12.2.全等三角形的判定(sss)公开课
人教版八年级数学上册12.2全等三角形判定 (SSS) 课件
归纳:只有一个角对应相等的两 个三角形不一定全等.
观察思考
两个三角形如果满足两个条件对应相等,这两个三 角形是否全等: 第一种情况:
3cm 5cm
3cm 5cm
归纳:两条边对应相等的两个三角形不一定全等.
观察思考
第二种情况:
老师的这个含300,600的三
角尺和你们的含300,600的 三角尺能重合吗
三边对应相等的两个三角形全等
总结归纳
“边边边”公理
文字叙述:三边对应相等的两个三角形全等.
(简写为“边边边”或“SSS”)
A
几何语言: 在△ABC和△DEF中, AB=DE,
B
C
D
BC=EF,
CA=FD, ∴
如图,有一个三角形钢架,AB=AC,AD是连接点A
当堂检测
4.若干个正六边形拼成的图形中,下列三角形 与△ACD全等的有( )
A.△BCE B.△ADF C.△ADE D.△CDE
当堂检测
5.如图,点A,D,B,E在同一条直线上,AC=EF, AD=BE,BC=DF,BC与DF交于点O.(1)求证: △ABC≌△EDF.(2)若∠CBE=125°,求∠BOD的 度数.
与BC中点D的支架。求证:AD平分∠BAC
A
解题技巧: ①先找已知条件AB=AC
②再找隐含条件公共边AD
B
D
C
③最后找由已知条件推出的结论BD=CD
例题分析
证明:∵D是BC中点(已知)
∴ BD=DC(线段中点定义) A
在△ABD与△ACD中
AB=AC(已知)
B
BD=CD(已证)
D
C
AD=AD(公共边) ∴ △ABD≌△ACD(SSS)
人教版八年级数学上册《12-2 三角形全等的判定(第1课时)》教学课件PPT初二优秀公开课
分析:要证∠BAC=∠DAE,而这两个角所在 三角形显然不全等,我们可以利用等式的性质 将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明 △ABD≌ △ACE,根据全等三角形的性质可得∠BAD=∠CAE.
探究新知
这说明有三个角对应相等的两个三角形不一定全等.
探究新知
②三条边
已知两个三角形的三条边都分别为3cm、4cm、6cm .它 们一定全等吗?
3cm
4cm
6cm
6cm 4cm
4cm 6cm
3cm
3cm
探究新知
做一做 先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′= AB ,B′C′
=BC, A′ C′ =AC.把画好的△A′B′C′剪下,放到△ABC上,它们全
D HC
课堂小结
边边边
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
应用
思路分析 书写步骤
结合图形找隐含条件和现有 条件,找准备条件
四步骤
注意
1.说明两三角形全等所需的条件应按对 应边的顺序书写 2.结论中所出现的边必须在所证明的两 个三角形中
课后作业
作 业 内 容
教材作业
从课后习题中选 取 自主安排 配套练习册练 习
3.已知△ABC ≌ △DEF,找出其中相等的边与角.
A
D
B
①AB=DE
④ ∠A=∠D
C
E
② BC=EF
⑤ ∠B=∠E
F
③ CA=FD
⑥ ∠C=∠F
即:三条边分别相等,三个角分别相等的两个三角形全等.
“边边边”判定三角形全等 (2) 公开课一等奖课件
以下是赠送内容
如何让课堂秩序井然
-------“和美雅静”在行动
有读有思
我们可以安静一点吗?(节选)
• 德国摄影记者在东京旅行,拍下一辑东京地铁挤拥的照 片。许多日本人默默承受挤拥,不论西装笔挺,脸孔压在车 厢门的玻璃上,鼻扁嘴凸,面容扭曲,就是一副死忍,绝不 吭声半句。这个照片系列,成为日本国民性格的代表作。 • 日本人乘搭公共交通工具,不论地铁还是飞机,其恬静 是一大景观。手机不会响,为他人着想,固不必说,车厢里 鲜有交谈,即使有,声音也自觉低下来,令西方记者称奇。 • 日本火车与瑞士和欧洲各国的火车类似,就是乘客自觉 恬静,读书看报,或者上网工作。这方面,难怪日本早身在 西方文明国家之列,公共交通,首重一个“公”字,国民无 公德,国家再强,GDP再高,没有人心中真正看得起你。
12.2 三角形全等的判定(4课时)
第1课时 “边边边”判定三角形全等
1.掌握“边边边”条件的内容. 2.能初步应用“边边边”条件判定两个三角形全等.索三角形全等的条件.
