中考之整式的乘除专题训练(答案版)
2023年中考数学----整式之整式的乘除运算知识回顾与专项练习题(含答案解析)
2023年中考数学----整式之整式的乘除运算知识回顾与专项练习题(含答案解析)知识回顾1. 单项式乘单项式:系数相乘得新的系数,再把同底数幂相乘。
对应只在其中一个因式存在的字母,连同它的指数一起作为积的一个因式。
2. 单项式乘多项式:利用单项式去乘多项式的每一项,得到单项式乘单项式,再按照单项式乘单项式进行计算,把得到的结果相加。
()ac ab c b a +=+注意:多项式的每一项都包含前面的符号。
3. 多项式乘多项式:利用前一个多项式的每一项乘后一个多项式的每一项,得到单项式乘单项式,再按照单项式还曾单项式进行计算,把得到的结果相加。
()()bd bc ad ac d c b a +++=++ 4. 单项式除以单项式:系数相除得到新的系数,再把同底数幂相除。
对于只在被除式里面存在的字母,连同它的指数一起作为商的一个因式。
5. 多项式除以单项式:利用多项式的每一项除以单项式,得到单项式除以单项式,再按照单项式除以单项式进行计算,再把多得到的结果相加。
6. 乘法公式:①平方差公式:()()22b a b a b a −=−+。
②完全平方公式:()2222b ab a b a +±=±。
1、(2022•黔西南州)计算(﹣3x )2•2x 正确的是( ) A .6x 3B .12x 3C .18x 3D .﹣12x 3【分析】先算积的乘方,再算单项式乘单项式即可. 【解答】解:(﹣3x )2•2x =9x 2•2x =18x 3.故选:C.2、(2022•常德)计算x4•4x3的结果是()A.x B.4x C.4x7D.x11【分析】根据同底数幂的乘法运算法则进行计算便可.【解答】解:原式=4•x4+3=4x7,故选:C.3、(2022•陕西)计算:2x•(﹣3x2y3)=()A.﹣6x3y3B.6x3y3C.﹣6x2y3D.18x3y3【分析】直接利用单项式乘单项式计算,进而得出答案.【解答】解:2x•(﹣3x2y3)=﹣6x3y3.故选:A.4、(2022•温州)化简(﹣a)3•(﹣b)的结果是()A.﹣3ab B.3ab C.﹣a3b D.a3b【分析】先化简乘方,再根据单项式乘单项式的法则计算即可.【解答】解:原式=﹣a3•(﹣b)=a3b.故选:D.5、(2022•聊城)下列运算正确的是()A.(﹣3xy)2=3x2y2B.3x2+4x2=7x4C.t(3t2﹣t+1)=3t3﹣t2+1D.(﹣a3)4÷(﹣a4)3=﹣1【分析】A、根据积的乘方与幂的乘方运算判断即可;B、根据合并同类项法则计算判断即可;C、根据单项式乘多项式的运算法则计算判断即可;D、根据积的乘方与幂的乘方、同底数幂的除法法则计算即可.【解答】解:A、原式=9x2y2,不合题意;B、原式=7x2,不合题意;C、原式=3t3﹣t2+t,不合题意;D、原式=﹣1,符合题意;故选:D.6、(2022•台湾)计算多项式6x2+4x除以2x2后,得到的余式为何?()A.2B.4C.2x D.4x【分析】利用多项式除以单项式的法则进行计算,即可得出答案.【解答】解:(6x2+4x)÷2x2=3...4x,∴余式为4x,故选:D.7、(2022•上海)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.8、(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.5【分析】先根据平方差公式进行计算,求出x2﹣2x=5,再变形,最后代入求出答案即可.【解答】解:(x+2)(x﹣2)﹣2x=1,x2﹣4﹣2x=1,x2﹣2x=5,所以2x2﹣4x+3=2(x2﹣2x)+3=2×5+3=10+3=13,故选:A.9、(2022•广元)下列运算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.3y•2x2y=6x2y2D.(x﹣2y)(x+2y)=x2﹣2y2【分析】根据合并同类项判断A选项;根据幂的乘方与积的乘方判断B选项;根据单项式乘单项式判断C选项;根据平方差公式判断D选项.【解答】解:A选项,x2与x不是同类项,不能合并,故该选项不符合题意;B选项,原式=9x2,故该选项不符合题意;C选项,原式=6x2y2,故该选项符合题意;D选项,原式=x2﹣(2y)2=x2﹣4y2,故该选项不符合题意;故选:C.10、(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.【分析】观察已知和所求可知,4m2﹣n2=(2m+n)(2m﹣n),将代数式的值代入即可得出结论.【解答】解:∵2m+n=3,2m﹣n=1,∴4m2﹣n2=(2m+n)(2m﹣n)=3×1=3.故答案为:3.11、(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为.【分析】根据平方差公式将a2﹣b2转化为(a+b)(a﹣b),再代入计算即可.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.12、(2022•资阳)下列计算正确的是()A.2a+3b=5ab B.(a+b)2=a2+b2C.a2×a=a3D.(a2)3=a5【分析】根据合并同类项法则,完全平方公式,同底数幂的乘法法则以及幂的乘方运算法则即可求出答案.【解答】解:A.2a与3b不是同类项,所以不能合并,故A不符合题意B.(a+b)2=a2+2ab+b2,故B不符合题意C.a2×a=a3,故C符合题意D.(a2)3=a6,故D不符合题意.