ∴a13=12. (3)由 a2+a3+a4+a5=34,得 2(a2+a5)=34,即 a2+a5 =17. 解aa22·+a5a=5=521,7, 得aa25==41,3, 或aa25==143. , ∴d=a55--2a2=13- 3 4=3 或 d=a55- -a22=4-313=-3.
依题意,2a=2,且(a-3d)(a+3d)=-8, 即a=1,a2-9d2=-8, ∴d2=1,∴d=1或d=-1.10分 又四个数成递增等差数列, 所以d>0, ∴d=1,故所求的四个数为-2,0,2,4.12分
方法二:若设这四个数为 a,a+d,a+2d,a+3d(公差 为 d),8 分
依题意,2a+3d=2,且 a(a+3d)=-8, 把 a=1-32d 代入 a(a+3d)=-8, 得1-32d1+32d=-8, 即 1-94d2=-8, 化简得 d2=4,所以 d=2 或-2.10 分
[题后感悟] 本例中由于公差小于零,所以该数列是一个递 减数列.想一想,如果规定当该产品的利润降到50万元以下时就 放弃经销此产品,那么该公司应从第几年起放弃经销此产品?
(1)在实际问题中,若涉及到一组与顺序有关的数的问题, 可考虑利用数列方法解决,若这组数依次成直线上升或下降,则 可考虑利用等差数列方法解决.
等差数列的常用性质
性质1 性质2 性质3 性质4 性质5
通项公式的推广:an=am+ (n-m)d (n,m∈N*) 若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*), 则ak+al=am+an 若{an}是等差数列,则2an=an-1+an+1 a1+an=a2+ an-1=a3+an-2=… 若{an},{bn}分别是以d1,d2为公差的等差数列,则 {pan+qbn}是以pd1+qd2为公差的等差数列 若{an}是等差数列,则ak,ak+m,ak+2m,…(k, m∈N*)组成公差为 md 的等差数列
等差数列前n项和(公开课)PPT课件
所以这个等差数列共有(a+d)×(n-2)/2 +10 =25。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
等差数列的性质公开课PPT课件
};
(2
){an
2
};
(3
1 ){
an
};
(4){an
an1};
(5){a2k1}
第15页/共26页
第16页/共26页
【变式与拓展1】
1.已知等差数列{an}的前 3 项依次为 a-1,a+1, 2a+3, 则此数列的通项 an 为( B )
A.2n-5
B.2n-3
C.2n-1
D.2n+1
2.数列{an}为等差数列,a2 与 a6 的等差中项为 5,a3 与 a7 的等差中项为 7,则数列的通项 an 为___2_n_-__3_.
第17页/共26页
题型2 等差数列性质及应用 例2:在等差数列{an}中, (1)已知 a2+a3+a23+a24=48,求a13; (2)已知 a2+a3+a4+a5=34,a2·a5=52,求公差d.
自主解答:(1)根据已知条件 a2+a3+a23+a24=48, 得 4a13=48,∴a13=12. (2)由 a2+a3+a4+a5=34, 得 2(a2+a5)=34,即 a2+a5=17. 解aa22·+a5a=5=521,7, 得aa25= =41, 3 或aa52= =41.3, ∴d=a55- -2a2=13- 3 4=3 或 d=a55- -2a2=4-313=-3.
第25页/共26页
感谢您的观看!
第26页/共26页
C.2
D.1或2
解析:由于2b=a+c,则4b2-4ac=(a+ c)2-4ac=(a-c)2≥0,故选D.
