流体运动学

合集下载

流体力学第2章流体运动学基本概念

流体力学第2章流体运动学基本概念
式中:a,b,c被称为拉格朗日变数。不同的一组(a,b,c) 表示不同的流体质点。
10




对于任一流体质点,其速度可表示为:
r x y z v i j k vx i v y j vz k t t t t 其加速度可表示为:
用拉格朗日法描述流体运动看起来比较简 单,实际上函数B(a,b,c,t)一般是不容易找到的, 往往不能用统一的函数形式描述所有质点的物
理参数的变化。所以这种方法只在少数情况下
使用,在本书中主要使用欧拉法。
13
2.2.2 欧拉法(也叫场法)
基本思想:在确定的空间点上来考察流体的流动, 将流体的运动和物理参量直接表示为空间坐标和时间的 函数,而不是沿运动的轨迹去追踪流体质点。 例:在直角坐标系的任意点(x,y,z)来考察流体流 动,该点处流体的速度、密度和压力表示为: v=v(x,y,z,t)=vx(x,y,z,t)i+ vy(x,y,z,t)j+ vz(x,y,z,t)k
15
2.2.3 质点导数
定义:流体质点的物理量对于时间的变化率。
拉格朗日法中,由于直接给出了质点的物理量的表达 式,所以很容易求得物理量的质点导数表达式。
B B(a, b, c, t ) t t
如速度的质点导数(即加速度)为:
v ( a , b, c , t ) a ( a , b, c , t ) t

v v v vy vz 又由矢量运算公式:v v vx x y z
其中矢量算子 i j k 叫哈密顿算子 x y z
18
于是质点的速度增量可以表示为:
v v ( v v )t t

第三章流体运动学

第三章流体运动学
第三章 流体运动学
机械工程学院
第三章 流体运动学
研究内容:流体运动的位移、速度、加速度和转速等随时间和 空间坐标的变化规律,不涉及力的具体作用问题。但从中得出 的结论,将作为流体动力学的研究奠定基础。
第1节 研究流体运动的两种方法
第2节 流体运动学的基本概念 第3节 流体运行的连续方程 第4节 相邻点运动描述――流体微团的运动分析
特点:流场内的速度、压强、密度等参量不仅是坐标的函数,而且 还与时间有关。
即:
() 0 t
3.2 基本概念
二、均匀流动与非均匀流动
1. 均匀流动
流场中各流动参量与空间无关,也即流场中沿流程的每一个断面 上的相应点的流速不变。位不变
v v ( x, y, z, t ) p p( x, y, z, t ) ( x, y, z, t )
由于空间观察点(x,y,z)是固定的,当某个质点
从一个观察点运动到另外一个观察点时,质点位移是 时间t的函数。故质点中的(x,y,z,t)中的x,y,z不是 独立的变量,是时间的函数:
x x (t ) y y (t ) z z (t )
所以,速度场的描述式:
u x u x {x(t) , y(t) , z(t) , t} u y u y {x(t) , y(t) , z(t) , t} u z u z {x(t) , y(t) , z(t) , t}
v2
s1
s2
v1
折点
v2
s
强调的是空间连续质点而不是某单个质点
1. 定义 流动参量是几个坐标变量的函数,即为几维流动。 v v ( x) 一维流动 v v ( x, y ) 二维流动 v v ( x, y , z ) 三维流动

第三章 流体运动学.ppt

第三章 流体运动学.ppt
1786年,他接受法王路易十六的邀请, 定居巴黎,直至去世。近百余年来,数学领 域的许多新成就都可以直接或间接地溯源于 拉格朗日的工作。
欧拉简介
瑞士数学家及自然科学家。1707年4月 15日出生於瑞士的巴塞尔,1783年9月18日 於俄国彼得堡去逝。欧拉出生於牧师家庭, 自幼受父亲的教育。13岁时入读巴塞尔大学, 15岁大学毕业,16岁获硕士学位。
流线不能是折线,是一条光滑的连续曲线。
在定常流动中,流线不随时间改变其位置和形状,流线和迹 线重合。在非定常流动中,由于各空间点上速度随时间变化, 流线的形状和位置是在不停地变化的。
3、流线微分方程 速度矢量 u uxi uy j uzk
通过该点流线上的微元线段
流体质点的位移
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
速度表达式 加速度表达式
ux
ux (a,b, c,t)
x(a,b, c,t) t
y(a,b, c,t)
uy uy (a,b, c,t)
t
uz
uz (a,b, c,t)
z(a,b, c,t) t
ax
欧拉是18世纪数学界最杰出的人物之一, 他不但为数学界作出贡献,更把数学推至几 乎整个物理的领域。他是数学史上最多产的 数学家,平均每年写出八百多页的论文,还 写了大量的力学、分析学、几何学、变分法 等的课本,《无穷小分析引论》、《微分学 原理》、《积分学原理》等都成为数学中的 经典著作。欧拉对数学的研究如此广泛,因 此在许多数学的分支中也可经常见到以他的 名字命名的重要常数、公式和定理。
第三章流体运动学
§3-1研究流体运动的方法 §3-2流场的基本概念 §3-3流体的连续性方程 §3-4流体微团的运动 §3-5速度势函数及流函数 §3-6简单平面势流 §3-7势流叠加原理

