集合的基本运算练习题4
集合的基本运算练习题
集合的基本运算练习题一、选择题1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=A.{3,5} B.{3,6}C.{3,7} D.{3,9}2.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于A.{x|x≥3} B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4} 3.集合A={0,2,a},B={1,a}.若A∪B={0,1,2,4,16},则a的值为A.0 B.1 C.D.44.满足M?{a1,a2,a3a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是A.1 B.C.D.45.已知全集U=R,集合A={x︱-2≤x≤3},B={x︱x<-1或x>4},那么集合A∩等于.A.{x︱-2≤x<4}B.{x︱x≤3或x≥4}C.{x︱-2≤x <-1} D.{-1︱-1≤x≤3}6.设I为全集,S1,S2,S3是I的三个非空子集且S1?S2?S3?I,则下面论断正确的是。
A. B.S1?[?]C. D. S1?[?]二、填空题1.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.2.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.A则实数m的取值范围是______.4.设A ? ? x / ? ? x ? ? , B ? ? x / m ? 1 ? x ? 1 ? m ?,若 A ?B ? ,5. 设U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是_______.6. 如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么∪= .三、解答题1.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.2.已知A={x|2a≤x≤a+3},B={x|x5},若A∩B =?,求a的取值范围.3.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?4.集合S={x|x≤10,且x∈N*},AS,BS,且A∩B ={4,5},∩A={1,2,3},∩={6,7,8},求集合A和B. 1.已知集合U={1,3,5,7,9},A={1,5,7},则?UA =A.{1,3}B.{3,7,9}C.{3,5,9} D.{3,9}解析:选D.?UA={3,9},故选D.2.集合A={x|-1≤x≤2},B={x|x<1},则A∩= A.{x|x>1} B.{x|x≥1}C.{x|1<x≤2} D.{x|1≤x≤2}解析:选D.∵B={x|x<1},∴?RB={x|x≥1},∴A∩?RB={x|1≤x≤2}.23. 已知全集U=Z,集合A={x|x=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}解析:选A.依题意知A={0,1},∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若?UA ={x|2≤x≤5},则a=________. 解析:∵A∪?UA=U,∴A ={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩等于A.{2} B.{5}C.{3,4}D.{2,3,4,5}解析:选C.?UB={3,4,5},∴A∩={3,4}.2.已知全集U={0,1,2},且?UA={2},则A=A.{0} B.{1}C.? D.{0,1}解析:选D.∵?UA={2},∴2?A,又U={0,1,2},∴A={0,1}.3.设集合A={4,5,7,9},B={3,4,7,8,9},全集U =A∪B,则集合?U中的元素共有A.3个 B.4个C.5个 D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴?U={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则A.M∩N={4,6} B.M∪N=UC.∪M=U D.∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N ={2,4,5,6},得M∩N={4,5},∪M={3,4,5,7},∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合?U中元素个数为A.1 B. C. D.4解析:选B.∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴?U={3,5}.6.已知全集U=A∪B中有m个元素,∪中有n个元素.若A∩B非空,则A∩B的元素个数为A.mn B.m+nC.n-m D.m-n解析:选D.U=A∪B中有m个元素,∵∪=?U中有n 个元素,∴A∩B中有m-n个元素,故选D.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则∩=________.解析:∵A∪B={2,3,4,5},?UC={1,2,5},∴∩={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U={2,3,a2-a-1},A={2,3},若?UA ={1},则实数a的值是________.2解析:∵U={2,3,a-a-1},A={2,3},?UA={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或29.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且∩B=?,求实数m的取值范围为________.解析:由已知A={x|x≥-m},∴?UA={x|x<-m},∵B={x|-2<x<4},∩B=?,∴-m≤-2,即m≥2,∴m的取值范围是m≥2.答案:{m|m≥2}510.已知全集U=R,A={x|-4≤x<2},B={x|-1<x≤3},P={x|x≤0或x≥,求2A∩B,∪P,∩.解:将集合A、B、P表示在数轴上,如图.X k b 1 .c o m∵A={x|-4≤x<2},B={x|-1<x≤3},∴A∩B={x|-1<x<2}.∵?UB={x|x≤-1或x>3},5∴∪P={x|x≤0或x≥,5∩={x|-1<x<2}∩{x|0<x2={x|0<x<2}.11.已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足B∩={2},A∩={4},U=R,求实数a,b的值.解:∵B∩={2},∴2∈B,但2?A.∵A∩={4},∴4∈A,但4?B.8a=2?7?4+4a+12b=0∴?2,解得. ?2-2a+b=012?b=7812∴a,b的值为.712.已知集合A={x|2a-2 ∵A?RB,∴分A=?和A≠?两种情况讨论.①若A=?,此时有2a-2≥a,∴a≥2.2a-2 ∴a≤1.综上所述,a≤1或a≥2.高一数学必修1集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于A.{x|x≥3} B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}B={x|x≥3}.画数轴可知选B.B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=A.{3,5} B.{3,6}C.{3,7} D.{3,9}A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.设两项都参加的有x人,则只参加甲项的有人,只参加乙项的有人.+x+=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.54.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.∵A∩B={9},∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.当a=5时,A={-4,9,25},B={0,-4,9}.此时A∩B={-4,9}≠{9}.故a=5舍去.当a=3时,B={-2,-2,9},不符合要求,舍去.经检验可知a=-3符合题意.1一、选择题1.集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为A.0 B.1C. D.4∵A∪B={0,1,2,a,a},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4,故选D.D2.设S={x|2x+1>0},T={x|3x-5 1A.? B.{x|x 515C.{x|x> D.{x|323151 S={x|2x+1>0}={x|x>},T={x|3x-5 5 D3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=A.{x|x≥-1} B.{x|x≤2}C.{x|0 集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.A4.满足M?{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是A.1 B.2C. D.4集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.B二、填空题25.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.A=,要使A∪B=R,只需a≤1.a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.由于{1,3}∪A={1,3,5},则A?{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.三、解答题7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B ={1,2,3,5},求x及A∩B.由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x-1=3则x=±2;若x2-1=5,则x=;综上,x=±2或6.当x=±2时,B={1,2,3},此时A∩B={1,3};当x=时,B={1,2,5},此时A∩B={1,5}.8.已知A={x|2a≤x≤a+3},B={x|x5},若A∩B =?,求a的取值范围.由A∩B=?,若A=?,有2a>a+3,∴a>3.若A≠?,如图:2∴??,解得-??≤a≤2.综上所述,a的取值范围是{a|-??≤a≤2或a>3}.9.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?设单独参加数学的同学为x人,参加数学化学的为y 人,单独参加化学的为z人.?x+y+6=26,?x=12,依题意??y+4+z=13,解得? ??y=8, ?x+y+z=21, ??z=1.∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.4。
1、1、3----集合的基本运算并集、补集练习
