代数式的值 优秀教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2代数式的值
第1课时
一、课题§3.2代数式的值
二、教学目标
1.使学生掌握代数式的值的概念,会求代数式的值;
2.培养学生准确地运算能力,并适当地渗透对应的思想.
三、教学重点和难点
重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.
难点:正确地求出代数式的值.
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)从学生原有的认识结构提出问题
1.用代数式表示:(投影)
(1)a与b的和的平方;(2) a,b两数的平方和;
(3)a与b的和的50%.
2.用语言叙述代数式2n+10的意义.
3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.(二)师生共同研究代数式的值的意义
1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.
2.结合上述例题,提出如下几个问题
(1)求代数式2n+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式
里字母的取值的确定而确定的”之后,可用图示帮助
学生加深印象
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)
例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70.
注意:如果代数式中省略乘号,代入后需添上乘号.
解:(1)当a=4,b=12时,
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.
最后,请学生总结出求代数值的步骤:
①代入数值②计算结果
(三)课堂练习
1.(1)当x=2时,求代数式x2-1的值;
2.填表:(投影)
(1)(a+b)2; (2)(a-b)2.
(四)师生共同小结
首先,请学生回答下面问题:
1.本节课学习了哪些内容?2.求代数式的值应分哪几步?
3.在“代入”这一步应注意什么?
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的. 七、练习设计
4. 梯形上底m ,下底是上底的2倍,高比上底小1,用代数式表示其面积。

5. 已知a b ==-23,,求()()a b a b +-+222
的值。

6. 若x =4,代数式x x a 22-+的值为0,则a 的值。

7. 已知y ax bx =++33,当x =3时y =-7,则问x =-3时,y 的值。

八、板书设计 §3.2代数式求值
(一)知识回顾 (三)例题解析 (五)课堂小结
例1、例2
(二)观察发现 (四)课堂练习 练习设计
九、教学后记
由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念.
第2课时
知识技能目标
1.了解代数式的值的概念;
2.会求代数式的值.
过程性目标
1.经历求代数式的值的过程,初步体会到数学中抽象概括的思维方法和事物的特殊性与一般性可以相互转化的辩证关系;
2.探索代数式求值的一般方法.
教学过程
一.创设情境
现在,我们请四位同学来做一个传数游戏.
游戏规则:第一位同学任意报一个数给第二位同学,第二位同学把这个数加上1传给第三位同学,第三位同学再把听到的数平方后传给第四位同学,第四位同学把听到的数减去1报出答案.
活动过程:四位同学站到台前,面向全体学生,再请一位同学担任裁判,面向这四位同学.教师站到黑板前,当听到第一位同学报出数字时马上在黑板上写出答案,然后判断和第四位同学报出的数是否一致(可试3~4个数).师:为什么老师会很快地写出答案呢(根据学生的回答,教师启发学生归纳出计算的代数式:(x+1)2-1)?
二.探究归纳
1.引导学生得出游戏过程实际是一个计算程序(如下图):
当第一个同学报出一个数时,老师就是在用这个具体的数代替了代数式(x +1)2-1中的字母x,把答案很快地算了出来.掌握了这个规律,我们每位同学只要知道第一位同学报出的数都可以很快的得出游戏的结果.
2.代数式的值的概念
像这样,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值(value of algebraic expression).
通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化.
三.实践应用
例1当a=2,b=-1,c =-3时,求下列各代数式的值:
(1)b2-4ac;
(2)a2+b2+c2+2ab+2bc+2ac;
(3)(a+b+c)2.
解(1)当a=2,b =-1,c=-3时,
b2-4ac=(-1)2-4×2×(-3)
=1+24
=25.
(2)当a=2,b=-1,c=-3时,
a2+b2+c2+2ab+2bc+2ac
=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)
=4+1+9-4+6-12
=4.
(3)当a =2,b=-1,c=-3时,
(a+b+c)2
=(2-1-3)2
=4.
注:1.比较(2)、( 3 ) 两题的运算结果,你有什么想法?
2.换a =3 , b=-2 , c=4 再试一试,检验你的猜想是否正确.3.对于这一猜想,我们通过学习,将来有能力证实它的正确性.
例2某企业去年的年产值为a亿元,今年比去年增长了10% .如果明年还能按这个速度增长,请你预测一下该企业明年的年产值将达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?
解由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)
=1.21a(亿元).
若去年的年产值为2亿元,则明年的年产值为
1.21a=1.21×2 =2.42(亿元).
答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.
例3当x=-3时,多项式mx3+nx-81的值是10,当x=3时,求该代数式的值.
解当x=-3时,多项式mx3+nx-81=-27m-3n-81,
此时-27m-3n-81=10, 所以27m+3n=-91.
则当x=3,mx3+nx-81
=( 27m+3n )-81
=-91-81
=-172.
注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.练习
1.按下图所示的程序计算,若开始输入的n值为2,则最后输入的结果是____________.
2.根据下列各组x、y的值,分别求出代数式x2+2xy+2y2 与x2-2xy+y2 的值:
(1)x=2, y=3; (2)x=-2, y=-4.
3.若梯形的上底为a, 下底为b, 高为h, 则梯形面积为_____________;当a =2cm,b=4cm,h=3cm时,梯形的面积为_____________.
4.已知, y=ax3+bx+3, 当x=3时y=-7,求当x=-3时y的值.四.交流反思
1.什么叫代数式的值?同一个代数式,当字母取不同的值时,代数式的值相同吗?
2.求代数式的值时要注意什么(先代入再求值,不能改变原来的运算顺序)?五.检测反馈
1.填表:
即:当摄氏温度为x℃时,华氏温度为_____°F.若摄氏温度为20℃,则华氏
温度为____°F.
(1) ( a+b )2-( a-b )2;(2) a2+2ab+b2.
4.A、B两地相距s千米,甲、乙两人分别以a千米/时、b千米/时(a >b ) 的速度从A到B.如果甲先走2小时,试用代数式表示甲比乙早到的时间.再求:当s=120, a=12,b = 10时,这一代数式的值.。

相关文档
最新文档