流体运动学(课件)

流体运动学(课件)

由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。

工程流体力学-第三章

工程流体力学-第三章

四、有效断面、流量和平均流速
1. 有效断面 流束中处处与速度方向相垂直的横截面称为该流束的有效断面, 又称过流断面。 说明:
(1)所有流体质点的
速度矢量都与有效断面 相垂直,沿有效断面切
向的流速为0。
(2)有效断面可能是 平面,也可能是曲面。
2. 流量
(1) 定义:单位时间内通过某一过流断面的流体量称为流量。
压强的拉格朗日描述是:p=p(a,b,c,t)
密度的格朗日描述是:
(a, b, c, t)
二、欧拉法(Euler)
1. 欧拉法:以数学场论为基础,着眼于任何时刻物理量在场上 的分布规律的流体运动描述方法。 2. 欧拉坐标(欧拉变数):欧拉法中用来表达流场中流体运动 规律的质点空间坐标(x,y,z)与时间t变量称为欧拉坐标或欧拉变 数。
(1)x,y,z固定t改变时, 各函数代表空间中某固
定点上各物理量随时间
的变化规律; (2)当t固定x,y,z改变 时,它代表的是某一时 刻各物理量在空间中的 分布规律。
密度场
压力场
( x, y , z , t )
p p ( x, y , z , t ) T T ( x, y , z , t )
u y du z du z ( x, y , z , t ) u z u z u z az ux uy uz dt dt t t t t du u a (u )u dt t
在同一空间上由于流动的不稳定性引起的加速度,称 为当地加速度或时变加速度。 在同一时刻由于流动的不均匀性引起的加 速度,称为迁移加速度或位变加速度。
一元流动
按照描述流动所需的空间坐标数目划分
二元流动
三元流动

流体力学 3-1-2流体运动学

流体力学 3-1-2流体运动学
v y y 1

v x 1 x v y 1 t
其余各项的偏导数为零,所以加速度分布为:
ax x t 1
ay y t 1
az 0
(2)根据拉格朗日方法:
ax dvx dx 1 vx 1 x t 1 dt dt
dy ay 1 v y 1 y t 1 dt dt
dy
z z
dz
dz
ax
d x x x x y x z x dt t x y z
x y z dt t x y z d az z z x z y z z z dt t x y z ay
x ae2t , y bet , z cet
试求:用欧拉方法描述该流动的速度场是怎样的。
a xe2t , b yet , c zet
三、拉格朗日法和欧拉法的转化
(A)由拉格朗日法到欧拉法的转化思路
二、欧拉法
用欧拉法描述流体的运动时,运动要素是空间坐标x,y, z和时间变量t的连续可微函数。x,y,z,t 称为欧拉变量, t 时刻( x,y,z )处的速度场表示为:
u x u x ( x, y , z , t ) u y u y ( x, y , z , t ) u z u z ( x, y , z , t )
u x A. t
ux ux B. ux t x
ux ux ux C .ux uy uz x y z
ux ux ux ux D. ux uy uz t x y z
C 的变化情况 2.欧拉法研究_____ (A) 每个质点的速度 (C) 流经每个空间点的流速 (B) 每个质点的轨迹 (D) 流经每个空间点的质点轨迹