1、1、3 集合的基本运算并集、补集练习答案1.解析:结合数轴(图略)得A∪B={x|x≥-5}.答案:A2.解析:∵M={x|-3<x<2}且N={x|1≤x≤3},∴M∩N={x|1≤x<2}.答案:A3.解析:B={y|y≤t},结合数轴可知t<-3.答案:A4.解析:解不等式组⎩⎪⎨⎪⎧3-x>0,3x+6>0,得-2<x<3,则A={x|-2<x<3},解不等式3>2m-1,得m<2,则B={m|m<2}.用数轴表示集合A和B,如图所示,则A∩B={x|-2<x<2},A∪B={x|x<3}.题组一(基础巩固)1.解析:求两集合并集时,要注意集合中元素互异性.答案:B2.解析:S={x|2x+1>0}={x|x>-12},T={x|3x-5<0}={x|x<53},则S∩T={x|-12<x<53}.答案:D3.解析:解方程组⎩⎪⎨⎪⎧x+y=0,x-y=0,⎩⎪⎨⎪⎧x=0,y=0.∴A∩B={(0,0)}.答案:B4.解析:∵A∪B=A,∴B⊆A.又B≠∅,∴⎩⎪⎨⎪⎧m+1≥-2,2m-1≤7m+1<2m-1即2<m≤4.答案:D5.解析:由M={0,1,2},知N={0,2,4},M∩N={0,2}.答案:{0,2}6.解析:∵A∩B={(2,5)}.∴5=2a+3.∴a=1.∴5=6+b.∴b=-1.答案:1-17.解析:如图所示:A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}.A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.8.解析:由x2+x-6=0,得A={-3,2},∵B⊆A,且B中元素至多一个,∴B={-3},或B={2},或B=∅.(1)当B={-3}时,由(-3)m+1=0,得m=13;(2)当B ={2}时,由2m +1=0得,m =-12;(3)当B =∅时,由mx +1=0无解得,m =0. ∴m =13或m =-12或m =0.题组二(能力提升)9.解析:由题设信息知A -B ={2,6,10}. 答案:C10.解析:因为N ={x |2x +k ≤0}={x |x ≤-k 2},且M ∩N ≠∅,所以-k2≥-3⇒k ≤6.答案:D11.解析:A ={x ||x +2|<3}={x |-5<x <1},由图形直观性可知m =-1,n =1. 答案:-1 112.解析:∵A ∩B ={-3}, ∴-3∈A ,代入x 2+px -12=0得p =-1, ∴A ={-3,4}∵A ≠B ,A ∪B ={-3,4}, ∴B ={-3}即方程x 2+qx +r =0 有两个相等的根x =-3, ∴q =6,r =9.题组三(探究拓展)13.解析:x 2-3x +2=0得x =1或2,故A ={1,2},∵A ∪B =A , ∴B ⊆A ,B 有四种可能的情况:∅,{1},{2},{1,2}. ∵x 2-ax +a -1=(x -1)[x -(a -1)]∴必有1∈B ,因而a -1=1或a -1=2,解得a =2或a =3.又∵A ∩C =C ,∴C ⊆A .故C 有四种可能的情况:∅,{1},{2},{1,2}. ①若C =∅,则方程x 2-mx +2=0(※)的判别式 Δ=m 2-8<0,得-22<m <22;②若C ={1},则方程(※)有二个等根为1,∴⎩⎪⎨⎪⎧1+1=m 1×1=2不成立; ③若C ={2},同上②也不成立;④若C ={1,2},则⎩⎪⎨⎪⎧1+2=m ,1×2=2.得m =3.综上所述,有a =2或a =3;m =3或-22<m <2 2.。
1.1.3集合的基本运算-补集
1.1.3集合的基本运算补集(1)全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
(2)补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集, 记作:∁U A即:∁U A ={x|x ∈U ,且x ∉A}.(3)补集的Venn 图表示说明:补集的概念必须要有全集的限制1、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。
2、集合基本运算的一些结论:A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A ,A ∪B=B ∪A (∁U A )∪A=U ,(∁U A )∩A=∅若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈B若x ∈(A ∪B ),则x ∈A ,或x ∈B¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<< 求ð.解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤ , (){|1,9U C A B x x x =<-≥ 或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A C B C .解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------ .(1)又{}3B C = ,∴()A B C = {}3;(2)又{}1,2,3,4,5,6B C = ,得{}()6,5,4,3,2,1,0A C B C =------ . ∴ ()A A C B C {}6,5,4,3,2,1,0=------. A B B A-1 3 59 x【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A = ,求实数m 的取值范围. 解:由A B A = ,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B = ,则(){6,7,9}U C A B = .由{5,8}A B = ,则(){1,2,3,4,6,7,9}U C A B =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,则()(){6,7,9}U U C A C B = ,()(){1,2,3,4,6,7,9}U U C A C B = .由计算结果可以知道,()()()U U U C A C B C A B = ,()()()U U U C A C B C A B = .点评:可用Venn 图研究()()()U U U C A C B C A B = 与()()()U U U C A C B C A B = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.【自主尝试】1.设全集{}|110,U x x x N =≤≤∈且,集合{}{}3,5,6,8,4,5,7,8A B ==,求A B ⋃,A B ⋂,()U C A B ⋃.2.设全集{}{}{}|25,|12,|13U x x A x x B x x =-<<=-<<=≤<集合,求A B ⋃,A B ⋂,()U C A B ⋂.3.设全集{}{}{}22|26,|450,|1U x x x Z A x x x B x x =-<<∈=--===且, 求A B ⋃,A B ⋂,()U C A B ⋃.-2 4 m x B A【典型例题】1.已知全集{}|U x x =是不大于30的素数,A,B 是U 的两个子集,且满足{}{}()5,13,23,()11,19,29U U A C B B C A ⋂=⋂=,{}()()3,7U U C A C B ⋂=,求集合A,B.2.设集合{}{}22|320,|220A x x x B x x ax =-+==-+=,若A B A ⋃=,求实数a 的取值集合.3. 已知{}{}|24,|A x x B x x a =-≤≤=<① 若A B φ⋂=,求实数a 的取值范围;② 若A B A ⋂≠,求实数a 的取值范围;③ 若A B A B A φ⋂≠⋂≠且,求实数a 的取值范围.4.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.【练习】1.已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃=( )A {}0,1,8,10 B {}1,2,4,6 C {}0,8,10 D Φ2.集合{}{}21,4,,,1A x B x A B B ==⋂=且,则满足条件的实数x 的值为 ( ) A 1或0 B 1,0,或2 C 0,2或-2 D 1或23.若{}{}{}0,1,2,1,2,3,2,3,4A B C ===⋂⋃⋂则(A B)(B C)= ( )A {}1,2,3 B {}2,3 C {}2,3,4 D {}1,2,44.设集合{}{}|91,|32A x x B x x A B =-<<=-<<⋂=则 ( )A{}|31x x -<< B{}|12x x << C{}|92x x -<< D{}|1x x <【达标检测】一、选择题1.设集合{}{}|2,,|21,M x x n n Z N x x n n N ==∈==-∈则M N ⋂是 ( )A ΦB MC ZD {}02.下列关系中完全正确的是 ( )A {},a a b ⊂ B {}{},,a b a c a ⋂=C{}{},,b a a b ⊆ D {}{}{},,0b a a c ⋂=3.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 ( )A M B {}1,4 C {}1 D Φ4.若集合A,B,C满足,A B A B C C ⋂=⋃=,则A与C之间的关系一定是( )A A C B C A C A C ⊆ D C A ⊆5.设全集{}{}|4,,2,1,3U x x x Z S =<∈=-,若u C P S ⊆,则这样的集合P共有( )A 5个 B 6个 C 7个 D8个二、填空题6.满足条件{}{}1,2,31,2,3,4,5A ⋃=的所有集合A的个数是__________.7.若集合{}{}|2,|A x x B x x a =≤=≥,满足{}2A B ⋂=则实数a =_______.8.集合{}{}{}0,2,4,6,1,3,1,3,1,0,2U U A C A C B ==--=-,则集合B=_____.9.已知{}{}1,2,3,4,5,1,3,5U A ==,则U C U =________________.10.对于集合A,B,定义{}|A B x x A -=∈∉且B ,A⊙B=()()A B B A -⋃-, 设集合{}{}1,2,3,4,5,6,4,5,6,7,8,9,10M N ==,则M⊙N=__________.三、解答题11.已知全集{}|16U x N x =∈≤≤,集合{}2|680,A x x x =-+={}3,4,5,6B = (1)求,A B A B ⋃⋂,(2)写出集合()U C A B ⋂的所有子集.12.已知全集U=R,集合{}{}|,|12A x x a B x x =<=<<,且()U A C B R ⋃=,求实数a 的取值范围13.设集合{}{}22|350,|3100A x x px B x x x q =+-==++=,且13A B ⎧⎫⋂=-⎨⎬⎩⎭求A B ⋃.。
2024全国高考真题数学汇编:集合的基本运算