一、复习导入 多媒体展示,带领学生复习全等三角形的定义及其性质, 从而得出结论:全等三角形的对应边相等,对应角相 等.反之,这六个元素分别相等,这样的两个三角形一定 全等. 思考:三角形的六个元素分别相等,这样的两个三角形 一定全等吗?
四、巩固练习 教材第37页练习第1,2题. 学生板演. 教师巡视,给出个别指导. 五、小结与作业 回顾反思本节课对知识的研究探索过程,小结方法及结 论,提炼数学思想,掌握数学规律. 进一步明确:三边分别相等的两个三角形全等. 布置作业:教材习题12.2第1,9题.
本节课的重点是探索三角形全等的“边边边”的条件;运 用三角形全等的“边边边”的条件判别两个三角形是否全 等.在课堂上让学生参与到探索的活动中,通过动手操作、 实验、合作交流等过程,学会分析问题的方法.通过三角 形稳定性的实例,让学生产生学数学的兴趣,学会用数学 的眼光去观察、分析周围的事物,为下一节内容的学习打 下基础.
12-2《三角形全等的判定》(共4课时)教案
12-2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1 如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC,画一个三角形△A′B′C′,使AB=A′B′∠B=∠B′,BC=B′C′.教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法. 操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗? (2)上面的探究说明什么规律? 总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”)[师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A 与∠B 的度数,再用直尺量出AB 的边长; (2)画线段A ′B ′,使A ′B ′=AB ;(3)分别以A ′,B ′为顶点,A ′B ′为一边作∠DA ′B ′,∠EB ′A ′,使∠DA ′B ′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A ′D 与B ′E 交于一点,记为C ′. 即可得到△A ′B ′C ′.将△A ′B ′C ′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”)这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”)例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE. [师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充. 三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”.2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS);方法二:测量没遮住的一条直角边和一个对应的锐角(ASA或AAS).工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?二、探究新知多媒体出示教材探究5.任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.把画好的Rt△A′B′C′剪下来,放到Rt△ABC 上,它们全等吗?画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.想一想,怎么样画呢?按照下面的步骤作一作:(1)作∠MC′N=90°;(2)在射线C′M上截取线段B′C′=BC;(3)以B′为圆心,AB为半径画弧,交射线C′N于点A′;(4)连接A′B′.△A′B′C′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”.多媒体出示教材例5如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角. 在Rt △ABC 和Rt △BAD 中, ⎩⎨⎧AB =BA ,AC =BD ,∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD. 想一想:你能够用几种方法判定两个直角三角形全等? 直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS ,ASA ,AAS ,SSS ,还有直角三角形特殊的判定全等的方法——“HL ”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评. 四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边. 2.直角三角形全等的所有判定方法: 定义,SSS ,SAS ,ASA ,AAS ,HL .思考:两个直角三角形只要知道几个条件就可以判定其全等? 3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.。
12.2.1 三角形全等的判定(sss)
D C
B
探究3:如何由三角形的判定方法 (SSS)作一个角等于已知角
随堂练习:
1.如图,已知AB=CD,BC=DA。你能 说明△ABC与△CDA全等吗?为什么?
A
D
B
C
2.如图,已知AB=CD,AD=CB,点E,F分别是 AB,CD的中点,且DE=BF.求证: (1)△ADE≌ △CBF (2)∠A=∠C
拓展提高 1.如图:BD=CE,BE=CD.求证:∠B=∠C
D F B
E
C
2.如图,B,C,B1,C1四点在同一直线上, AC与A1B1的延长线相交于点D,AB=A1 B1,AC=A1C1,BB1=CC1. 求证:∠A=∠D
小结:
1.这节课学习了什么内容?
2.要判定两个三角形全等至少需要多 少个条件?
3.今天我们学习了判定三角形全等的 哪些方法?
结论:只给出一个或两个条件时, 都不能保证所画的三角形一定全 等。
如果给出三个条件画三角形, 你能说出有哪几种可能的情况?
①三角; ×
②三边;?
③两边一角;
④两角一边。
探究2:
C
A
/ A
/ C
B
B/
如果两个三角形的三条边分别对应相等, 那么这两个三角形全等.(S.S.S.)
如何用符号(数学)语言来表达呢?
只给一个条件 1.只给一条边时; 3㎝ 2.只给一个角时;
45◦ 45◦ 45◦
3㎝
3cm
结论:只有一条边或一个角对应相 等的两个三角形不一定全等.