故选:C.13、(2022•枣庄)下列运算正确的是()A.3a2﹣a2=3B.a3÷a2=aC.(﹣3ab2)2=﹣6a2b4D.(a+b)2=a2+ab+b2【分析】根据合并同类项法则,积的乘方、幂的乘方法则及单项式除法法则、完全平方公式逐项判断.【解答】解:A、3a2﹣a2=2a2,故A错误,不符合题意;B、a3÷a2=a,故B正确,符合题意;C、(﹣3a3b)2=9a6b2,故C错误,不符合题意;D、(a+b)2=a2+2ab+b2,故D不正确,不符合题意;故选:B.14、(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2【分析】利用完全平方公式计算即可.【解答】解:(x+2y)2=x2+4xy+4y2.故选:A.15、(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.【分析】根据完全平方公式得出m和n的值即可得出结论.【解答】解:∵m2+n2+10=6m﹣2n,∴m2﹣6m+9+n2+2n+1=0,即(m﹣3)2+(n+1)2=0,∴m=3,n=﹣1,∴m﹣n=4,故答案为:4.16、(2022•滨州)若m+n=10,m n=5,则m2+n2的值为.【分析】根据完全平方公式计算即可.【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.17、(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.【分析】已知两式左边利用完全平方公式展开,相减即可求出xy的值.【解答】解:∵(x+y)2=x2+y2+2xy=25,(x﹣y)2=x2+y2﹣2xy=9,∴两式相减得:4xy=16,则xy=4.故答案为:418、(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b2【分析】左边大正方形的边长为(a+b),面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,根据面积相等即可得出答案.【解答】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.19、(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【分析】去括号后合并同类项即可得出结论.【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.本课结束。
整式的乘除法专题训练(含答案)
整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4.同底数幂的除法;5.负整数指数幂;6.零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4.正确联系运算性质和法则一、计算1.4353x x x x x ••+•2.()()()()x 211x 21x 21x 2432-•-+-•-3.()()4n 31n 35x x x x -•+•--4.()()()()a b b a a b b a 432-•-+-•-5.()()()344321044x 5x 2x 2x 2x 2•+-•+-6.()()()()y x xy 2y 2x x 32332•-•+-••-7.()()()2222332x x x 3x 2•+-+-8.()()()72335m m m-••-9.()()36x -x -÷10.()()63243x x x 2÷÷-11.()()()223223x -x -x x x x •÷+÷÷12.()()[]()[]322313x 2-y y -x 2y -x 2÷÷类型二:幂的运算性质的灵活运用13.已知的值。
求b a b a2,72,42+==14.已知,a 3a x =+用含a 的代数式表示.3x15.已知,5.133,63n m ==求m+n 的值。
16.已知的值。
求2n m n m a ,2a ,3a ++==17.已知的值。
求b 3a 2b a 10,610,510+==18.若的值。
求y x 328,03y 5x 3•=-+19.已知486331x 22x 2=-++,求x 的值。
20.已知(),a a a 113m 5=•求m 的值。
21.已知的值。
求n 2-1m n m 9,43,23+==22.若的值。
整式的乘除法专题训练(含答案)
整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。
14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。
18.若3x 5y 3 0, 求8x?32y的值。
19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。
5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。
中考题整式的乘除与因式分解_(含答案).doc