流体运动学

流体运动学
在流体运动的某一初始时刻t = t。每一个流体质点都占有唯一确 定的空间位置,这样,我们就可以用这一质点在t = t。时刻的空间坐 标(X,Y,Z)来标记它。如对于某一流体质点,当t = t。时的坐标 为 ,则该点的轨迹 。 对于任一质点:
流体在初始时刻的坐标或(X,Y,Z)就称为拉格朗日坐标,显然,在以 上描述中 ,或
4. 在定常流中,流线和迹线重合。
所以在定常流中,可以用烟线来显示流谱,问题:在非定常流 场中,烟线是流线还是迹线?——脉线
例2:给定欧拉描述的速度场:u=x+t,v=-y-t。求: 1)t=1时过x=1,y=1点的流体质点的迹线方程;
2)过该点的流线方程。
解:由迹线的微分方程,
积分得: 1)代入t=1时过x=1,y=1点的质点的条件可确定积分常数:
将其代入数度场的关系即可得到数度场的欧拉描述:
对上式求质点到数可得加速度:
与前面得到的结果相同。
那么我们究竟采用那种描述方法呢,仿佛拉格朗日法更符合我们 的习惯,事实是,在流体力学里,除了极特殊的情况,我们一般都采 用欧拉法而不是拉格朗日法。虽然因为拉氏法对运动的描述与理论力 学相同使我们感到熟悉,虽然欧氏法的加速度表述比较复杂,但是:
第二节 迹线和流线
一、 迹线
流体质点运动的轨迹叫迹线。在拉格 朗日法中,流体质点的位移方程就是迹线 方程: 。在欧拉法中,流体质 。 点运动的微分方程为:
可知,迹线是基于拉格朗日观点的流 体运动描述。 欧拉法在直角坐标中的分量表述可以写成:
所以:
二、 流线
流线是这样的一条空间曲线,在某一 时刻,此曲线上任一点的切线方向与流体 在该点的速度方向一致。(场,如电力线、
任一不与流管侧面平行的面被流管截

流体力学3-3-4流体运动学

流体力学3-3-4流体运动学

流体运动学的应用领域和发展趋势
能源
风力发电、水力发电等领域涉及到流体运动学的知识 ,用于提高能源转换效率和稳定性。
环境
流体运动学在气候变化研究、污染物扩散等领域有广 泛应用。
流体运动学的应用领域和发展趋势
1 2 3
跨学科融合
流体运动学与数学、物理、工程学等多个学科的 交叉融合,推动流体力学理论的创新与发展。
流体机械工作原理
泵的工作原理
通过叶轮旋转产生的离心力将流体吸入,在 叶轮出口处将流体以更高的压力排出。
风机的原理
利用叶轮旋转产生的空气动力学效应,将机 械能转换为空气的压力能和动能。
流体动力学在交通工程中的应用
要点一
车辆空气动力学
要点二
道路排水设计
车辆的外形设计、车速等都会影响空气对车辆的作用力, 进而影响车辆的行驶稳定性、燃油经济性等。
加强跨学科合作与交流是推动流体运动学发展的重要途径。
THANKS
感谢观看
流体力学3-3-4流体运动学
• 流体运动学概述 • 流体运动的分类与描述 • 流体运动的物理性质 • 流体动力学方程 • 流体运动的实例分析 • 总结与展望
01
流体运动学概述
流体运动学的定义与重要性
定义
流体运动学是研究流体运动的学科, 主要关注流体速度、方向和加速度等 物理量的变化规律。
重要性
层流与湍流
层流
流体在运动过程中,流层之间互不掺混,呈规则的层次流动 。
湍流
流体在运动过程中,流层之间相互掺混,流动呈现无规则的 紊乱状态。
定常流动与非定常流动
定常流动
流体在运动过程中,流场参数不随时 间变化而变化的流动。
非定常流动

水力学 第三章 流体运动学

水力学 第三章  流体运动学
§3-1 描述流体运动的两种方法
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。

第三章流体运动学

第三章流体运动学

于是,对(3-1)式,速度表示为
d x x x(a, b, c, t ) vx x(a, b, c, t ) d t t t d y y y (a, b, c, t ) vy y(a, b, c, t ) d t t t d z z z (a, b, c, t ) vx z (a, b, c, t ) d t t t
vz 0
解:由vz=0,为二元流动,代入流线方程
dx 2 dy 2 2 (x y ) (x y2 ) ky kx
y v vy vx o x
k 0, x d x y d y 0
积分:
x y C
2 2
为以原点为圆心的圆。 因k>0,则 当x 0, y 0时
vx 0, v y 0
4、过流断面、湿周、水力半径、当量直径
与流束或总流中所有流线均垂直的断面,称过 流断面,面积用A表示。 在总流的过流断面上,与流体相接触的固体壁 面边壁周长称湿周,用χ表示[kai]。 总流过流断面积与湿周之比称水力半径,用R表 示。
4倍总流过流断面积与湿周之比称当量直径,用 de表示。
对圆管半充满
(3-4)
在不同时刻,给点上的原质点由其它质点替换而 出现不同,欧拉法不随质点走,只固定位置。 欧拉法应先确定v的表达式,而拉格朗日法先确 定x,y,z的关系式,然后给出速度。虽然变量 不同,但描述的核心不变,只是方法不同,数 学表达不同罢了。
其向量表示为:a v (v )v t
( vx ) v x vx x x x
( v y ) y vy y y v y
(3-9)
即为直角坐标系下的连续性方程。