只给两个条件
如果给出两个条件画三角形, 能有哪几种可能的情况?
12.2《三角形全等的判定(SSS)》教案-河南省漯河市舞阳县人教版八年级数学上册
在今天的教学中,我尝试了多种方法来帮助学生理解三角形全等的判定(SSS)。首先,通过提问学生日常生活中的实例,我发现他们对于全等概念的理解有一定的生活基础,这为后续的学习打下了良好的基础。然而,我也注意到在理论讲解环节,部分学生对SSS判定条件的理解还不够深入,需要我在这里多花一些时间进行解释和演示。
2.在实践活动和小组讨论中,加强对学生的引导,防止他们偏离主题,提高讨论效率。
3.鼓励学生提问,并及时给予解答,帮助他们扫清知识障碍。
4.注重培养学生的空间观念和逻辑思维能力,让他们在学习中能够更好地理解和应用全等三角形的知识。
2.提升逻辑推理能力:引导学生运用SSS全等条件进行推理分析,培养学生严谨的逻辑思维和推理能力;
3.培养数学抽象素养:使学生从具体的三角形实例中抽象出全等三角形的判定方法,形成一般性规律;
4.增强数学建模能力:培养学生运用全等三角形知识解决实际问题的能力,激发学生在实际情境中发现数学模型的兴趣;
5.培养数学运算与数据分析素养:在解决全等三角形相关问题中,加强学生对数学符号、公式和数据的理解和运用,提高运算准确性。
4.能够运用全等三角形的知识解决实际问题;
5.通过实际操作、观察、推理等活动,培养学生的空间观念和逻辑思维能力。
二、核心素养目标
《三角形全等的判定(SSS)》教学旨在培养学生的以下核心素养:
1.增强空间观念:通过观察、操作全等三角形的模型,使学生能够理解全等三角形的性质,并在脑中形成清晰的空间图形;
3.重点难点解析:在讲授过程中,我会特别强调SSS判定条件和全等三角形性质这两个重点。对于难点部分,我会通过图形比较和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等相关的实际问题。
人教版八年级数学上册12.2三角形全等的判定(SSS)说课稿
为了更好地辅助教学,我将使用多媒体课件、几何画板、实物模型等资源。多媒体课件和几何画板可以直观展示三角形全等的判定过程,帮助学生理解抽象的数学概念。实物模型则可以让学生更直观地感受到三角形全等的实际应用,增强空间想象力。
(三)互动方式
在教学过程中,我将设计多样化的师生互动和生生互动环节。如课堂提问、小组讨论、数学游戏等。在课堂提问环节,我会鼓励学生积极思考、发表自己的观点,培养他们的逻辑思维能力。小组讨论环节,学生可以围绕特定问题展开讨论,共同寻找解决方案,提高团队协作能力。数学游戏则可以让学生在轻松愉快的氛围中,巩固所学知识,提高实践应用能力。通过这些互动方式,我希望能够激发学生的学习兴趣,提高他们的参与度和合作意识。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我会设计以下巩固练习和实践活动:
1.针对SSS判定法,设计一些判断题,让学生判断给定的两个三角形是否全等。
2.让学生分组,每组设计一个利用SSS判定法证明全等的实例,并展示给其他组。
3.安排一次课堂小测,检测学生对SSS判定法的掌握程度。
(四)总结反馈
2. SSS判定法的证明过程和应用实例。
3.课堂练习题和课后作业布置。
板书的作用是辅助教学,帮助学生梳理知识点,把握知识结构,提高课堂效果。为了确保板书清晰易懂,我会采用规范的书写格式,字体大小适中,颜色搭配合理,关键知识点用不同颜色的粉笔标注,以便学生更容易关注到重点内容。
(二)教学反思
在教学过程中,我预见到可能出现的问题和挑战,例如部分学生对SSS判定法的理解可能存在困难,课堂互动环节可能出现冷场等。为了应对这些问题,我会时刻关注学生的学习反馈,及时调整教学方法和节奏。对于理解有困难的学生,我会进行个别辅导,耐心解答他们的疑问。对于课堂互动环节,我会设计更多有趣的实践活动,激发学生的参与热情。
12.2.1三角形全等的判定SSS
结论:三条边对应相等的两个三角形全等。
出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗? 上述结论反映了什么规律?