A.疽.々4=决 B.(x 2)5=x 7C. y 2^y 3=yD. 3ab 2-3a 2b = 0D. (2a) 2=2a 2整式的乘除与因式分解中考题要点一:赛的运算性质一、选择题K (2010-义乌中考)2'cm 接近于()A. 珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D. 一张纸的厚度 【解析】选C.2s cm=256cm 和姚明的身高接近 2、(2009 •新勰中考)下列运算正确的是( ).答案:选A3、 (2009•东营中考)计算一(一3/胪尸的结果是().(A )81决#2 (B )12/b ,(c )-]2a 6b 7(D )-8k/8/)12答案:选D4、 (2010・杭州中考)1.计算(-1)2+(- 1沪=( ).A.-2B.-lC. 0D.2【解析】选C.原式=1 — 1=05^ (2009-南充中考)化简(x -1)2Xx 3的结果是( ), 41A. x 5B. x 4C. xD.- x答案:选C6> (2009-哈尔滨中考)下列运算正确的是()・A. 3a 2—a 2=3B. (a 2) 3=a 5C. a 3. a 6=a 9【解析】选C. A 中,合并同类项可得:2a2: B 中,根据蓦的乘方的运算性质:底数不 变,指数相乘,所以结果应该为:a 6; C 中,根据同底数昴相乘的性质:底数不变,指数相加,所以结果正确;D 考查了积的乘方的运算性质,木题中,2没有乘方,结果应 该是4日7^ (2009-崇左中考)下列运算正确的是()A. 2X 2*3X 2=6/ B. 2X 2-3X 2=-12C. 2工2寻3》2=§、2D. 2x2 + 3x2 = 5x4【解析】选A.整式的运算法则。
A应该是指数相加;B、D合并同类项时字件及指数不变;8> (2009-包头中考)下列运算中,正确的是()A. Q + Q = Q2B. 67Xa2=a2C. (2a)2 = 4a2D. (a3)2=a5【解析】选C.本题考查合并同类项和幕的运算性质,Q + Q =2Q,显然A不正确;a.a~ = o'" = Q3 ,选项B中误把a的指数当作零。
整式的乘除(人教版)(含答案)
整式的乘除(人教版)一、单选题(共15道,每道6分)1.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.,故选A.试题难度:三颗星知识点:单项式乘单项式2.下列运算正确的是( )A. B.C. D.答案:C解题思路:A选项应为,故A选项错误;B选项应为,故B选项错误;C选项,故C选项正确;D选项应为,故D选项错误.故选C.试题难度:三颗星知识点:幂的乘方3.下列运算错误的是( )A. B.C. D.答案:B解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.B选项应为,故选B.试题难度:三颗星知识点:单项式乘单项式4.计算的结果是( )A. B.C. D.答案:D解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.,故选D.试题难度:三颗星知识点:单项式乘多项式5.若,则的值是( )A.-15B.15C.-3D.3答案:C解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.故选C.试题难度:三颗星知识点:解一元一次方程6.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×多项式:根据乘法分配律,转化为单×单.然后按照单项式×单项式的运算法则进行计算.故选A.试题难度:三颗星知识点:合并同类项7.计算的结果是( )A. B.C.1D.答案:B解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选B.试题难度:三颗星知识点:整式的除法8.计算的结果是( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选C.试题难度:三颗星知识点:整式的除法9.,括号里所填的代数式为( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.设括号里的代数式为M,∴即括号里面的代数式为.故选C.试题难度:三颗星知识点:整式的除法10.计算的结果是( )A. B.C. D.答案:D解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.故选D.试题难度:三颗星知识点:多项式乘多项式11.下列各式计算结果为的是( )A. B.C. D.答案:C解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.A选项,故A选项错误;B选项,故B选项错误;C选项,故C选项正确;D选项,故D选项错误.故选C.试题难度:三颗星知识点:多项式乘多项式12.若的结果中不含的一次项,则的值是( )A.-2B.2C.-1D.任意数答案:A解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.∵的结果中不含x的一次项∴∴故选A.试题难度:三颗星知识点:多项式乘多项式13.下列式子:①;②;③;④.其中计算不正确的有( )A.3个B.2个C.1个D.0个答案:A解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.①,①不正确;②,②不正确;③,③不正确;④,④正确.故不正确的有①②③,共3个.试题难度:三颗星知识点:积的乘方14.计算的结果是( )A. B.C. D.答案:B解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选B.试题难度:三颗星知识点:整式的除法15.计算的结果是( )A. B.C. D.答案:D解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选D.试题难度:三颗星知识点:整式的除法。