流体的运动学基础

流体的运动学基础

流体的运动学基础流体的运动学是研究流体在没有外力作用下的运动规律和特性的学科。

它广泛应用于物理学、力学、航空航天工程、水利工程等领域。

本文将介绍流体运动学的基本概念和我们对流体运动的理解。

一、流体的运动学基本概念流体是一种特殊物质形态,它具有没有固定形状和可变容积的特点。

流体的运动学主要研究宏观量,比如流体的速度、加速度、流速等。

下面我们将介绍一些流体运动学的基本概念。

1. 流动性流动性是流体运动学的基本特性之一。

流体分为液体和气体两种,液体的分子间作用力较大,分子难以突破内聚力,因此具有较小的可压缩性;而气体的分子间距离较大,分子间作用力相对较小,因此具有较大的可压缩性。

流动性使得流体能够运动和在容器或管道中传输。

2. 流速与流量流速是指单位时间内通过某一截面的流体的体积。

在流动过程中,流体的流速可能是不均匀的,因此为了描述整个流体的流动情况,我们引入了流量的概念。

流量是指单位时间内通过某一截面的流体的质量或体积。

在实际应用中,我们通常更关注流量而不是流速。

3. 流线与流管流线是指在不同时刻,流体质点所通过的路径连成的曲线。

流线能够直观地表达出流体运动的路径和轨迹。

当流体运动具有稳定性和不可压缩性时,流线也是连续的。

流管是由流线围成的管道,它能够将流体流动的区域划分出来。

二、流体的运动学方程流体的运动学方程是描述流体在运动过程中物理量变化规律的方程。

常见的流体的运动学方程包括欧拉方程和纳维-斯托克斯方程。

1. 欧拉方程欧拉方程描述的是连续介质中的流体运动,它是基于质点的视角建立的。

欧拉方程可表达为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的流速,∇是偏微分运算符。

2. 纳维-斯托克斯方程纳维-斯托克斯方程描述的是流体在宏观尺度上的运动规律,它是基于控制体的视角建立的。

纳维-斯托克斯方程可表达为:∂v/∂t + v·∇v = -∇p/ρ + ν∇^2v + f其中,∂v/∂t是流体的加速度,v是流体的流速,p是压强,ρ是密度,ν是运动黏度,f是外力项。

水力学-第3章流体运动学 - 发

水力学-第3章流体运动学 - 发
【解】由于 uz=0,所以是二维流动,其流线方程微分为
dx dy ux (x, y, z,t) uy (x, y, z,t)
将两个分速度代入流线微分方程(上式),得到
dx dy ky kx
xdx ydy 0 积分 x2 y2 c
即流线簇是以坐标原点为圆心的同心圆。
流线的基本特性
• 流线的特性 – 流线一般不相交
§3.1 研究流体运动的两种方法
怎样描述整个流体的运动规律呢?
拉格朗日法
欧拉法
§3.1 研究流体运动的两种方法
1.拉格朗日法
拉格朗日法: 从分析流体质点的运动入手,设法描述出每一 流体质点自始至终的运动过程,即它们的位置随时间变化的 规律,综合流场中所有流体质点的运动情况,来获得整个流 体运动的规律。
§3.1 研究流体运动的两种方法 迹线、流线和脉线
• 迹线
– 一个流体质点在一段连续时间内在空间运动的轨迹
线,它给出同一质点在不同时刻的速度方向
• 迹线方程
拉格朗日法
欧拉法
x x(a,b,c,t) y y(a,b,c,t)
z z(a,b,c,t)
a,b,c确定后,消去t 后可得迹线方程
dx uxdt dy uydt dz uzdt
(x, y, z) :
(a, b, c , t ) :
质点起始坐标 任意时刻 质点运动的位置坐标 拉格朗日变数
欧拉法
(x, y, z) : t:
(x, y, z , t ) :
空间固定点(不动) 任意时刻 欧拉变数
§3.1 研究流体运动的两种方法
液体质点通过任意空间坐标时的加流速
a x
du ( x, y, z, t) x dt

简述流体动力学和流体运动学的区别

简述流体动力学和流体运动学的区别

简述流体动力学和流体运动学的区别摘要:一、引言二、流体动力学与流体运动学的概念及定义三、流体动力学的主要研究内容四、流体运动学的主要研究内容五、两者之间的区别与联系六、实例说明七、结论正文:一、引言在物理学领域,流体动力学和流体运动学是两个密切相关但又有所区别的学科。

了解这两者的区别,有助于我们更好地把握它们在实际应用中的作用。

二、流体动力学与流体运动学的概念及定义1.流体动力学:研究流体在受到外部力作用下产生加速度、压力变化等现象的学科,主要关注流体内部的力学性质和流体与固体之间的相互作用。