2024全国高考真题数学汇编集合的基本运算一、单选题1.(2024北京高考真题)已知集合{|31}M x x ,{|14}N x x ,则M N ()A . 11x x B . 3x x C . |34x x D . 4x x 2.(2024天津高考真题)集合 1,2,3,4A , 2,3,4,5B ,则A B ()A . 1,2,3,4B . 2,3,4C . 2,4D . 13.(2024全国高考真题)若集合 1,2,3,4,5,9A , 1B x x A ,则A B ()A . 1,3,4B . 2,3,4C . 1,2,3,4D . 0,1,2,3,4,94.(2024全国高考真题)已知集合 355,{3,1,0,2,3}A x x B ∣,则A B ()A .{1,0} B .{2,3}C .{3,1,0} D .{1,0,2}5.(2024全国高考真题)已知集合 1,2,3,4,5,9,A B A ,则 A A B ð()A . 1,4,9B . 3,4,9C . 1,2,3D .2,3,5参考答案1.C【分析】直接根据并集含义即可得到答案.【详解】由题意得 |34M x x N .故选:C.2.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合 1,2,3,4A , 2,3,4,5B ,所以 2,3,4A B ,故选:B3.C【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x ,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B ,于是{1,2,3,4}A B .故选:C4.A【分析】化简集合A ,由交集的概念即可得解.【详解】因为 |,3,1,0,2,3A x x ,且注意到12 ,从而A B 1,0 .故选:A.5.D【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为1,2,3,4,5,9,A B A ,所以 1,4,9,16,25,81B ,则 1,4,9A B ,2,3,5A A B ð故选:D。
集合的基本运算练习题含答案
集合的基本运算练习题(2)1. 已知集合A={x|2x2−7x+3<0},B={x∈Z|lg x<1},则阴影部分表示的集合的元素个数为()A.1B.2C.3D.42. 已知集合A={x|x2−4<0},B={x|x2−4x+3<0},则A∪B=()A.{x|−2<x<1}B.{x|1<x<2}C.{x|−2<x<3}D.{x|−2<x<2}3. 已知集合A={x∈Z|y=log2(3−x)},B={y|y=√x+1},则A∩B=()A.(0, 3)B.[1, 3)C.{1, 2}D.{1, 2, 3}4. 若集合A={x∈N||x−1|≤1},B={x|y=√1−x2},则A∩B的真子集的个数为()A.3B.4C.7D.85. 设集合A={x|1<x<2},B={x|x<a}满足A⫋B,则实数a的取值范围是( )A.{a|a≥1}B.{a|a≤1}C.{a|a≥2}D.{a|a≤2}6. 已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.7. 设集合A={2,4}, B={2,6,8},则A∪B=________.8. 设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B=________.9. 我们把集合{x|x∈A且x∉B}叫做集合A与B的差集,记作A−B.据此回答下列问题:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},求A−B;(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,求a的取值范围.10. 已知集合A={−1,0},B={−1,3},则A∪B=________.11. 已知全集U=R,集合A={x|0<x<1},B={x|3≤9x≤27},C={x|a−2<x< 2a−4}.(1)求(∁U A)∩B;(2)若A∩C=C,求a的取值范围.12. 已知A={x|a≤x≤2a+3},B={x|x>1或x<−6}.(1)若A∩B=(1,3],求a的值;(2)若A∪B=B,求a的取值范围.参考答案与试题解析集合的基本运算练习题(2)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】B【考点】Venn图表达集合的关系及运算【解析】根据图所示的阴影部分所表示的集合的元素属于集合A但不属于集合B,即求A∩B,根据交集的定义和补集的定义即可求得【解答】阴影部分所表示的集合为A∩B,A={x|2x2−7x+3<0}=(1, 3),2B={x∈Z|lg x<1}={x∈Z|0<x<10},A∩B={1, 2},那么满足图中阴影部分的集合的元素的个数为2,2.【答案】C【考点】并集及其运算【解析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】集合A={x|x2−4<0}={x|−2<x<2},B={x|x2−4x+3<0}={x|1<x<3},则A∪B={x|−2<x<3}.3.【答案】C【考点】交集及其运算【解析】先求出集合A,B,由此能求出A∩B.【解答】∵集合A={x∈Z|y=log(3−x)}={x∈Z|3−x>0}={x∈Z|x<3},2B={y|y=√x+1}={y|y≥1},∴A∩B={x∈Z|1≤x<3}={1, 2}.4.【答案】A【考点】交集及其运算子集与真子集【解析】分别求出集合A和B,从而求出A∩B={0, 1},由此能求出A∩B的真子集的个数.【解答】解:集合A={x∈N||x−1|≤1},B={x|y=√1−x2},∴A={0, 1, 2},B={x|−1≤x≤1},∴A∩B={0, 1},∴A∩B的真子集的个数为22−1=3.故选A.5.【答案】C【考点】集合关系中的参数取值问题【解析】根据真子集的定义、以及A、B两个集合的范围,求出实数a的取值范围.【解答】解:因为集合A={x|1<x<2},B={x|x<a},且满足A⫋B,所以集合A是集合B的真子集,所以a≥2.故选C.二、填空题(本题共计 3 小题,每题 5 分,共计15分)6.【答案】a≤1【考点】集合关系中的参数取值问题并集及其运算【解析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图所示:故当a≤1时,命题成立.故答案为:a≤1.7.【答案】{2,4,6,8}【考点】并集及其运算【解析】此题暂无解析【解答】解:因为集合A={2,4}, B={2,6,8},所以A∪B={2,4,6,8}.故答案为:{2,4,6,8}.8.【答案】{5,2,1}【考点】交集及其运算并集及其运算【解析】此题暂无解析【解答】解:由题意得a+1=2,解得a=1,则b=2,∴A∪B={5,2,1}.故答案为:{5,2,1}.三、解答题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]【考点】Venn图表达集合的关系及运算【解析】(1)根据差集定义即可求A−B;(2)根据差集定义即可阴影部分表示集合A−B;(3)根据A−B=⌀,即可求a的取值范围.【解答】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]10.【答案】{−1,0,3}【考点】并集及其运算【解析】此题暂无解析【解答】解:∵A={−1,0},B={−1,3}∴A∪B={−1,0,3}.故答案为:{−1,0,3}.11.【答案】集合A={x|0<x<1}=(7, 1),所以∁U A=(−∞, 0]∪[7;又B={x|3≤9x≤27}={x|4≤2x≤3}={x|≤x≤,],所以(∁U A)∩B=[1,];若A∩C=C,则C⊆A;因为C={x|a−2<x<2a−4},所以当C=⌀时,a−2≥5a−4;当C≠⌀时,则,解得,即.综上知,a的取值范围是.【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】此题暂无解答12.【答案】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).【考点】集合关系中的参数取值问题【解析】(1)根据A={x|a≤x≤2a+3},B={x|x<−6, 或x>1},再由A∩B={x|1< x≤3}可得{2a+3=3−6≤a≤1,由此求得a的值.(2)由A∪B=B得A⊆B,分A=⌀和A≠⌀两种情况,分别求出a的取值范围,再取并集,即得所求.【解答】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).。
人教A版(2019)高中数学必修第一册1.3集合的基本运算练习题
人教A版(2019)高中数学必修第一册1.3集合的基本运算练习题一、单选题(共10题;共20分)1.设集合A={x|x(x+1)≤0},集合B={x|2x>1},则集合A∪B等于()A. {x|x≥0}B. {x|x≥﹣1}C. {x|x>0}D. {x|x>﹣1}2.已知集合M={x|x2=x},N={﹣1,0,1},则M∩N=()A. {﹣1,0,1}B. {0,1}C. {1}D. {0}3.已知集合,,则()A. B. C. D.4.设全集为,集合,,则( )=()A. B. C. D.5.已知集合,,则()A. B. C. D.6.集合U,M,N,P如图所示,则图中阴影部分所表示的集合是()A. M∩(N∪P)B. M∩∁U(N∪P)C. M∪∁U(N∩P)D. M∪∁U(N∪P)7.设全集U=R,集合A、B满足如图所示的关系,且A={x|x2﹣2x﹣3≤0},阴影部分表示的集合为{x|﹣1≤x<1},则集合B可以是()A. {x|1<x<3}B. {x|1<x≤3}C. {x|1≤x<3}D. {x|1≤x≤3}8.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A. {0}B. {0,1}C. {1,2}D. {0,2}9.设集合A={x||x﹣2|≤2,x∈R},B={y|y=﹣x2,﹣1≤x≤2},则A∩B等于()A. RB. {0}C. {x|x∈R,x≠0}D. ∅10.已知集合,则()A. [1,100]B. [1,2]C. [0,2]D. [0,10)二、填空题(共6题;共6分)11.已知集合,,则________.12.设全集U={﹣1,2,4},集合A={﹣1,4},则∁U A=________.13.已知,,且,则实数的范围是________.14.设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁U A)∪B=________.15.已知集合,且,则实数的取值范围是________.16.对于集合M,定义函数对于两个集合A,B,定义集合A△B={x|f A(x)•f B(x)=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为________ 三、解答题(共4题;共35分)17.已知集合,求(1)(2)18.已知集合,.(1)当m=2时,求A∪B;.(2)若B⊆A,求实数m的取值范围.19.已知集合,.(1)若,求.(2)若,求实数的取值范围.20.全集U=R,若集合A={x|3≤x<10},B={x|1<x﹣1≤6},则(1)求A∩B,A∪B;(2)若集合C={x|x>a},满足C∪A=C时,求a的取值范围.(结果用区间或集合表示)答案一、单选题1.B2.B3. A4. D5. C6.B7. D8.D9. B 10. B二、填空题11. 12.{2} 13.14.{0,2,3} 15.16.{1,6,10,12}三、解答题17.(1)解:由A中不等式变形得:(x−3)(x−7)⩽0,解得:3⩽x⩽7,即A=[3,7];由B中方程无解,得到△=m2−4(3m−5)<0,即(m−2)(m−10)<0,解得:2<m<10,即B=(2,10),则A∪B=(2,10)(2)解:∵全集为R,A=[3,7],B=(2,10),∴∁R A=(−∞,3)∪(7,+∞),则=(2,3)∪(7,10).18.(1)解:当m=2时,A={x|-1≤x≤5},由B中不等式变形得3-2≤3x≤34,解得-2≤x≤4,即B={x|-2≤x≤4}∴A∪B={x|-2≤x≤5}.(2)解:∵B⊆A,∴,解得m≥3,∴m的取值范围为{m|m≥3}19.(1)解:当时,,或,∵,∴,∴(2)解:∵,∴,当时,即时,成立,当时,,∵,则,∴,综上的取值范围是20.(1)解:∵B={x|1<x﹣1≤6}={x|2<x<7},∴A∩B=[3,7];A∪B=(2,10);(2)解:C={x|x>a},又C∪A=C,∴A⊆C,∴a<3,即a的取值范围是(﹣∞,3).。