整式的乘除测试题练习四套(含答案)
整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x++ B 、2m x + C 、1m x+ D 、2n m x++3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x 2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x 31)y x 2x 31(x n 1n n 2n n --=--+D 、当n 为正整数时,n 4n 22a )a (=-4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(--6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( )A 、0B 、-7C 、-9D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
中考题整式的乘除与因式分解-(含答案)
整式的乘除与因式分解中考题重点一:幂的运算性质一、选择题1、(2010·义乌中考) 28 cm 靠近于()A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度2、(2009 ·新疆中考 ) 以下运算正确的选项是() .A .246 B . (x 2 ) 5 x 7C . y 2y 3yD .22aagaga 4 aa3ab3a b 0? a3、 (2009 ·东营中考 ) 计算3a2b 3 4 的结果是 ().(A) 81a 8b 12( B ) 12a 6b 7( C ) 12a 6b 7( D ) 81a 8b124、(2010·杭州中考)1. 计算( –1)2+(–1) 3= () .A.– 2B.– 1C. 0D. 25、(2009 ·南充中考 ) 化简 (x 1 )2 x 3 的结果是()A . x5B . x4C . xD .1x6、(2009·哈尔滨中考)以下运算正确的选项是().A . 3a 2- a 2= 3B .(a 2) 3= a 5C . a 3. a 6= a 9D .( 2a )2= 2a 27、(2009·崇左中考)以下运算正确的选项是()2 2 6x 4 B . 2x 2 2 1A .2x ·3x 3xC . 2x 2 3x 2 2 x 2D . 2x 23x 2 5x 438、(2009·包头中考)以下运算中,正确的选项是()A . a a a 2B . a a 2 a 2C . (2a)2 4a 2D . (a 3 )2 a 59、(2009·太原中考)以下计算中,结果正确的选项是( )23 a 6B . 2a · 3a6aC . a 2 3 a 6D . a 6a 2a 3A .a ·a10. (2009·襄樊中考)以下计算正确的选项是()2 3a 6 8 4a2C .a3a2a5D.2a2 38a6A.a ·a B .a a11、 (2009 ·泰安中考 ) 若 2x 3,4 y 5,则2x -2y的值为 ( ) .3 B.- 2C.3 5D.6A.555二、填空题12、(2009·威海中考)计算 (2 3) 1 ( 2 1)0 的结果是 _________ . 13、(2009·齐齐哈尔中考)已知10m2 10 n3 则 10 3m 2 n ____________.,,14、(2008·恩施中考)计算 ( a 3 )2.15、(2008 ·荆门中考 )2x 2 3 = ___________ .16、(2007·泉州中考)计算: ( 103) 2=。
初中数学《整式的乘除》常考题练习题及参考答案与解析(word版)
《整式的乘除》常考题练习题及参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2019秋•河池期末)已知a m=3,a n=4,则a m+n的值为()A.12 B.7 C.D.2.(2018•深圳二模)下列各式计算结果不为a14的是()A.a7+a7B.a2•a3•a4•a5C.(﹣a)2•(﹣a)3•(﹣a)4•(﹣a)5D.a5•a9 3.(2018秋•湘桥区期末)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y6 4.(2018•咸宁模拟)计算(﹣a2b)3的结果是()A.﹣a6b3B.a6b C.3a6b3D.﹣3a6b35.(2015•曲水县模拟)下列运算正确的是()A.3x﹣2x=1 B.﹣2x﹣2=﹣C.(﹣a)2•a3=a6D.(﹣a2)3=﹣a66.(2015春•东平县校级期末)计算:(π﹣3.14)0+(﹣0.125)2008×82008的结果是()A.π﹣3.14 B.0 C.1 D.27.(2017春•滨湖区校级月考)如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个B.1个C.2个D.3个8.(2019春•徐州期中)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a9.(2019秋•福清市期末)下列各式运算的结果可以表示为20195()A.(20193)2B.20193×20192C.201910÷20192D.20193+2019210.(2019秋•内江期末)若3x=5,3y=4,9z=2,则32x﹣y+4z的值为()A.B.10 C.20 D.2511.(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x512.