2.流体运动学:研究流体在空间中的运动状态和速度分布等现象,不考虑流体内部的力学性质和流体与固体之间的相互作用。

三、流体动力学的主要研究内容1.流体受力分析:包括质量守恒定律、动量守恒定律、能量守恒定律等。

2.流体运动方程:描述流体运动的基本方程,如Navier-Stokes方程。

3.流体与固体的相互作用:如边界层、湍流、旋涡等。

4.流体内部的力学性质:如粘性、热传导等。

四、流体运动学的主要研究内容1.流体运动状态的描述:如速度、加速度、压力分布等。

2.流体速度场的分析:包括速度矢量、流线、涡度等。

3.流体运动的稳定性:如层流稳定性、湍流稳定性等。

4.流体运动的数学模型:如边界层模型、湍流模型等。

五、两者之间的区别与联系1.区别:流体动力学关注流体内部的力学性质和流体与固体之间的相互作用,而流体运动学主要关注流体在空间中的运动状态和速度分布。

2.联系:流体动力学和流体运动学互相补充,流体动力学为流体运动学提供了理论基础,流体运动学则为流体动力学提供了实际应用场景。

六、实例说明1.在船舶设计中,流体动力学主要用于分析船体与水之间的相互作用,如阻力、推进性能等;而流体运动学则用于研究船体周围的水流状态,如速度分布、压力分布等。