人教A版(2019)高一上册数学:1.3 集合基本运算同步训练 word版,含答案
人教A 版(2019)高一上册数学:1.3 集合基本运算同步训练一、选择题1.设全集{1,A =2,3,4},{|21,}B y y x x A ==-∈,则A B ⋃等于( ) A .{}1,3 B .{}2,4C .{2,4,5,7}D .{1,2,3,4,5,7}2.设集合{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,则实数m 等于 A .1-B .1C .0D .23.已知集合{|26}A x x =∈-<<R ,{|2}B x x =∈<R ,则()C R A B ⋃=( ) A .{|6}x x <B .{|22}x x -<<C .{|2}x x >-D .{|26}x x ≤≤4.若全集{}1,2,3,4U =,集合{}2430M x x x =-+=,{}2560N x x x =-+=,则()UM N =.A .{}4B .{}1,2C .{}1,2,4D .{}1,3,45.已知全集U Z =,{31,}A x x n n Z ==-∈,{3,}B x x x Z =>∈,则()U A C B ⋂中元素的个数为 A .4B .3C .2D .16.已知集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈,则A B 的子集个数为( )A .2B .4C .7D .87.若集合A ={0,1,2,3},B ={1,2,4},则集合A B =A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}8.设M 、P 是两个非空集合,定义M 与P 的差集为{M P x x M -=∈且}x P ∉,则()M M P --等于( ) A .P B .MC .MPD .M P ⋃9.设{|210},{|350}Sx x T x x ,则S TA .∅B .1|2x xC .3|5x x D .15|23x x10.设全集U ={x |x 是小于5的非负整数},A ={2,4},则∁U A = A .{1,3}B .{1,3,5}C .{0,1,3}D .{0,1,3,5}11.已知集合{}1A x x =≤,{}12B x x =-<<则()R A B =A .{}12x x <<B .{}1x x >C .{}12x x ≤<D .{}1x x ≥12.已知集合{}A x x a =<,{}2B x x =<,且()RA B =R ,则a 满足A .2a ≥B .2a >C .2a <D .2a ≤13.已知M,N 都是U 的子集,则图中的阴影部分表示( )A .M∁NB .∁U (M∁N)C .(∁U M)∩ND .∁U (M∩N)14.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()UM P S ⋂⋂D .()()UM P S ⋂⋃二、填空题15.设全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,则a =_____.16.已知集合{}0A x x a =->,{}20B x x =-<,且A B B ⋃=,则实数a 满足的条件是______. 17.设集合{}0,1,2,3U =,集合{}2|0A x U x mx =∈+=,若{}1,2U C A =,则实数m =_____.18.设集合{}24A x x =≤<,{}12B x x m =≤-,若AB =∅,则实数m 的取值范围为______.19.已知全集为R ,集合()(){}620A x x x =-->,{}44B x a x a =-≤≤+,且A B ⊆R,则实数a的取值范围是______.20.已知{}{}|12M x x N x x a =≤-=-,,若M N ≠∅,则a 的范围是________.三、解答题21.设{4,5,6,8}A =,{3,5,7,8}B =,求A B .22.设{}3,5,6,8A =,{4,5,7,8}B =,求A B ,A B .23.已知集合22{|190}A x x ax a =-+-=,2{|560}B x x x =-+=,2{|280}C x x x =+-=. (1)若A B ⋂≠∅与A C ⋂=∅同时成立,求实数a 的值; (2)若()A B C ⊆⋂,求实数a 的取值范围.24.已知{1,2,3,4,5,6,7}U =,{2,4,5}A =,{1,3,5,7}B =,求()U A B ,()()U U A B .25.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()UU A B ; (2)()()U U A B ⋃.26.若A ={3,5},B ={x |x 2+mx +n =0},A ∁B =A ,A ∩B ={5},求m ,n 的值.27.设全集I R =,已知集合(){}{}22|30,|60M x x N x x x =+≤=+-=(1)求()I C M N ⋂;(2)记集合(),I A C M N =⋂已知集合{}|15,,B x a x a a R =-≤≤-∈若A B A ⋃=,求实数a 的取值范围.参考答案1.D 【解析】 【分析】先求出集合A ,B ,再利用并集定义能求出结果. 【详解】全集{1,A =2,3,4},{|21,}{1,B y y x x A ==-∈=3,5,7}, {1,A B ∴⋃=2,3,4,5,7}.故选D . 【点睛】本题考查并集的求法,是基础题. 2.A 【分析】根据,A B ,以及A 与B 的并集,确定出m 的值即可. 【详解】{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,所以1B -∈,1m ∴=-,故选A.【点睛】本题主要考查并集的定义,意在考查对基础知识的掌握情况,属于简单题. 3.C 【分析】先由补集的概念,求出C R B ,再和集合A 求交集,即可得出结果. 【详解】由{|2}B x x =∈<R ,得C {|2}R B x x =∈≥R .又{|26}A x x =∈-<<R ,所以()C {|2}R A B x x ⋃=>-.故选:C. 【点睛】本题主要考查集合的交集与补集的运算,熟记概念即可,属于基础题型. 4.C 【分析】先根据一元二次方程的解表示出集合,M N ,然后再求解出M N ⋂的结果,最后求解出()UM N 的结果. 【详解】2430x x -+=的解为1x =或3,{}1,3M ∴=,2560x x -+=的解为2x =或3,{}2,3N ∴=,∁{}3M N ⋂=,∁(){}1,2,4UM N =,故选C . 【点睛】本题考查集合的交集、补集混合运算,难度较易.()UM N 的计算除了按本题的方法外,还可以由()()()UUUMN M N =来计算.5.C 【分析】先求出U C B ,然后求出()U A C B ⋂,即可得到答案. 【详解】{3,}U C B x x x Z =≤∈,{31,}A x n n Z ==-∈,则(){}12U A C B ⋂=-,.故答案为C. 【点睛】本题考查了集合的运算,主要涉及交集与补集,属于基础题. 6.D 【分析】先求出A B ⋂集合元素的个数,再根据求子集的公式求得子集个数. 【详解】因为集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈ 所以{}0,1,2A B ⋂= 所以子集个数为328= 个 所以选D 【点睛】本题考查了集合交集的运算,集合子集个数的求解,属于基础题. 7.A 【详解】因为集合A ={0,1,2,3},B ={1,2,4}, 所以由并集的定义可得,故选A.8.C 【分析】根据题意,分M P ⋂=∅和M P ⋂≠∅两种情况,结合集合的基本运算,借助venn 图,即可得出结果. 【详解】当M P ⋂=∅,由于对任意x M ∈都有x P ∉,所以M P M -=, 因此()M M P M M M P --=-=∅=⋂; 当M P ⋂≠∅时,作出Venn 图如图所示,则M P -表示由在M 中但不在P 中的元素构成的集合,因而()M M P --表示由在M 中但不在M P -中的元素构成的集合,由于M P -中的元素都不在P 中,所以()M M P --中的元素都在P 中,所以()M M P --中的元素都在M P ⋂中,反过来M P ⋂中的元素也符合()M M P --的定义,因此()M M P M P --=⋂.故选:C. 【点睛】本题主要考查集合的应用,熟记集合的基本运算即可,属于常考题型. 9.D 【分析】先分别求解出集合,S T 中表示元素的范围,然后利用数轴表示出交集,从而求解出S T 的结果.【详解】 ∁1{|210}|2Sx x x x,5{|350}|3T x x x x,如图所示,∁15|23S T x x, 故选D. 【点睛】本题考查集合的交集运算,难度较易.集合的交集运算结果可通过数轴来直观表示,具体做法为:将相应集合对应的解集表示在数轴上,然后求解公共部分范围即为交集运算结果. 10.C 【分析】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},由集合的补集的概念得到结果. 【详解】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},A ={2,4},∁∁U A ={0,1,3}. 故选C . 【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算. 11.A 【分析】 根据()RA B ⋂可知,应先求解A R ,再求解B ,最终根据交集运算进行求解即可【详解】因为集合{}1A x x =≤,所以{}1RA x x =>,则(){}12R AB x x ⋂=<<.答案选A 【点睛】本题考查集合的混合运算,在运算法则中应遵循有括号先算括号的基本原则,易错点为将A R错解为{}1RA x x =≥12.A 【分析】 可先求出B R,再根据()RAB =R 进行求解即可【详解】{}2RB x x =,则由()RA B =R ,得2a ≥,故选A.【点睛】本题考查并集与补集的混合运算,易错点为求解时忽略端点处2a =能取得到的情况,为了提升准确率,建议对范围理解陌生的考生最好辅以数轴图进行求解 13.B 【分析】观察图形可知,图中非阴影部分所表示的集合是A B ,从而得出图中阴影部分所表示的集合.【详解】由题意,图中非阴影部分所表示的集合是A B ,所以图中阴影部分所表示的集合为A B 的 补集,即图中阴影部分所表示的集合为()U C A B ,故选B.【点睛】本题主要考查集合的venn 图的表示及应用,其中venn 图既可以表示一个独立的集合,也可以表示集合与集合之间的关系,熟记venn 图的含义是解答的关键. 14.C 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题. 15.2或8 【分析】根据题意得出53a -=,解出该方程即可得出实数a 的值. 【详解】全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,53a ∴-=,解得2a =或8.故答案为2或8. 