(2019秋•云阳县期末)下列等式中正确的个数是()①a5+a3=a10②(﹣a)6•(﹣a)3•a=a10③﹣a4•(﹣a)5=a20④(﹣a)5÷a2=﹣a3A.1个B.2个C.3个D.4个13.(2019•内江模拟)2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.614.(2019•邵阳县一模)近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣515.(2019•烟台一模)碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米16.(2018•务川县二模)计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a 17.(2016•满洲里市模拟)下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a6 18.(2014春•桥东区期末)下列计算错误的是()A.﹣3x(2﹣x)=﹣6x+3x2B.(2m2n﹣3mn2)(﹣mn)=﹣2m3n2+3m2n3C.xy(x2y﹣3xy2﹣1)=x3y2﹣x2y3D.(x n+1﹣y)xy=x n+2y﹣xy219.(2017春•全椒县期末)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=020.(2018春•杭州期中)已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=9 21.(2019秋•张掖期末)下列各式中,能用平方差公式计算的是()A.(﹣a﹣b)(a+b)B.(﹣a﹣b)(a﹣b)C.(﹣a﹣b+c)(﹣a﹣b+c)D.(﹣a+b)(a﹣b)22.(2019秋•张掖期末)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b223.(2019秋•海安市期中)下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)24.(2019秋•田家庵区期末)如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)25.(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣226.(2017•南召县一模)在下列运算中,计算正确的是()A.(x5)2=x7B.(x﹣y)2=x2﹣y2C.x13÷x3=x10D.x3+x3=x627.(2016•武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+928.(2014秋•长清区期末)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2+b2C.(a+b)2=a2+b2D.(a+b)2=a2+2ab+b229.(2019春•港南区期末)已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0 B.1 C.5 D.1230.(2017•萧山区模拟)如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,31.(2014秋•洪山区期末)某学习小组学习《整式的乘除》这一章后,共同研究课题,用4个能够完全重合的长方形,长、宽分别为a、b拼成不同的图形.在研究过程中,一位同学用这4个长方形摆成了一个大正方形.如图,利用面积不同表示方法验证了下面一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2﹣(a﹣b)2=4abC.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b232.(2019秋•海珠区期末)如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3 B.4 C.5 D.633.(2019秋•黄石期末)长方形的面积是9a2﹣3ab+6a3,一边长是3a,则它的另一边长是()A.3a2﹣b+2a2B.b+3a+2a2C.2a2+3a﹣b D.3a2﹣b+2a34.(2019秋•曲沃县期末)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+135.(2019秋•越城区期末)如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b36.(2019秋•忻州期末)计算27m6÷(﹣3m2)3的结果是()A.1 B.﹣1 C.3 D.﹣337.(2019秋•东城区期末)下列各式计算正确的是()A.3a2•a﹣1=3a B.(ab2)3=ab6C.(x﹣2)2=x2﹣4 D.6x8÷2x2=3x438.(2019秋•滦南县期末)若代数式[2x3(2x+1)]÷(2x2)与x(1﹣6x)的值互为相反数,则x 的值()A.0 B.C.4 D.39.(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.3040.(2019秋•张掖期末)如图,正方体的每一个面上都有一个正整数,已知相对的两个面上两数之和都相等.如果13、9、3对面的数分别为a、b、c,则a2+b2+c2﹣ab﹣bc﹣ca的值等于()A.48 B.76 C.96 D.152二、填空题(共30小题)41.