2.在航空航天领域,流体动力学用于分析飞行器与大气之间的相互作用,如升力、阻力、气动热等;流体运动学则用于研究飞行器周围的流场,如速度场、压力场等。

流体的运动学描述

流体的运动学描述

流体的运动学描述流体是指能够流动的物质,它包括气体和液体。

流体的运动学描述涉及到描述流体运动的物理量以及它们之间的关系。

下面将对流体的运动学描述进行详细介绍。

一、流体的速度流体的速度是描述其单位时间内流动的距离。

在流体力学中,通常用速度矢量来表示流体的速度。

速度矢量的大小为速度的大小,方向则表示速度的方向。

二、流体的加速度流体的加速度是描述其速度变化率的物理量。

在流体力学中,加速度通常是由两部分组成,即流体的局部加速度和流体的时间导数项。

三、流体的轨迹流体的轨迹描述了流体质点在运动过程中所经过的路径。

对于稳定流体的运动,其轨迹可以通过解析解或者实验测量得到。

四、流体的速度场流体的速度场是描述流体内不同位置上速度变化的物理量。

速度场通常用速度矢量函数表示,即在空间中每个位置的速度矢量随空间坐标的变化。

五、连续性方程连续性方程描述了流体在运动过程中质量守恒的原理。

它表明在稳态流动中,如果流体的密度不随时间变化,则流体的质量在空间上的任何一个区域中是守恒的。

六、运动方程运动方程描述了流体运动中的力学平衡状态。

它可以由牛顿第二定律推导得到,即描述了由外力、压力和粘性力等对流体质点的加速度之间的关系。

七、势流和旋转流势流描述了流体的速度场中不存在旋转的情况。

在势流中,流体流动的速度完全由势函数表示。

而旋转流则是指流体的速度场中存在旋转的情况。

八、边界条件边界条件是描述流体运动中流体与物体接触的边界上速度和压力等物理量之间的关系。

边界条件是流体力学研究中重要的一部分,也是建立流体运动模型的基础。

九、雷诺数雷诺数是流体力学中的一个重要无量纲参数,它用于判断流体流动中惯性力和粘性力之间的相对重要性。

在流体流动的稳定性和流态转变等问题中,雷诺数具有重要的应用价值。

结论流体的运动学描述涉及到速度、加速度、轨迹、速度场、连续性方程、运动方程、势流、旋转流、边界条件以及雷诺数等物理量和概念。

通过对这些参数的分析和计算,可以全面地描述流体运动的特征和规律,为解决与流体运动相关的问题提供理论基础和实际指导。

《水力学》课件——第三章 流体运动学

《水力学》课件——第三章 流体运动学

是否是接
均匀流 否

渐变流
流线虽不平行,但夹角较小; 流线虽有弯曲,但曲率较小。
急变流
流线间夹角较大; 流线弯曲的曲率较大。
• 渐变流和急变流是工程意义上对流动是否符合均匀流条件的
划分,两者之间没有明显的、确定的界限,需要根据实际情况
来判定
急变流示意图
五. 流动按空间维数的分类
一维流动 二维流动 三维流动
• 根据流线的定
• 在非恒定流情况下,流
义,可以推断:除
线一般会随时间变化。在
非流速为零或无穷
恒定流情况下,流线不随
大处,流线不能相
时间变,流体质点将沿着
交,也不能转折。
流线走,迹线与流线重
合。
• 迹线和流线最基本的差别是:迹线是同一流
体质点在不同时刻的位移曲线,与拉格朗日观
点对应,而流线是同一时刻、不同流体质点速
• 由确定的流体质点组成
的集合称为系统。系统在 运动过程中,其空间位 置、体积、形状都会随时 间变化,但与外界无质量 交换。
• 有流体流过的固定不变
的空间区域称为控制 体,其边界叫控制面。 不同的时间控制体将被 不同的系统所占据。
• 通过流场中某曲面 A 的流速通量
u nd A
A
称为流量,记为 Q ,它的物理意 义是单位时间穿过该曲面的流体 体积,所以也称为体积流量,单 位为 m3/s .
n A
dA
u
• u n d A 称为质量流量,记为Qm,单位为 kg/s . 流量计算
A
公式中,曲面 A 的法线指向应予明确,指向相反,流量将反
s s — 空间曲线坐标
元流是严格的一维流动,空间曲线坐标 s 沿着流线。

第三讲 流体运动学

第三讲 流体运动学

任一物理量的质点导数
d (t t , x x, y y, z z ) (t , x, y, z ) lim dt t 0 t
3-2 物理量的质点导数
d (t t , x x, y y, z z ) (t , x, y, z ) lim dt t 0 t
与空间坐标无关,则称为均匀场(均匀流动)。
V V V p p p ... 0 x y z x y z
流动参数仅是时间t的函数,则用欧拉法可表示为:
V =V (t)
3-1 流体运动的描述
三、流场的两个特例
如图所示装置,将阀门A和B的开度调节到使水箱中的水 位保持不变。
二、欧拉法与控制体
速度场可表示为: 压强、密度和温度场表示为:
u u x, y , z , t v v x, y , z , t w w x, y , z , t
其中 x, y, z , t 为欧拉变数
p p ( x, y , z , t ) ( x, y , z , t ) T T ( x, y , z , t )
拉格朗日法
研究对象是一定质点 不能直接反映参数的空间分布 能直接反映质点的时变过程
表达式复杂 数学求解较困难 可直接应用牛二定律建立基本运动方程 (但对所考察物质体的可辨识性有要求)
欧拉法
研究对象是空间某固定点或断面
直接反映参数的空间分布 不能直接反映质点的时变过程
表达式相对 简单 数学求解相对简单 无法直接应用牛二定律建立 基本运动方程
当地(时变)加速度
dV V V V 矢量式为 a dt t
迁移(位变)加速度
3-2 物理量的质点导数

流体力学四章节流体运动学

流体力学四章节流体运动学

(4.6)
w
iw x
jw y
k
w
z
w
w
2 x
w
2 y
w
2 z
ppx,y,z,t
(4.7)
x,y,z,t
第7页
退出 返回
(4.8)
第四章 流体运动学
第一节 流体运动的描述
因为质点在流场内是连续的,所以流体加速度的各分量为
同样
dwx wx wx x wx y wx z dt t x t y t z t
A
a
t0 et0
1
B
b
t0 1 et0
将A,B,C值代入前式得到
Cc
xaett00 1et t1
ybet0t01et t1 zc
这就是流场中的迹线方程式,也就是质点空间坐标的拉格朗日表达式,它
表示一迹线族。若某一个质点,当 t0 0时其起始位置 a 1,b2,c 3,
则这个质点的迹线方程式为 x2et t1 y3et t1 z 3
D D B t B tw x B xw y B yw z B zB t wBtwB (4.11)
(三)两种描述方法的关系 拉格朗日法和欧拉法两种表达式可以互换。例如,从拉格朗日法的坐标 位置表达式(4.1),可以求出用x,y,z,t 表示的拉格朗日变数a,b, c 的关系式
第9页 退出 返回
第四章 流体运动学
y,
z, t
wz
z t
wz x,
y,
z,
t
(b)
第10页 退出 返回
第四章 流体运动学
第一节 流体运动的描述
将(b)式进行积分,则
x F1C1, C2, C3, t

流体力学(流体运动学)

流体力学(流体运动学)