【点睛】本题考查利用补集的结果求参数,根据题意得出方程是解题的关键,考查运算求解能力,属于基础题. 16.2a ≥ 【分析】根据A B B ⋃=可得A B ⊆,分别化简集合A 与B ,进行求解即可 【详解】{}{}0A x x a x x a =->=>,{}{}202B x x x x =-<=>.A B B =,A B ⊆,则2a ≥. 【点睛】本题考查根据集合的并集结果求参数问题,易错点为忽略端点处元素2的存在,需注意若A B ⊆,其中也包括A B =的情况下 17.-3 【详解】因为集合{}0,1,2,3U =, {}1,2U C A =,A={0,3},故m= -3.18.1,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】根据A B =∅可判断212m >-,求出m 即可【详解】因为A B =∅,所以212m >-, 所以1,2m ⎛⎫∈-+∞ ⎪⎝⎭. 【点睛】本题考查根据空集的概念求解参数问题,属于基础题19.{|10a a ≥或}2a ≤-【分析】先求解出R B ,根据A B ⊆R 得到集合,A B 的端点值之间的不等式关系,从而求解出a 的取值范围. 【详解】 由题可知{}26A x x =<<,{4R B x x a =<-或}4x a >+, 因为A B ⊆R ,所以64a ≤-或24a ≥+,即10a ≥或2a ≤-.故答案为{|10a a ≥或}2a ≤-.【点睛】本题考查根据集合的包含关系确定参数范围以及补集运算,难度一般.除了直接分析出不等式组,通过数轴根据解集的位置关系列出不等式组求解亦可.20.1a <【分析】表示出N 中不等式的解集,根据M 与N 交集不为空集,即可确定出a 的范围.【详解】集合{}{}|12M x x N x x a =≤-=-,,MN ≠∅,则21a -<-,解得:1a <故填1a <.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.21.{3,4,5,6,7,8}【解析】【分析】根据并集定义直接求解即可.【详解】由并集定义可知:{}3,4,5,6,7,8AB = 【点睛】本题考查集合运算中的并集运算,属于基础题.22.{}5,8A B =,{}3,4,5,6,7,8A B =【分析】根据交集和并集定义直接求解即可.【详解】由交集定义知:{}5,8AB =;由并集定义知:{}3,4,5,6,7,8A B = 【点睛】本题考查集合运算中的交集和并集运算,属于基础题.23.(1)2a =-(2)a >a < 【分析】(1)先化简集合B 与集合C ,再根据A B ⋂≠∅,A C ⋂=∅,得到3是方程22190x ax a -+-=的解,求出2a =-或5a =,再检验,即可得出结果;(2)先由(1)得到{}2B C ⋂=,根据()A B C ⊆⋂,得到A =∅或{}2A =,分别讨论这两种情况 ,即可得出结果.【详解】(1)由题意可得{}2{|560}2,3B x x x =-+==,{}2{|280}2,4C x x x =+-==-, ∁A B ⋂≠∅,A C ⋂=∅,集合A 中的元素有3,即3是方程22190x ax a -+-=的解;把3x =代入方程得23100a a --=,解得2a =-或5a =.当2a =-时,{}5,3A =-,满足题意;当5a =时,{}2,3A =,此时A C ⋂≠∅,故5a =不满足题意,舍去.综上知2a =-.(2)由(1)可知{}2B C ⋂=,若()A B C ⊆⋂,则A =∅或{}2A =.当A =∅时,()224190a a ∆=--<,解得a >或a <. 当{}2A =时,方程22190x ax a -+-=有两个相等的实数根2,由根与系数的关系得222,1922,a a =+⎧⎨-=⨯⎩解得a ∈∅.综上可得,实数a 的取值范围是3a >或3a <-. 【点睛】本题主要考查由集合交集的结果求参数,以及由集合间的包含关系求参数,熟记集合交集的概念,以及集合间的基本关系即可,属于常考题型.24.(){}2,4U A B =,()(){}6U U A B =.【分析】 根据补集定义首先求得U A 和U B ,由交集定义可求得结果. 【详解】{}1,3,6,7U A =,{}2,4,6U B =(){}2,4U A B ∴=,()(){}6U U A B =【点睛】本题考查集合运算中的补集和交集运算,属于基础题.25.(1)图象见解析;(2)图象见解析.【分析】根据补集、交集和并集的定义,利用Venn 图表示出来即可.【详解】如下图阴影部分所示.【点睛】本题考查Venn 图表示集合,涉及到集合的交集、并集和补集运算,属于基础题.26.10,{25.m n =-=【分析】由题意,A∁B =A ,A∩B ={5},求得B ={5},进而得到方程x 2+mx +n =0只有一个根为5,列出方程组,即可求解.【详解】解:∁A ∁B =A ,A ∩B ={5},A ={3,5},∁B ={5}.∁方程x 2+mx +n =0只有一个根为5,∁2255040m n m n ++=⎧⎨∆=-=⎩∁解得10,25.m n =-⎧⎨=⎩【点睛】本题主要考查了集合的交集、并集的应用,其中解答中熟记集合的交集、并集的基本运算,转化为方程的根求解是解答的关键,着重考查了转化思想的应用,以及推理与运算能力.27.(1){}2;(2){}|3a a ≥.【分析】(1)通过解不等式和方程求得集合M,N ,再进行集合的补集、交集运算;(2)由(1)知集合{}2A =,根据集合关系B A A ⋃=,得B φ=或{}2B =,利用分类讨论求出a 的范围.【详解】(1)∁(){}{}2|303,M x x =+≤=- {}2{|60)3,2,N x x x =+-==- {|I C M x x R ∴=∈且3},x ≠-(){}12C M N ∴⋂=(2)由题意得(){}2I A C M N =⋂=.∁,A B A ⋃=B A ∴⊆,∁B =∅或{}2,B =∁当B =∅时, 15a a ->-,得3a >;∁当{}2B =时,解得3a =.综上所述,所求a 的取值范围为{}|3a a ≥.【点睛】该题考查的是与集合相关的参数的取值范围的问题,在解题的过程中,涉及到的知识点有集合的交集,集合的补集,以及集合之间的包含关系,正确得出其满足的式子是解题的关键.。
高中数学必修一集合练习题
高中数学必修一集合练习题1. 集合的表示法:给定集合A={1, 2, 3},请用描述法表示集合A。
2. 子集与真子集:若集合B={x | x是A的子集},集合A={1, 2, 3},请列出集合B的所有元素,并判断哪些是A的真子集。
3. 集合的并集:已知集合C={1, 2}和集合D={2, 3},请计算C∪D。
4. 集合的交集:若集合E={1, 3, 5}和集合F={2, 3, 5},请找出E∩F。
5. 集合的差集:给定集合G={1, 2, 3, 4}和集合H={3, 4, 5},求G-H。
6. 集合的补集:设全集U={1, 2, 3, 4, 5, 6},集合I={2, 4, 6},请求∁_U I。
7. 幂集:集合J={a, b},请列出J的所有幂集。
8. 集合的包含关系:若集合K={x | x是小于10的正整数},集合L={1, 3, 5, 7, 9},请判断K和L之间的关系。
9. 集合相等:集合M={x | x是偶数}和集合N={2, 4, 6, 8, 10},判断M和N是否相等。
10. 集合的笛卡尔积:若集合O={1, 2}和集合P={a, b},请计算O×P。
解答提示:- 对于第1题,描述法表示集合A可以写作A={x | x是正整数,且1≤x≤3}。
- 第2题中,集合B的所有元素包括空集和所有A的子集,即B={∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}。
其中,A的真子集是不包含A本身的所有子集。
- 第3题,C∪D={1, 2, 3}。
- 第4题,E∩F={3, 5}。
- 第5题,G-H={1, 2}。
- 第6题,∁_U I={1, 3, 5}。
- 第7题,J的幂集包括所有J的子集,即{∅, {a}, {b}, {a, b}}。
- 第8题,K包含L,因为L的所有元素都在K中。
- 第9题,M和N相等,因为它们包含相同的元素。
《集合的基本运算》同步练习及答案(共五套)
《1.3 集合的基本运算》分层同步练习(一)基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.44.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或36.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.8.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,则实数a的取值范围是_________,若A∩B=∅,则a的范围为_________.能力提升9.已知全集U=R,M={x|x≤1},P={x|x≥2},则∁U(M∪P)等于( )A. {x|1<x<2}B.{x|x≥1}C.{x|x≤2}D.{x|x≤1或x≥2}10.已知集合A={x|x<1,或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.11.已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}且A⊆∁U B,求实数a的取值范围.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案解析】基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【答案】B【解析】因为U={1,2,3,4,5},A={1,2},所以∁U A={3,4,5}.2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}【答案】D【解析】图中阴影部分表示的集合是(∁UA)∩B={2,4}.故选D.3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.4【答案】D【解析】因为{1,3}∪A={1,3,5},所以1和3可能是集合A的元素,5一定是集合A的元素,则集合A可能是{5},{1,5},{3,5},{1,5,3}共4个.故选D.4.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}【答案】A【解析】在数轴上分别表示集合M和N,如图所示,则M∪N={x|x<-5,或x>-3}.5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或3【答案】B【解析】因为B∪A=A,所以B⊆A,因为集合A={1,3,m2},B={1,m},所以m=3,或m2=m,所以m=3或m=0.故选B.6.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)【答案】C【解析】由题意易得B A,画出如图所示的示意图,显然U=A∪(∁U B),故选C.7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.【答案】{a|a≥6}【解析】由图示可知a≥6.所以a的取值范围为{a|a≥6}8.已知集合A={x|1≤x ≤2},B={x|x<a},若A ∩B=A,则实数a 的取值范围是_________,若A ∩B=∅,则a 的范围为_________.【答案】{a|a>2} {a|a ≤1}【解析】根据题意,集合A={x|1≤x ≤2},若A ∩B=A,则有A ⊆B,必有a>2,若A ∩B=,必有a ≤1.能力提升9.已知全集U=R,M={x|x ≤1},P={x|x ≥2},则∁U(M ∪P)等于( )A. {x|1<x<2}B.