(2017秋•黄浦区期中)计算:(a﹣b)•(b﹣a)2=(结果用幂的形式表示).42.(2017•武侯区模拟)我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)43.(2018秋•新疆期末)若x+4y=3,则2x•16y的值为.44.(2015春•张家港市期末)如果等式(2a﹣1)a+2=1,则a的值为.45.(2018•殷都区三模)计算:()﹣2﹣(3.14﹣π)0=.46.(2018春•沂源县期中)5k﹣3=1,则k﹣2=.47.(2019秋•闵行区期末)将代数式2﹣1x﹣3y2化为只含有正整数指数幂的形式.48.(2015春•邗江区校级期中)已知a=﹣(0.2)2,b=﹣2﹣2,c=(﹣)﹣2,d=(﹣)0,则比较a、b、c、d的大小结果是(按从小到大的顺序排列).49.(2013春•余姚市校级期中)已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是.50.(2019秋•邹城市期末)已知3a=m,81b=n,则32a﹣4b等于.51.(2019秋•莫旗期末)手机上使用14nm芯片,1nm=0.0000001cm,则14nm用科学记数法表示为cm.52.(2017•北辰区校级模拟)如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.53.(2018春•合浦县期中)﹣2a(3a﹣4b)=.54.(2014秋•渝北区期末)计算:2x2•(﹣3x3)=.55.(2018春•济南期末)已知(x+1)(x﹣2)=x2+mx+n,则m+n=.56.(2015春•昌邑市期末)已知(x+a)(x+b)=x2+5x+ab,则a+b=.57.(2018秋•福州期末)已知x2+3x﹣5=0,则x(x+1)(x+2)(x+3)的值是.58.(2015春•兴化市校级期末)在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是.59.(2016春•沛县期末)如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=.60.(2019秋•黄石期末)计算2019×2017﹣20182=.61.(2017•江岸区模拟)一个正方形的边长增加了3cm,面积相应增加了39cm2,则原来这个正方形的边长为cm.62.(2015秋•安陆市期末)如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是.63.(2019春•慈溪市期中)根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是.64.(2018•恩阳区模拟)已知a+b=3,ab=2,则a2+b2的值为.65.(2018秋•龙岩期末)若a﹣=4,则a2+=.66.(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=.67.(2018秋•齐齐哈尔期末)若x2﹣6x+k是x的完全平方式,则k=.68.(2019春•三明期末)如图,两个正方形边长分别为a、b,如果a+b=7,ab=13,则阴影部分的面积为.69.(2016秋•肇源县期末)长方形面积是3a2﹣3ab+6a,一边长为3a,则它的另一边长是.70.(2012•菏泽)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=.三、解答题(共30小题)71.(2014春•句容市期中)一个长方形的长是4.2×104cm,宽是2×104cm,求此长方形的面积及周长.72.(2018春•苏州期中)规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.73.(2016秋•宜阳县校级月考)比较3555,4444,5333的大小.74.(2014春•姜堰市期中)已知3m=2,3n=5.(1)求3m+n的值;(2)求3×9m×27n的值.75.(2019春•沭阳县期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)76.(2018秋•武冈市期末)阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.77.(2014春•乳山市期末)计算:[(xy﹣2)÷x0•y﹣3﹣x﹣3y3]÷x﹣1y5.78.(2017春•临淄区校级期中)小丽在学习了“除零以外的任何数的零次幂的值为1”后,遇到这样一道题:“如果(x﹣2)x+3=1,求x的值”,她解答出来的结果为x=﹣3.老师说她考虑的问题不够全面,你能帮助小丽解答这个问题吗?79.(2014秋•射阳县期末)若a m=3,a n=5,求a2m+3n和a3m﹣2n的值.80.(2017春•江阴市期中)已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.81.(2019秋•上蔡县期中)(1)若10a=2,10b=3,求102a+b的值;(2)若3m=6,9n=2,求32m﹣4n+1的值.82.(2019秋•崇川区校级月考)解决下列有关幂的问题(1)若9×27x=317,求x的值;(2)已知a x=﹣2,a y=3.求a3x﹣2y的值;(3)若x=×25n+×5n+,y=×25n+×5n+1,请比较x与y的大小.83.(2018春•吴兴区校级期中)计算(1)(﹣1)2017+()﹣2+(3.14﹣π)0(2)(﹣2x2)3+4x3•x3.84.