答案:D
第23页/共26页
【例 3】
等差数列an的首项为
1,且an
从第
9
项开始各项均大于 25,求公差 d 的取值范围. 错解:设an的公差为 d,第 n 项为 an,则 a9
《等差数列课》课件
等差为负数的等差数列
当公差d<0时,数列为递减数列,通项公式为 $a_n = a_1 + (n1)d$。
特殊情况
当 $a_1 = 0$ 时,无论公差d取何值,数列均为非负数列。
03
等差数列的求和公式
等差数列求和公式的推导
公式推导
通过等差数列的性质,将等差数列的项进行分组求和,再利用等差 数列的性质简化求和过程,推导出等差数列的求和公式。
实例演示
以数列 3, 7, 11, 15, ... 为例,第 一项 $a_1 = 3$,公差 $d = 4$ ,代入公式得到通项 $a_n = 3 + (n-1) times 4 = 4n - 1$。
等差数列通项公式的应用
求任意项的值
根据通项公式,我们可以求出任意一 项的值,例如第10项 $a_{10} = a_1 + 9d$。
等差数列与函数
等差数列可以看作一种特殊的函数,其图像为直线。理解等差数 列与函数的关系有助于加深对两者概念的理解。
等差数列与几何
在几何学中,等差数列的概念可以应用于图形构造,如等分线段、 等分面积等。
等差数列与三角函数
等差数列的项可以表示为三角函数的值,这为解决一些数学问题提 供了新的思路。
等差数列在实际生活中的应用
等差为0的等差数列
01
对于公差为0的等差数列,其求和公式为Sn = n * a1。
等差为常数的等差数列
02
对于公差为常数的等差数列,可以利用等差数列求和公式进行
求解。
等差数列的变种
03
对于一些特殊的等差数列,如等比数列、等积数列等,需要采
用其他方法进行求解。
04
等差数列的综合应用
当公差d<0时,数列为递减数列,通项公式为 $a_n = a_1 + (n1)d$。
特殊情况
当 $a_1 = 0$ 时,无论公差d取何值,数列均为非负数列。
03
等差数列的求和公式
等差数列求和公式的推导
公式推导
通过等差数列的性质,将等差数列的项进行分组求和,再利用等差 数列的性质简化求和过程,推导出等差数列的求和公式。
实例演示
以数列 3, 7, 11, 15, ... 为例,第 一项 $a_1 = 3$,公差 $d = 4$ ,代入公式得到通项 $a_n = 3 + (n-1) times 4 = 4n - 1$。
等差数列通项公式的应用
求任意项的值
根据通项公式,我们可以求出任意一 项的值,例如第10项 $a_{10} = a_1 + 9d$。
等差数列与函数
等差数列可以看作一种特殊的函数,其图像为直线。理解等差数 列与函数的关系有助于加深对两者概念的理解。
等差数列与几何
在几何学中,等差数列的概念可以应用于图形构造,如等分线段、 等分面积等。
等差数列与三角函数
等差数列的项可以表示为三角函数的值,这为解决一些数学问题提 供了新的思路。
等差数列在实际生活中的应用
等差为0的等差数列
01
对于公差为0的等差数列,其求和公式为Sn = n * a1。
等差为常数的等差数列
02
对于公差为常数的等差数列,可以利用等差数列求和公式进行
求解。
等差数列的变种
03
对于一些特殊的等差数列,如等比数列、等积数列等,需要采
用其他方法进行求解。
04
等差数列的综合应用
等差数列前n项和(公开课)PPT课件
实例
总结词
等差数列的实例包括正整数序列、负数序列、斐波那契数列等。
详细描述
正整数序列1, 2, 3, ...是一个等差数列,其中首项a=1,公差d=1;负数序列-1, 2, -3, ...也是一个等差数列,其中首项a=-1,公差d=-1;斐波那契数列0, 1, 1, 2, 3, 5, ...也是一个等差数列,其中首项a=0,公差d=1。
01
求等差数列3, 6, 9, ..., 3n的前n项和。
进阶习题2
02
求等差数列-2, -4, -6, ..., -2n的前n项和。
进阶习题3
03
求等差数列5, 10, 15, ..., 5n的前n项和。
高阶习题
1 2
Байду номын сангаас
高阶习题1
求等差数列-3, -6, -9, ..., -3n的前n项和。
高阶习题2
总结词
等差数列是一种特殊的数列,其 中任意两个相邻项的差是一个常 数。
详细描述
等差数列通常表示为“an”,其 中a是首项,n是项数,d是公差 (任意两个相邻项的差)。
性质
总结词
等差数列的性质包括对称性、递增性、递减性等。
详细描述
等差数列的对称性是指任意一项与它的对称项相等,即a_n=a_(n+2m),其中 m是整数;递增性是指如果公差d>0,则数列是递增的;递减性是指如果公差 d<0,则数列是递减的。
PART 04
等差数列前n项和的变式 与拓展
REPORTING
变式公式
01
02
03
04
公式1
$S_n = frac{n}{2} (2a_1 + (n-1)d)$
《等差数列》课件(公开课)
等差数列的性质
前n项和
等差数列的前n项和可以通过求 和公式来计算。
通项公式
等差数列的通项公式可以帮助 我们快速计算任意项的值。
逆向思维
通过逆向思维,我们可以利用 等差数列的性质解决一些复杂 的问题。
等差数列的应用
1
数学中的应用
等差数列可以用于数学模型和方程的推导和解决。
2
物理中的应用
在物理学中,等差数列可以用于描述物体在等时间间隔内的运动。
同余数列
1 定义
同余数列是指等差数列的 项数与公差均为整数倍的 数列。
2 性质
同余数列具有一些特殊的 性质,在数论和密码学领 域有广泛的应用。
3 应用
同余数列的应用范围广泛, 涵盖了数据加密、随机数 生成等方面。
总结
等差数列的重要性
等差数列在数学和实际生活中起 着重要的作用,帮助我们解决问 题和规划未来。
《等差数列》PPT课件(公 开课)
欢迎来到《等差数列》的公开课!今天我们将深入探讨等差数列的定义、性 质、应用以及解题技巧,让我们一起开启这个数学世界的探索之旅吧!