{x|x ≥1}C.{x|x ≤2}D.{x|x ≤1或x ≥2}【答案】A【解析】因为M ∪P={x|x ≤1或x ≥2},所以∁U(M ∪P)={x|1<x<2}.故选A.10.已知集合A={x|x<1,或x>5},B={x|a ≤x ≤b},且A ∪B=R,A∩B={x|5<x≤6},则2a-b=________.【答案】-4【解析】如图所示,可知a=1,b=6,2a-b=-4.11.已知全集U=R,集合A={x|-2≤x ≤5},B={x|a+1≤x ≤2a-1}且A ⊆∁U B,求实数a 的取值范围.【答案】见解析【解析】若B=∅,则a+1>2a-1,则a<2,此时∁U B=R,所以A ⊆∁U B;若B ≠∅,则a+1≤2a-1,即a ≥2,此时∁U B={x|x<a+1,或x>2a-1},由于A ⊆∁U B,如图,则a+1>5,所以a>4,所以实数a 的取值范围为{a|a<2,或a>4}.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案】见解析【解析】设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.《1.3 集合的基本运算》分层同步练习(二)(第1课时)巩固基础1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B等于( )A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.已知集合A={x|x≥0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2} C.{x|0<x≤2} D.{x|1≤x≤2} 3.若集合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动员},则下列关系正确的是( )A.A⊆B B.B⊆C C.A∩B=C D.B∪C=A4.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 5.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为( ) A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}6.设集合M={1,2},则满足条件M∪N={1,2,3,4}的集合N的个数是( ) A.1 B.3 C.2 D.47.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=∅,则实数t的取值范围是( )A.t<-3 B.t≤-3 C.t>3 D.t≥38.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________. 9.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.综合应用11.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.412.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B =A,则( )A.-3≤m≤4 B.-3<m<4 C.2<m<4 D.2<m≤413.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于( )A.0.0或3 C.1.1或314.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.15.已知M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于。
集合的基本运算交集并集练习题
集合的基本运算交集并集练习题集合的基本运算交集并集练习题1.1. 集合间的基本运算考察下列集合,说出集合C与集合A,B之间的关系:A?{1,3,5},B?{2,4,6},C??1,2,3,4,5,6?;A?{xx是有理数},B?{xx是无理数},用Venn图分别表示上面各组中的3组集合。
思考:上述每组集合中,A,B,C之间均有怎样的关系?1、交集定义:一般地,由所有属于集合A且属于集合B的元素组成的集合,叫作集合A、B的交集。
记作:A∩B 读作:“A交B” 。
即:A∩B={x|x∈A,且x∈B}用Venn图表示:常见的3种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集讨论:A∩B与A、B、B∩A的关系?A∩A=A∩?=A∩BB∩AA∩B=A ? A∩B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∩B=;2、A={等腰三角形},B={直角三角形},则A∩B=3、A={x|x>3},B={x|x 2、并集定义:一般地,由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与集合B 的并集,记作A∪B,读作:“A 并B”即A∪B={x|x∈A或x∈B}。
用Venn图表示:说明:定义中要注意“所有”和“或者”这两个条件。
讨论:A∪B与集合A、B有什么特殊的关系?A∪A=, A∪Ф=, A∪B∪AA∪B=A? , A∪B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∪B=2、设A ={锐角三角形},B={钝角三角形},则A∪B=;3、A={x|x>3},B={x|x 3、一些特殊结论⑴若A?B,则A∩B=A;⑵若B?A,则A∪B=A;⑶若A,B两集合中,B=?,,则A∩?=?, A∪?=A。
1求A∪B。
2、设A={x|x>-2},B={x|x3、已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R}。
数学集合的运算试题
数学集合的运算试题1.已知集合,则()A.B.C.D.【答案】【解析】因为,所以.选.【考点】本题主要考查集合的运算,简单一元二次不等式、函数的定义域等基础知识,意在考查考生熟练运用数学知识加以计算的能力.2.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}【答案】B【解析】因为所以.【考点】集合的表示,集合的运算.3.已知M,N为集合I的非空真子集,且M,N不相等,若()A.M B.N C.I D.【答案】A【解析】因为且M,N不相等,得N是M的真子集,故答案为M.4.设全集,集合,,则()A.B.C.D.【答案】B【解析】,,,,,故选B.5.已知集合,,则=( )A.B.C.D.【答案】C【解析】解二次不等式可得到,根据并集的定义可得,再根据交集的定义得,故选C6.设集合,,,则()A.B.C.D.【答案】C【解析】,所以,选C7.集合,,若,则实数的取值范围是.【答案】【解析】先把集合B化简,,由得中最大值不大于,即.8.已知集合,其中表示和中所有不同值的个数.(1)若集合,则;(2)当时,的最小值为____________.【答案】(1)6;(2)213.【解析】(1)因为2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,故有6个不同值.所以;(2)当时,将集合中元素按从小到大顺序重新排列,得,且.依题意,和可以组成、、…、、、…、、、…、……、共5778个.且易知<<<…<;<<…<;…….当只要,就有时,和中所有不同值的个数最少,因为为这些值中的最小值,为这些值中的最大值.所以.故的最小值为213.9.设集合M={-1,0,1},N={x|x2≤x},则M∩N=A.{0}B.{0,1}C.{-1,1}D.{-1,0,0}【答案】B【解析】 M="{-1,0,1}" M∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分.先求出,再利用交集定义得出M∩N.10.已知集合,.若,则实数的取值范围是.【答案】【解析】集合={x| a-1≤x≤a+1},={x| x≥4或x≤1 }.又,∴,解得2<a<3,实数的取值范围是(2,3)。
集合的基本运算专题训练
集合的基本运算专题训练1.集合的三种基本运算∈(1)A ∩A =A ,A ∩∅=∅,A ∪A =A ,A ∪∅=A . (2)A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .(3)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅.求集合的交集或并集时,应先化简集合,再利用交集、并集的定义求解.进行集合的混合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合用不等式形式表示时,可借助数轴求解,对于端点值的取舍,应单独检验.1.已知集合(){}|ln 12 A x y x ==-, {}2| B x x x =≤,全集U A B =⋃,则()U C A B ⋂=( )A. (),0-∞B. 1,12⎛⎤- ⎥⎝⎦C. ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦D. 1,02⎛⎤- ⎥⎝⎦2.已知集合(){}{}|lg 1,2,1,0,1A x y x B ==+=--,则()R C A B ⋂=( ) A. {}2,1-- B. []2- C. []1,0,1- D. []0,13.设集合2{|42},{|4}M x x N x x =∈-=<<<Z ,则M N ⋂等于( )A. ()1,1-B. ()1,2-C. {}1,1,2-D. {}1,0,1-4.若全集为实数集R ,集合()12A |210x log x ⎧⎫=->⎨⎬⎩⎭,则R C A =( )A. 12x x ⎧⎫>⎨⎬⎩⎭B. {}1x x >C. 10,12x x x ⎧⎫≤≤≥⎨⎬⎩⎭或 D. 1,12x x x ⎧⎫≤≥⎨⎬⎩⎭或5.设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞) D .(0,2]∪[3,+∞)6.已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( ) A .{-1,0} B .{0,1} C .{-1,0,1} D .{0,1,2}7.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .108.已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3} D .{1, 2}9.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}10.设是全集,集合都是其子集,则下图中的阴影部分表示的集合为( )A. B.C. D.集合的基本运算专题训练答案1.集合的三种基本运算∈(1)A ∩A =A ,A ∩∅=∅,A ∪A =A ,A ∪∅=A . (2)A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .(3)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅.求集合的交集或并集时,应先化简集合,再利用交集、并集的定义求解.进行集合的混合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合用不等式形式表示时,可借助数轴求解,对于端点值的取舍,应单独检验.1.