(2014秋•德惠市期末)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.85.(2016春•龙口市期中)某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?86.(2019春•太原期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.87.(2018春•张店区期末)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.88.(2017秋•宝山区期末)(2x﹣y+1)(2x+y﹣1)(用公式计算)89.(2019春•赫山区期末)某同学在计算3(4+1)(42+1)时,把3写成4﹣1后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=162﹣1=255.请借鉴该同学的经验,计算:.90.(2015秋•锦江区校级期末)①如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,设图1中的阴影部分面积为S,则S=(用含a,b代数式表示).②若把图1中的图形,沿着线段AB剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.91.(2019春•高邑县期末)乘法公式的探究及应用:(1)如图1所示,可以求出阴影部分的面积是(写成两数平方差的形式).(2)若将图1中的阴影部分裁剪下来,重新拼成一个如图2的矩形,此矩形的面积是(写成多项式乘法的形式).(3)比较两图的阴影部分面积,可以得到乘法公式.(4)应用所得的公式计算:.92.(2019秋•偃师市期中)(1)当a=﹣2,b=1时,求两个代数式(a+b)2与a2+2ab+b2的值;(2)当a=﹣2,b=﹣3时,再求以上两个代数式的值;(3)你能从上面的计算结果中,发现上面有什么结论.结论是:;(4)利用你发现的结论,求:19652+1965×70+352的值.93.(2019春•邗江区期中)若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.94.(2018春•吉州区期末)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:方法2:(2)观察图②请你写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a>0,a﹣=1,求:a+的值.95.(2018春•文登区期末)有若干张如图1所示的A,B,C三种卡片,A表示边长为m的正方形,B表示边长为n的正方形,C表示长为m、宽为n的长方形(1)小明用1张A卡片,4张B卡片,4张C卡片拼成了一个大正方形,这个大正方形的面积为,边长为(2)小玲想用这三种卡片拼一个如图2所示的长为(2m+n),宽为(m+n)的长方形,需要A,B,C三种卡片各多少张?请说明理由,并在图2的长方形中画出一种拼法.(标上卡片名称)96.(2014秋•太和县期末)计算:(8a3b﹣5a2b2)÷4ab.97.(2005•陕西)计算:(a2+3)(a﹣2)﹣a(a2﹣2a﹣2).98.(2011•益阳)观察下列算式:①1×3﹣22=3﹣4=﹣1②2×4﹣32=8﹣9=﹣1③3×5﹣42=15﹣16=﹣1④…(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.99.(2019秋•南召县期末)化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.100.(2018秋•南召县期末)先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2019秋•河池期末)已知a m=3,a n=4,则a m+n的值为()A.12 B.7 C.D.【知识考点】同底数幂的乘法.【思路分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答过程】解:a m+n=a m•a n=3×4=12,故选:A.【总结归纳】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.2.(2018•深圳二模)下列各式计算结果不为a14的是()A.a7+a7B.a2•a3•a4•a5C.(﹣a)2•(﹣a)3•(﹣a)4•(﹣a)5D.a5•a9【知识考点】合并同类项;同底数幂的乘法.【思路分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,针对每一个选项进行计算即可.【解答过程】解:A、a7+a7=2a7,此选项正确,符合题意;B、a2•a3•a4•a5=a2+3+4+5=a14,此选项错误,不符合题意;C、(﹣a)2•(﹣a)3•(﹣a)4•(﹣a)5=(﹣a)14=a14,此选项错误,不符合题意;D、a5•a9=a14,此选项错误,不符合题意.故选:A.【总结归纳】此题主要考查了同底数幂的乘法,合并同类项,关键是熟练掌握计算法则,并能正确运用.3.(2018秋•湘桥区期末)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】直接利用合并同类项法则以及幂的乘方运算法则和积的乘方运算法则分别计算得出答案.【解答过程】解:A、b3•b3=b6,故此选项不符合题意;B、(ab2)3=a3b6,故此选项不符合题意;C、(a5)2=a10,故此选项符合题意;D、y3+y3=2y3,故此选项不符合题意;故选:C.