结论:三边对应相等的两个三角形全等(可以简写成“边边边”或“sss”)。
【设计意图】:通过对问题的讨论、分析及交流加深学生对三角形全等的判定(sss)的理解。
(三)、学以致用,强化新知
例1 如图△ABC是一个钢架,AB=AC,AD是连接
点A与BC中点D的支架,求证△ABD≌△ACD。
作图:已知∠AOB
求作:∠A′O′B′,
使∠A′O′B′=∠AOB
【设计意图】:检测学生对知识的掌握情况及应用能力,让学生初步体验成功的喜悦,同时也明确一下书写过程。
以及对作图工具的使用。
(四)巩固练习,深化拓展
1、已知:如图,AB=AD,BC=CD,求证:△ABC≌△ADC
D
C
B
A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A A'
B
C
B'
C'
思考: 要使两个三角形全等,是否一定要六个条件呢?
自学指导
自学课本P35-36页,“探究1、探究2及例1”,掌握三角形全等的判 定条件SSS,并掌握简单的证明格式,完成下列问题。 1.只给一个条件(一组对应边或一组对应角)画出的三角形一定全等 吗?
2.给出两个条件画三角形时,有几种可能的情况?每种情况下作出的
证明:∵AD=FB, A ∴ AD+DB=FB+DB , 即AB= FD. 在 △ ABC和△ FDE中, AC=FE, AB=FD, BC=DE, ∴ △ ABC≌ △ FDE (SSS).
C
D
B
E
F
已知AC=FE,BC=DE,点A,B,D,F在一 条直线上,AD=FB,证明△ABC ≌△ FDE,
A 求证:∆ACD≌∆CBE
C
D
B
E
证明三角形全等的步骤:
(1)准备条件:证全等时要用的间接条件要先证好; (2)证明三角形全等书写三步骤: ①写出在哪两个三角形中 ②摆出三个条件用大括号括起来 ③写出全等结论
例1、如图△ABC是一个钢架,AB=AC,AD是连 结点 A和BC中点的支架,试说明:AD⊥BC
例1、如图,已知AB=CD,AD=CB,
试说明∠B=∠D的理由
解:连结AC
在△ABC和△ CDA中
A B
D C
AB=CD 能说明∠A=∠C吗? CB=AD D A AC=CA ∴ △ ABC≌ △ CDA(SSS) B C ∴ ∠B=∠D(全等三角形对应角相等)
小结:要说明两个角相等,可以利用它们所在的 两个三角形全等的性质来说明。 辅助线:有时为了解题需要,在原图形上添一些线, 这些线叫做辅助线。辅助线通常画成虚线.
如图,点B,E,C,F在一条直线上, AB=DE,AC=DF,BE=CF。求证:AC//DF。
A D
B
E
C
F
课堂小结
1、在证明全等三角形或利用它证明线段或 角的相等时,首先要寻找我们已经知道了什么 (从已知条件,公共边,中点等隐含条件中找 对应相等的边) 2、注意正确地书写证明格式(顺序和对应关系).
×
(2)两个条件
三角
(3)三个条件 三边 两边一角 两角一边
400
400
满足下列条件的两个三角形是一定否全等:
(1)一个条件
一边 一角 (2)两个条件 两角 两边
× ×
只有一个条件对应相等的 两个三角形不一定全等。
一边一角
三角
(3)三个条件 三边 两边一角
两角一边
300
300
9cm
9cm
满足下列条件的两个三角形是一定否全等:
学习目标
1、掌握三边对应相等的两个三角形全等的判定方法;
2 、会利用“边边边”的判定方法解决简单的实际问题。
3.在△ABC 与△A'B'C'中,若AB=A'B', BC=B'C',AC=A`C`,∠A=∠A', ∠B=∠B', ∠C=∠C',那么△ABC 与△A'B'C'全等吗?
具备三条边对应相等,三个角对应相等的两个三角形全等
(3)三个条件
65度 65度 35度 80度
35度
80度
满足下列条件的两个三角形是一定否全等:
(1)一个条件
(2)两个条件
(3)三个条件
× 只有一个条件对应相等的 一角 × 两个三角形不一定全等。 一边一角 × 只有两个条件对应相 两角 × 等的两个三角形不一 两边 × 定全等。 三角 ×
一边 三边 两边一角
(1)一个条件
(2)两个条件
× 只有一个条件对应相等的 一角 × 两个三角形不一定全等。 一边一角 ×
一边 两角 两边
三角
(3)三个条件 三边 两边一角
两角一边
300
500
300
500
满足下列条件的两个三角形是一定否全等:
(1)一个条件
(2)两个条件
× 只有一个条件对应相等的 一角 × 两个三角形不一定全等。 一边一角 × 两角 ×
两角一边
8cm
8cm
满足下列条件的两个三角形是否一定全等:
一个条件 一边 一角
× ×
只有一个条件对应相等的 两个三角形不一定全等。
只有两个条件对应相 等的两个三角形不一 定全等。
两个条件
一边一角 × 两角 × 两边 × 三角 × 三边 两边一角 两角一边
三个条件
√
先任意画出一个△ABC,再画一个△ A`B`C`,使 A`B`= AB ,B`C` =BC,C` A`= CA,把画好的△ A`B`C` 剪下,放到出的△ABC上,它们全等吗? 全等 画法: 画一个△ A`B`C`,使A`B`= AB ,B`C` =BC,C` A`= CA 1.画线段B`C` =BC; 2.分别以B`,C`为圆心,以线段AB ,AC为半径画弧, 两弧交于点 A`; 3.连接线段 A`B`= A`C`.