已知集合(){}|ln 12 A x y x ==-, {}2| B x x x =≤,全集U A B =⋃,则()U C A B ⋂=( )A. (),0-∞B. 1,12⎛⎤-⎥⎝⎦ C. ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ D. 1,02⎛⎤- ⎥⎝⎦2.已知集合(){}{}|lg 1,2,1,0,1A x y x B ==+=--,则()R C A B ⋂=( ) A. {}2,1-- B. []2- C. []1,0,1- D. []0,1 【答案】A【解析】1x +〉0, x >-1,则{}1A x x =-, {}|1R C A x x =≤-则()R C A B ⋂={}2,1--3.设集合2{|42},{|4}M x x N x x =∈-=<<<Z ,则M N ⋂等于( ) A. ()1,1- B. ()1,2- C. {}1,1,2- D. {}1,0,1- 【答案】D 【解析】{}{}{}{}{}2|423,2,1,0,1,,|4|221,0,1M x x N x x x x =∈-=---==-<<=-<<<Z .故选D.4.若全集为实数集R ,集合()12A |210x log x ⎧⎫=->⎨⎬⎩⎭,则R C A =( )A. 12x x ⎧⎫>⎨⎬⎩⎭B. {}1x x >C. 10,12x x x ⎧⎫≤≤≥⎨⎬⎩⎭或 D. 1,12x x x ⎧⎫≤≥⎨⎬⎩⎭或 【答案】D点睛:解对数不等式,注意真数大于零的限制.5.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( )A.[2,3] B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)解析:选D 由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D. 6.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( )A.{-1,0} B.{0,1} C.{-1,0,1} D.{0,1,2}解析:选A 由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.7.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3 B.6 C.8 D.10解析:选D 列举得集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.8.已知集合A={1,2,3},B={x|x2<9},则A∩B=( )A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}解析:选D ∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.又A={1,2,3},∴A∩B={1,2,3}∩{x|-3<x<3}={1,2},故选D.9.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( )A.{1,4} B.{2,3} C.{9,16} D.{1,2}解析:选A 因为x=n2,所以当n=1,2,3,4时,x=1,4,9,16,所以集合B={1,4,9,16},所以A∩B={1,4}.10.设是全集,集合都是其子集,则下图中的阴影部分表示的集合为()B. B.C. D.【答案】B【解析】观察图形得:图中的阴影部分表示的集合为,故选:B.。
集合的基本运算练习题
集合的基本运算练习题集合的基本运算练题一、选择题(每小题5分,共30分)1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B={ }。
答案:A。
解析:A∩B表示既属于A又属于B的元素,即{3,9}。
2.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于{ }。
答案:B。
解析:A表示2≤x<4的实数,B表示3x-7≥8-2x的实数,化简得x≥3,因此A∪B表示x≥2或x≥3,即{x|x≥2}。
3.集合A={0,2,a},B={1,a}。
若A∪B={0,1,2,4,16},则a的值为{ }。
答案:D。
解析:A∪B表示A和B的并集,即所有属于A或B的元素,因此a=4.4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是{ }。
答案:C。
解析:M中的元素可以是{a1,a2}、{a1,a2,a4}、{a1,a2,a3}、{a1,a2,a3,a4},共4种情况,但由于M∩{a1,a2,a3}={a1,a2},因此M中必须包含a1和a2,只有第三种情况符合要求。
5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(CUB)等于{ }。
答案:A。
解析:CUB表示全集,即所有实数,因此A∩(CUB)=A。
6.设I为全集,S1,S2,S3是I的三个非空子集且S1∪S2∪S3=I,则下面论断正确的是{ }。
答案:B。
解析:CIS1表示全集I中不属于S1的元素构成的集合,因此CIS1∩(S2∪S3)表示不属于S1且属于S2或S3的元素,即S2\S1∪S3\S1,因此B正确。
二、填空题(每小题5分,共30分)1.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是{ }。
答案:a≤1.解析:A表示所有小于等于1的实数,B表示所有大于等于a的实数,因此A∪B表示所有实数,即R,因此a≤1.2.满足{1,3}∪A={1,3,5}的所有集合A的个数是{ }。
集合的基本运算及答案
集合的基本运算及答案一、选择题:1 .设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B = ( )A {2}-B {2}C {2,2}-D ∅2.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M N = ( ) A .{}0 B.{}2,0C.{}0,2-D.{}2,0,2-3.已知集合},1|{2R x x y y M ∈-==,}2|{2x y x N -==,则=N M ( )A .),1[+∞-B .]2,1[-C .),2[+∞D .∅4.A ={x |x 2+x -6=0},B ={x |mx +1=0},且A B A = ,则m 的取值集合是( ).A .⎭⎬⎫⎩⎨⎧21- ,31B .⎭⎬⎫⎩⎨⎧21- ,31- ,0C .⎭⎬⎫⎩⎨⎧21- ,31 ,0 D .⎭⎬⎫⎩⎨⎧21 ,31 5.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么M ∩N 等于( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}6.能表示图形中的阴影部分的是( A ) A .)()(C B C A B .)()(C A B AC .)()(C B B AD .C B A )(7.已知集合A ={(x ,y )|x ,y ∈R 且x 2+y 2=1},B ={(x ,y )|x ,y ∈R 且x +y =1,则A ∩B 的元素个数为( )A .4个B .3个C .2个D .1个8.若任意M a ∈,则M a ∈-,就称集合)(∅≠M M 是一个“对称集合”。
已知全集R U =,{}1-<=x x A ,{}1≤=x x B ,那么下列集合中是“对称集合”的是( )A. B AB. B AC.B A C U )(D.)(B C A U9.若A 、B 、C 为三个集合,且有A ∪B =B ∩C ,则一定有( )A .A ⊆CB .C ⊆A C .A ≠CD .∅=AA B C10.设集合{}2,1=A ,集合{}4,3=B ,{}A x x M ⊆=,{}B x x N ⊆=,则( )A. ∅=N MB.{}∅=N MC.A M =D.{}{}{}{}4,3,4,3=N二、选择题:11.已知方程x 2-px +15=0与x 2-5x +q =0的解分别为M 和S ,且M ∩S ={3},则p q=________, 12.已知集合{}2A x x =≥,{}B x x m =≥,且A ∪B =A ,则实数m 的取值范围是________.13.已知集合}{}{21.,.A x y x x R B y y x x R==-∈==∈, 则B A = .14.若存在一个集合M 同时满足如下条件:(1){}5,4,3,2,1⊆M ;(2)M a ∈,且M a ∈-6,则非空集合M 的个数 .三、选择题: 15.已知:}{32|+≤≤a x a x A =,}{φ=若或=B A x x x B ⋂>-<,42|,求a 的取值范围。
高三数学集合的运算试题
高三数学集合的运算试题1.已知集合,集合为整数集,则()A.B.C.D.【答案】A【解析】,选A.【考点】集合的基本运算.2.已知,,则的元素个数为()A.1B.2C.3D.4【答案】C【解析】因为,所以,又由得,所以,则,故,即元素个数有3个.【考点】分式不等式的解法;集合的运算.3.已知集合,集合,则()A.B.C.D.【答案】B【解析】由题知集合A是含绝对值的解集,由绝对值不等式解法解得A=,由题意知集合B是函数的定义域,则,由实数运算的符号法则知不等式可化为,解得B=,利用数轴及补集的概念知=(-1,2],由数轴及交集的概念知(1,2],故选B.【考点】1.含绝对值不等式解法;2.分式不等式解法;3.集合的补集、交集运算.B等于().4.已知全集为R,集合A=,B=,则A∩∁RA.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2,或x>4}D.{x|0<x≤2,或x≥4}【答案】CB={x|x≥0}∩{x|x>4,或x<2}【解析】A={x|x≥0},B={x|2≤x≤4}.∴A∩∁R={x|0≤x<2,或x>4}.5.若集合,,则“”是“”的A.充要条件B.既不充分也不必要条件C.必要不充分条件D.充分不必要条件【答案】D【解析】【考点】集合的运算和充分条件、必要条件.6.设集合¢.(Ⅰ)实数的取值范围是;(Ⅱ)当时,若,则的最大值是.【答案】(Ⅰ);(Ⅱ)5.【解析】(Ⅰ)设,如左图所示,作出两函数图像.则集合表示在函数图像上方的点的集合,集合表示在函数图像下方的点的集合.要使,由图像易知,所以实数的取值范围是.(Ⅱ)作出表示的平面区域(如下方右图所示)设目标函数,易知当直线过点时,取得最大值为,所以的最大值是5.【考点】平面区域、线性规划、集合的基本运算7.已知全集U,A,B,那么 __.【答案】【解析】这是基本题型,考查集合的运算,,即B的补集由全集U中不属于B的元素所组成.两个集合的并集简单地讲就是把两个集合的元素合在一起,相同的只写一个即可.【考点】集合的运算.8. 1.集合A={x,B=,则=( )A.{0}B.{1}C.{0,1}D.{-1,0,1}【答案】B【解析】,,所以.【考点】1.指数不等式的解法;2.三角函数的函数值;3.集合的交集运算.9.设集合U={1,2,3,4,5,6,7},集合A={2,4,5},集合B={1,3,5,7},则=( ) A.{5}B.{2,4}C.{2,4,5}D.{2,4,6}【答案】B【解析】由已知得,,所以.【考点】集合间的基本运算10.已知集合,,则.【答案】【解析】,,所以.【考点】1、不等式的解法;2、集合的运算.11.若集合,集合,则()A.B.C.D.【答案】C【解析】因为,,,故选C.【考点】1.函数的定义域;2.集合的交集运算12.已知集合A={1,2,3,4},,则A∩B=" (" )A.{1,4}B.{2,3}C.{9,16}D.{1,2}【答案】A;【解析】依题意,,故.【考点】本题考查集合的表示以及集合的基本运算,考查学生对基本概念的理解.13.已知集合,,则 ( )A.{x|0<x<}B.{x|<x<1}C.{x|0<x<1}D.{x|1<x<2}【答案】B【解析】因为,,所以.【考点】1.集合的交集运算;2.一元二次不等式的解法;3.函数的值域.14.已知集合,则A.B.C.D.【答案】A【解析】因为A与B的交集,是集合A,B中的相同元素构成的集合,所以,选A。