什么是等差数列
定义
等差数列是指每一项与其前 一项之间的差都是相等的数 列。
表示方式
等差数列可以通过首项和公 差项称为项 数,公差表示相邻两项之间 的差。
3
生活中的应用
等差数列可以帮助我们规划时间、财务预算,甚至管理团队。
如何求解等差数列
求和公式的推导
我们将讲解等差数列求和公式 的推导过程,帮助你理解其原 理。
求出第n项
通过已知的首项和公差计算任 意项的值,我们将演示具体的 计算方法。
求出一般项
通过已知的首项和公差计算通 项公式,帮助你快速计算数列 的任意项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以可以建立一个等差数列{an}来计算车费。
由题意得,
a1=11.2, d=1.2, n=11,
∴a11=11.2+(11-1) ×1.2 =23.2(元)
答:需要支付车费23.2元.
课堂练习
1.等差数列{an}的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( B )
A . -1
你能得出一般结论吗?
性质二、两项和相等关系 数列{an}是等差数列,m、n、p、 q∈N+,若m+n=p+q,则am+an=ap+aq. 推广:若m+n=2p,则am+an=2ap.
思考4.性质二反过来是否成立?
练习:判断对错:
(1)a3 + a5 = a1 + a7
(2)a1 + a4 + a6 = a3 + a8
53 2
an a3 (n 3)d
2 3(n 3)
3n 7
∴{an}的通项公式为an=3n-7
思考5. 在等差数列{an}中,若ap=q, aq=p,其中p,q
为正整数,求ap+q
例3. 某市出租车的计价标准是1.2元/km,起步价 为10元,即最初的4km(不含4km)计费10元. 如果某人乘坐该市的出租车去往14km处的目 的地,且一路畅通,等候时间为0,需要支付 多少车费?
等差数列(二)
知识回顾
1.等差数列 的定义: (1).文字语言:如果一个数列从第2项起, 每一项与它前一项的差等于同一个常数.
(2).数学语言 : an1 an d, n N *
2.等差数列 的通项公式: an a1 (n 1)d, n N *
等差中项
由三个数a,A,b组成等差数列可以看成最简单
答:需要支付车费23.2元.
解数列应用题的步骤: (1)根据题意引进数列{an} , 并分析数列特征,写出已知量。 (2) 利用数列知识求解。 (3) 作答。
10 11.2 12.4 13.6 14.8 16
45678 9 解:根据题意,当该市出租车的行程大于或
等于4km时,每增加1km乘客需要支付1.2元,
B. 1
C .-2 D. 2
提示: 2(2a-5 )=(-3a+2) +(a-6)
2.教材p39,练习5
小结:
1. 等差中项
AA 2.项与公差的性质:an= am+(n - m) d
,d=
an am nm
3.项与序号的性质: m+n=p+q am+an=ap+aq
注意:反之不一定成立 ;
思考2.在等差数列 an 中,分别计算下列两个
式子,你能得出什么结论
a4 a2 , a6 a3
42
63
性质一、任意两项的关系
在等差数列 an 中,若m≠n有
an am (n m)d
或d an am nm
思考3.在等差数列 an 中,比较 a4 a2与a1 a5的大小? 再比较a7 a8与a3 a12的大小?
10 11.2 12.4 13.6 14.8 16
45678 9 解:根据题意,当该市出租车的行程大于或
等于4km时,每增加1km乘客需要支付1.2元,
所以可以建立一个等差数列{an}来计算车费。
由题意得,
a1=11.2, d=1.2, n=11,
∴a11=11.2+(11-1) ×1.2 =23.2(元)
的等差数列.这时,A叫做a与b的等差中项.
A-a=b -A
A ab 2
思考1:等差数列从第二项起,每一项与相邻
两项的关系?(一般结论)
a1, a2, a3, a4, a5, a6, …an-1, an, an+1…
一般地,在等差数列中,从第二项起,每一
项(有穷等差数列的末项除外)都是它的前一
项与后一项的等差中项。 a n -1 + a n + 1 = 2an ( n ≥ 2 )
(2)已知 a3+a11=10,求 a6+a7+a8
解: a3+a11 =a6+a8 =2a7 ,又已知 a3+a11=10, ∴ a6+a7+a8= 23(a3+a11)=15
例题分析
例2.等差数列{an},其中a3=2,a5=8,求{an}的通项
公式?
解:由
d a5 a3 6 3
课后作业:
教材40页A组第5题,B组第1题
(3)a1 a5 a6 a2 a3 a7
(4)a3 a4 a5 3a4
可推广到三项,四项等
注意:等式两边作和的项数必须一样多
例题分析
例1 .在等差数列{an}中 (1) 已知 a6+a9+a12+a15=20,求a1+a20 解:由 a1+a20 = a6+ a15 = a9 +a12 及 a6+a9+a12+a15=20,可 得a1+a20=10