§3 -2
流场的基本概念
恒定流与非恒定流 迹线和流线 一维、二维、 一维、二维、三维流动 流管、 流管、流束及总流 过流断面、 过流断面、流量和平均流速 均匀流和非均匀流
§3-2
流场的基本概念
一、恒定流与非恒定流(定常流与非定常流) 恒定流与非恒定流(定常流与非定常流)
恒定流动是指流场中流动参数不随时间变化而改变的流动。 它满足下列条件:
(3) (4)
将(3)、(4)式代入(1)式得 A′( x)e t + A( x)e t = A( x)e t + t
A′( x)e t = t
A′( x) = te − t

dA( x) = te − t dt
(分部积分公式:∫ uv ′dx = uv − ∫ vu ′dx )
用分部积分得
A( x ) = −(te − t − ∫ e − t dt ) = −te − t − e − t + A
迹线是流体质点在一段时间过程中运动的轨迹线。 迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线 是一族曲线。 如图所示AB曲线是质点M的迹线,在这一迹线上取微元长度ds 表示该质点M在dt时间内的微小位移,则其速度为
ds u= dt
z u c ds
速度的分量为
dx ux = dt
dy uy = dt
第三章
流体运动学
流体运动的描述方法 流场的基本概念 流体微团的运动 连续性方程
引言
静止(包括相对静止) 静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动) 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言, 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 具有更加深刻的意义。这也为流体动力学 研 究在外力作用下流体的运动规律, 究在外力作用下流体的运动规律,打下了理论的 基础。 基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

据拉格朗日法,当t=t0时,x=a,y=b,z=c,则:
a=F1(c1,c2,c3,t0) b= F2(c1,c2,c3,t0)
(7)
c= F3(c1,c2,c3,t0)
所以
c1=Φ1(a,b,c,t0)
c2= Φ2(a,b,c,t0)
(8)
c3= Φ3(a,b,c,t0)
将(8)式代入(6)式就可得到拉格朗日表达式
一、拉格朗日法(跟踪法)Lagrangian method 研究确定的流体质点的物理量(运动要素,如位移、
速度、加速度等)随时间的变化规律;如果知道所有流体 质点的运动规律,则整个流体运动的状况也就清楚。
拉格朗日法位移函数 设任意时刻t,质点坐标为(x,y,z) ,则:
x xa,b, c,t y ya,b, c,t z za,b, c,t
(包括线变形和角变形)
一、流体微团运动的分解
1、平动 2、纯线变形 3、角变形 4、转动
第三章 流体运动学
•流体的运动要素:凡表征流体运动的各种物理量, 如质量、表面力、速度、加速度、密度、动量、能 量等,都称为流体的运动要素。
•流体运动学:研究流体运动的规律(不涉及作用力 ),极其在工程中的应用;研究运动要素随时间和 空间的变化,并建立它们之间的关系式。
第一节描述流体流动的两种方法
ux
x t
aet
uy
y t
bet
由速度可得加速度的表达式
ax
u x t
aet
ay
u y t
bet
x aet y bet
上述式中消去a,b,可得速度和加速度得欧拉描述:
ux aet x uy bet y
ax aet x ay bet y
(3)流线方程为
dx dy x y
积分可得流线方程:
而由拉格朗日法:
ux u y uz
xa,b, c,t
t
ya,b, c,t
t
za,b, c,t
t
x
t y
t z
t
(4) (5)
将(4)式代入(5)式积分,可得
(6)
x=F1(c1,c2,c3,t) y= F2(c1,c2,c3,t) z= F3(c1,c2,c3,t)
c1,c2,c3是积分 积出的常数
t=1时,过质点(1,1)可得,
y c2et t 1
c1
3 e
,
c2 e
(2)流线方程为
积分可得
dx dy t 1 1
(x t)(y t) c1
过(1,1)点有
c1 (1 t)2
流线方程:
(x t)(y t) (1 t)2
三、流管、流束、总流
图流3管-8 流管
流束和总流
图 3-9 流束和总流
t x
y
z
t
ux
x
uy
y
uz
z
ux x
uy y
uz z
0
d divu 0
dt
说明:
✓ 物理意义:单位时间内,流体流经单位体积的流出
与流入之差与其内部质量变化的代数和为零。
✓ 对稳定流:
0
t
✓ 对于不可压流体、稳定流: 0, C

t

ux uy uz 0

x y z
(2)
x=x(a,b,c,t) y=y(a,b,c,t) z=z(a,b,c,t)
由此看来,两种方法具有互换性。因此,都可采用。 采用欧拉法便于直接运用场论分析问题,对加速度,在欧 拉法中它是流速的一阶导数,在拉格朗日法中,是轨迹的 二阶导数,数学处理上欧拉法较方便。所以,采用欧拉法 研究问题。
第二节 流动的分类
将速度方程代入微分方程:
dx dy yx
解得: x2 y2 C
例2: 已知一拉格朗日描述:
求 (1) 迹线
x aet y bet
(2)速度和加速度的欧拉描述;
(3)流线方程。
解:(1)消去参数t,可得迹线方程
将速度方程代入微分方程:
xy ab
解得:
x2 y2 C
(2)依据速度的定义
迹线求法: 拉格朗日法:
欧拉法:
x=x(a,b,c,t) y=y(a,b,c,t) z=z(a,b,c,t)
ux=ux(x,y,z,t)
uy=uy(x,y,z,t)
uz=uz(x,y,z,t)