组合练习题及答案
组合练习题及答案练习题一:组合的基本运算1. 给定集合A={1, 2, 3, 4},求A的所有子集。
2. 集合B={a, b, c},求B的所有真子集。
3. 若集合C={1, 2, 3},求C的幂集。
4. 集合D={x | x是小于10的正整数},求D的元素个数。
答案一:1. 集合A的子集有:∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}。
2. 集合B的真子集有:∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}。
3. 集合C的幂集为:∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}。
4. 集合D的元素个数为9,因为D={1, 2, 3, 4, 5, 6, 7, 8, 9}。
练习题二:组合的应用问题1. 从5个不同的球中选出3个球,有多少种不同的选法?2. 有6个人参加一个会议,需要选出3个人组成委员会,有多少种不同的组合方式?3. 一个班级有30个学生,需要选出5个学生代表,有多少种不同的组合方式?4. 一个团队有10名成员,需要选出队长和副队长各一名,有多少种不同的选择方式?答案二:1. 从5个不同的球中选出3个球的选法为C(5, 3) = 5! / (3! * (5-3)!) = 10种。
2. 从6个人中选出3个人组成委员会的组合方式为C(6, 3) = 6! / (3! * (6-3)!) = 20种。
3. 从30个学生中选出5个学生代表的组合方式为C(30, 5) = 30! / (5! * (30-5)!)。
4. 从10名成员中选出队长和副队长的组合方式为C(10, 1) * C(9, 1) = 10 * 9 = 90种。
专题3 集合的基本运算(原卷版)
专题3 集合的基本运算题组1 Venn图表达的集合关系及应用1.集合A=,B=,则图中阴影部分表示的集合的真子集的个数为()A.7B.8C.15D.162.定义差集A-B={x|x∈A,且x∉B},现有三个集合A,B,C分别用圆表示,则集合C-(A-B)可表示下列图中阴影部分的为()A.答案AB.答案BC.答案CD.答案D3.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,求该网店(1)第一天售出但第二天未售出的商品有多少种?(2)这三天售出的商品最少有多少种?题组2 并集的概念及运算4.设集合I =,A ⊆I ,若把满足M ∪A =I 的集合M 叫做集合A 的配集,则A =的配集有( )A.1个B.2个C.3个D.4个 5.设全集为R ,集合{}A |10x x =->,{}B |||2x x =>,则集合()R A B (⋃= ) A .{|1}x x ≤B .{|2x x <-或1}x >C .{|12}x x ≤<D .{|1x x ≤或2}x >6.点集A ={(x ,y )|x <0},B ={(x ,y )|y <0},则A ∪B 中的元素不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限7.设集合A ={x |(x +1)(x -2)<0)},集合B ={x |1<x <3},则A ∪B 等于( )A.{x |-1<x <3}B.{x |-1<x <1}C.{x |1<x <2}D.{x |2<x <3}8.设集合S ={x ||x -2|>3},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( )A.-3<a <-1B.-3≤a ≤-1C.a ≤-3或a ≥-1D.a <-3或a >-19.已知A ={x |2a ≤x ≤a +3},B ={x |x 2-6x +5>0},是否存在实数a ,使得A ∪B =R ,若存在,求出a 的取值集合,若不存在,说明理由.题组3 交集的概念及运算10.已知集合A ={1,2,3},B ={x |(x +1)(x -2)=0,x ∈Z },则A ∩B 等于( )A.{1}B.{2}C.{-1,2}D.{1,2,3}11.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N等于()A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}12.已知集合A={x∈R|≤0},B={x∈R|(x-2a)(x-a2-1)<0}.若A∩B=∅,则实数a的取值范围是()A.(2,+∞)B.[2,+∞)C.{1}∪[2,+∞)D.(1,+∞)13.已知方程x2+mx-6=0与x2+nx+2=0的解集分别为A和B,且A∩B={2},则m+n=________.14.已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)若A∩B=∅,求实数a的取值范围.题组4 并集、交集的综合运算15.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}16.对于集合M、N,定义M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),设A={y|y=3x,x∈R},B ={y|y=-(x-1)2+2,x∈R},则A⊕B等于()A.[0,2)B.(0,2]C.(-∞,0]∪(2,+∞)D.(-∞,0)∪[2,+∞)17.已知集合A={x|},集合B={m|3>2m-1},求A∩B,A∪B.18.已知集合A={x|x2-8x+15=0},B={x|x2-ax-b=0}.(1)若A∪B={2,3,5},A∩B={3},求a,b的值;(2)若∅B A,求实数a,b的值.19.已知集合M={x|2x-4=0},集合N={x|x2-3x+m=0},(1)当m=2时,求M∩N,M∪N;(2)当M∩N=M时,求实数m的值.20.设集合P={x|x2-x-6<0},Q={x|2a≤x≤a+3}.(1)若P∪Q=P,求实数a的取值范围;(2)若P∩Q=∅,求实数a的取值范围;(3)若P∩Q={x|0≤x<3},求实数a的值.题组5 集合的交集、并集性质及应用21.已知集合A={0,1,2,3},集合B={x|x=2a,a∈A},则()A.A∩B=AB.A∩B⊇AC.A∪B=BD.A∩B⊆A22.已知集合A={1,3,},B={1,m},A∪B=A,则m等于()A.0或B.0或3C.1或D.1或323.已知集合A={x|0<x<2},集合B={x|-1<x<1},集合C={x|mx+1>0},若(A∪B)⊆C,则实数m的取值范围为()A.{m|-2≤m≤1}B.C.D.24.已知集合A={a,b},集合B满足A∪B={a,b},则满足条件的集合B的个数有()A.4B.3C.2D.125.已知A={2,5},B={x|x2+px+q=0},A∪B=A,A∩B={5},求p、q的值.题组6 补集的概念及运算26.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A等于()A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}27.若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于()A.{x|0<x<2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|0≤x≤2}28.设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a+b=________.29.已知全集U={|a-1|,(a-2)(a-1),4,6};(1)若∁U(∁U B)={0,1},求实数a的值;(2)若∁U A={3,4},求实数a的值.题组7 交并补集的综合问题30.已知全集U=R,集合M={x|-1<x<1},N={x|x>1},则下列说法正确的是()A.M∩N=NB.M∩(∁U N)=∅C.M∪N=UD.M⊆(∁U N)31.若集合M={y|y=x2,x∈Z},N={x|x2-6x-27≥0,x∈R},全集U=R,则M∩(∁U N)的真子集的个数是()A.15B.7C.16D.832.关于x的方程:x2+ax+1=0,①x2+2x-a=0,②x2+2ax+2=0,③若三个方程至少有一个有解,求实数a的取值范围.33.已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=x2-x+,0≤x≤3}.(1)若A∩B=∅,求a的取值范围;(2)当取使不等式x2+1≥ax恒成立的a的最小值时,求(∁R A)∩B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的基本运算练习题
1.填空 ⑴如果全集},21{},2{},3{,≤<=≤=>==x x C x x B x x A R U 那么____=A C R , ________,=B C R .________=C C R ⑵设},12{},,2{,Z k k x x B Z k k x x A Z U ∈+==∈===则
.________,==B C A C R R ⑶设},2),{(},123),{(=-==+=y x y x B y x y x A 则._______=B A ⑷已知集合}41{},3{≤≤-=<=x x Q x x P ,那么._______=Q P ⑸集合3{-<=x x A 或1{},3<=>x x B x 或},4>x 则_,__________=B A .________=B A
⑹已知集合},1{},3,2,1{==A B A 则B 的子集最多可能有 个. ⑺若},1{},2{22-==+-==x y y B x y y A 则.___________,==B A B A ⑻设集合},31
2),{(},13),{(=--=-==x y y x A x y y x U 则.______=A C U 2.设全集},5{},2,12{},32,3,2{2=-=-+=A C a A a a U U 求实数a 的值.
3.已知集合},1,12,3{},3,1,{22+--=-+=a a a B a a A 若},3{-=B A 求.B A
4.已知集合}.{},42{a x x B x x A >=≤≤-=
⑴若,Φ≠B A 求实数a 的取值范围;
⑵若,A B A ≠ 求实数a 的取值范围;
⑶若Φ≠B A 且,A B A ≠ 求实数a 的取值范围.
5.集合{}{}a x x B x x A ≤=≤≤-=|,21|,若φ≠B A ,则实数a 的取值范围是
( )
.A 2<a .B 1-≥a .C 1->a .D 21<≤-a
6.已知},01{},06{2=+==-+=mx x B x x x A 且,A B A = 求实数m 的取值范围.
7.某班学生共50人,喜欢打羽毛球的有30人,喜欢打乒乓球的有25人,两样都喜欢的有15人,求两样都不喜欢的人数.
8.已知全集}.31{},24{,≤<-=<≤-==x x B x x A R U 求:
,,),(),(B C A C B C A C B A C B A C U U U U U U 从中你能猜想到什么?。