12.2.1三角形全等的判定(SSS)
(第一课时)
1、 全等三角形的定义
2、 全等三角形有什么性质?
A D
能够完全重合的两个三角形叫全等三角形。
B
C
E
F
如图,已知△ABC≌△DEF
问题1:其中相等的边有: AB=DE, BC=EF, AC=DF
问题2:其中相等的角有: (全等三角形的对应边相等)
∠A=∠D, ∠B=∠E, ∠C=∠F(全等三角形的对应角相等)
一边 两边
三角
(3)三个条件 三边 两边一角
两角一边
ห้องสมุดไป่ตู้ 8cm
8cm
满足下列条件的两个三角形是一定否全等:
(1)一个条件
一边
(2)两个条件
× 只有一个条件对应相等的 一角 × 两个三角形不一定全等。 一边一角 × 只有两个条件对应相 两角 × 等的两个三角形不一 两边 × 定全等。
三角
三边 两边一角 两角一边
AD是 连接A与BC中点D的支架。 求证:△ ABD≌ △ ACD 证明: ∵D是BC中点, ∴BD=CD. 在△ABD和△ ACD中,
AB=AC,
AB=AC,
BD=CD, AD=AD, ∴ △ABD ≌△ ACD(SSS).
例2.已知AC=FE,BC=DE,点A,D,B,F在一条 直线上,AD=FB,证明△ABC ≌△ FDE
练习:如图,已知点B、E、C、F在同一条直线上, AB=DE,AC=DF,BE=CF。试说明∠A=∠D的 理由。
∵BE=CF(已知) 解: ∴ BE+EC=CF+EC A D
即 BC=EF 在△ABC和△DEF中 AB=DE
BC=EF
B
E
C
F
AC=BF ∴△ABC≌△DEF(SSS) ∴∠A=∠D(全等三角形对应角相等)
想一想:这个结果反映了什么规律?
三边分别相等的两个三角形全等( 可以简写为 “边边边”或“SSS”)。
用数学语言表述:
在△ABC和△ DEF中 AB=DE BC=EF
B
A
D
C
CA=FD ∴ △ABC ≌△ DEF(SSS)
E
F
判断两个三角形全等的推理过程,叫做证明三角 形全等。
例1. 如下图,△ABC是一个钢架,
A
证明:∵AD=FB, ∴ AD-BD=FB-BD, 即AB=FD. 在 △ ABC和△ FDE中, AC=FE,
C
B
D
AB=FD,
BC=DE, ∴ △ ABC≌ △ FDE (SSS).
E
F
1.如图,AB=AD,CB=CD,∆ABC与 ∆ADC全等吗?为什么?
A
C B D
2.如图,C是AB的中点, AD=CE,CD=BE.
三角形一定全等吗? 3.如果给出三个条件画三角形,你能说出有哪几种可能的情况?
满足下列条件的两个三角形是否一定全等:
(1)一个条件
一边 一角 一边一角
(2)两个条件
两角
两边 三角
(3)三个条件
三边 两边一角
两角一边
8cm
8cm
满足下列条件的两个三角形是否一定全等:
(1)一个条件
一边 一角 一边一角 两角 两边
证明:∵D是BC的中点 ∴BD=CD 在△ABD和△ACD中, AB=AC
A
1
B D
2
C
AD=AD
DB=DC ∴ △ ABD≌ △ACD(SSS)
∴∠1= ∠2(全等三角形对应角相等)
∵ ∠1+∠2=180º
1 ∴∠1= ∠BDC=90º 2
∴AD ⊥BC(垂直定义)
问:除可证得AD ⊥ BC外, 还可得到哪些结论?