dx ux dt
dy uy dt
dz uz dt

dx dy dz dt
ux uy uz
——这就是迹线微分方程式。
dx
dt dy
dt dz
dt
x
t y
t z
t
xa, b, c, t ya, b, c, t za, b, c, t
(3)
把(2)式代入(3)式就可得到欧拉法表示的流动 参量表达式。
欧拉法
拉格朗日法
由欧拉法:
ux=ux(x,y,z,t)
uy=uy(x,y,z,t)
uz=uz(x,y,z,t)

即:div u=0,流体的体积膨胀率等于零。
例:已知 ux 6(x y2),uy 2y z3,uz x y 4z
试判断流动是否可压缩? 解:由已知条件可得
divu ux uy uz 12 0 x y z
流动为可压缩流动。
第五节 流体微团运动分析
流体与刚体的主要不同在于具有流动性且极易变形。 刚体运动:转动、直线运动 流体运动:平移运动 旋转运动 变形运动
du u dt u dx u dy u dz dt t dt x dt y dt z dt
u t
ux
u x
uy
u y
uz
u z
因为质点在流场内是连续的,则加速度
各分量:
a du u (u )u dt t
ax
ux t
ux
ux x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
三、拉格朗日法和欧拉法表达式的转换
拉格朗日法
欧拉法
x=x(a,b,c,t) y=y(a,b,c,t) z=z(a,b,c,t)
(1)
可求出用x,y,z,t 表达的a,b,c的关系式:
a=f1(x,y,z,t) b=f2(x,y,z,t) c=f3(x,y,z,t)
(2)
因为:
ux
u y
uz
例:设有一流场,其表达式为:
dx x t dt
dy y t dt
dz 0 dt
求此流场的迹线方程。 解:首先对以上三式积分(换元法):
x A1et t 1 y A2et t 1 z A3
t=t0 0 t0 1 b A2et0 t0 1 c A3
增量=流入质量-流出质量
二、一元流动连续性方程
假设:流体的运动是连续的一元流动
1A1u1dt 2 A2u2dt
可压缩流体沿微小流束稳定流的连 续性方程。
1u1dA1 2u2dA2
总流的连续性方程
A1 1u1dA1 A2 2u2dA2
1V1 A1 2V2 A2
图 3-9 流束和总流
三、空间运动的连续性方程
取 t=t0 时,以每个质点的空间坐标位置为 (a,b,c)作为区别该质点的标识,称为拉格朗日变数。
速度和加速度
ux
xa,b, c,t
t
uy
ya,b, c,t
t
za,b, c,t
uz
t
ax
ux a,b, c,t
t
2xa,b, c,t
t 2
ay
uy a,b, c,t
t
2 ya,b, c,t
t 2
az
xy C
[例3]不定常流场的迹线与流线
已知:给定的二元流动速度场为:
ux x t,
uy y t
求: (1)t = 1时过(1,1)点的质点的迹线;
(2)过(1,1)点的流线方程。
解:(1) 迹线方程组为
dx x t, dt
dy y t dt
由上两式分别积分可得
x c1et t 1,
u=iux+juy+kuz 因为 u //dS 所以 u×dS=0 则:
dx dy dz ux uy uz
——证毕。
流线的绘制方法: 采用微元长切线方法
例1:已知一平面流场,其分速度为:
ky ux x2 y2
uy
kx x2 y2
uz 0
求流线形状。 解:流线微分方程
dx dy ux uy
流线的特性: (1)不稳定流时,流线的空间方位形状随 时间变化; (2)稳定流时,流线的形状不随时间变化, 并与迹线重合。 (3)流线是一条光滑曲线,既不能相交, 也不能转折。
流线微分方程:
dx dy dz ds ux uy uz u
证明:在M点沿流线方向取有向微元长dS 设dS=idx+jdy+kdz,M点质点速度为u,
up u x, y, z,t
P’点流体速度为:
up' u x dx, y dy, z dz,t dt
流体速度差为:
du u x dx, y dy, z dz,t dt u x, y, z,t
u dt u dx u dy u dz t x y z
加速度定义:
uz a,b, c,t
t
2za,b, c,t
t 2
➢ 拉格朗日方法的优点: 描述各个质点在不同时间参量变化,流体运动轨迹上各
流动参量的变化。 ➢ 拉格朗日方法的缺点:
不便于研究整个流场的特性。 ➢ 拉格朗日方法的适用情况:
相关文档
最新文档