【总结归纳】此题主要考查了合并同类项以及幂的乘方运算和积的乘方运算,正确掌握相关运算法则是解题关键.4.(2018•咸宁模拟)计算(﹣a2b)3的结果是()A.﹣a6b3B.a6b C.3a6b3D.﹣3a6b3【知识考点】幂的乘方与积的乘方.【思路分析】利用积的乘方性质:(ab)n=a n•b n,幂的乘方性质:(a m)n=a mn,直接计算.【解答过程】解:(﹣a2b)3=﹣a6b3.故选:A.【总结归纳】本题考查了幂运算的性质,注意结果的符号确定,比较简单,需要熟练掌握.5.(2015•曲水县模拟)下列运算正确的是()A.3x﹣2x=1 B.﹣2x﹣2=﹣C.(﹣a)2•a3=a6D.(﹣a2)3=﹣a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【思路分析】结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确选项.【解答过程】解:A、3x﹣2x=x,原式计算错误,故本选项不符合题意;B、﹣2x﹣2=﹣,原式计算错误,故本选项不符合题意;C、(﹣a)2•a3=a5,原式计算错误,故本选项不符合题意;D、(﹣a2)3=﹣a6,原式计算正确,故本选项符合题意.故选:D.【总结归纳】本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法等知识,解答本题的关键是掌握各知识点的运算法则.6.(2015春•东平县校级期末)计算:(π﹣3.14)0+(﹣0.125)2008×82008的结果是()A.π﹣3.14 B.0 C.1 D.2【知识考点】有理数的乘方;零指数幂.【思路分析】分别根据零指数幂及幂的乘方运算法则进行计算即可.【解答过程】解:原式=1+(﹣×8)2008=1+1=2.故选:D.【总结归纳】本题考查了零指数幂及幂的乘方的运算,属于基础题,掌握各部分的运算法则是关键.7.(2017春•滨湖区校级月考)如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个B.1个C.2个D.3个【知识考点】有理数的乘方;零指数幂.【思路分析】根据等式(2a﹣1)a+2=1成立,可得,2a﹣1=1,2a﹣1=﹣1(此时a+2是偶数),据此求出a的值可能有哪些即可.【解答过程】解:∵等式(2a﹣1)a+2=1成立,∴,2a﹣1=1,2a﹣1=﹣1(此时a+2是偶数),(1)由,解得a=﹣2.(2)由2a﹣1=1,解得a=1.(3)由2a﹣1=﹣1,解得a=0,此时a+2=2,(﹣1)2=1.综上,可得a的值可能有3个:﹣2、1、0.故选:D.【总结归纳】此题主要考查了零指数幂的运算,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.8.(2019春•徐州期中)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【知识考点】有理数大小比较;零指数幂;负整数指数幂.【思路分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【解答过程】解:a=0.32=0.09,b=﹣3﹣2=﹣,c=(﹣3)0=1,∴c>a>b,故选:B.【总结归纳】本题主要考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.9.(2019秋•福清市期末)下列各式运算的结果可以表示为20195()A.(20193)2B.20193×20192C.201910÷20192D.20193+20192【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘法运算法则将原式变形得出答案.【解答过程】解:20195=20193×20192.故选:B.【总结归纳】此题主要考查了同底数幂的乘法运算,正确掌握相关法则是解题关键.10.(2019秋•内江期末)若3x=5,3y=4,9z=2,则32x﹣y+4z的值为()A.B.10 C.20 D.25【知识考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除运算法则将原式化简得出答案.【解答过程】解:∵3x=5,3y=4,9z=2=32z,∴32x﹣y+4z=(3x)2÷3y×(32z)2=25÷4×22=25.故选:D.【总结归纳】此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.11.(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x5【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除法运算法则以及结合幂的乘方运算法则分别化简求出答案.【解答过程】解:A、x3﹣x2,无法计算,故此选项不符合题意;B、x3•x2=x5,故此选项不符合题意;C、x3÷x2=x,故此选项符合题意;D、(x3)2=x5,故此选项不符合题意;故选:C.【总结归纳】此题主要考查了同底数幂的乘除法运算法则以及幂的乘方运算等知识,正确掌握相关法则是解题关键.12.(2019秋•云阳县期末)下列等式中正确的个数是()①a5+a3=a10②(﹣a)6•(﹣a)3•a=a10③﹣a4•(﹣a)5=a20④(﹣a)5÷a2=﹣a3A.1个B.2个C.3个D.4个【知识考点】同底数幂的乘法;同底数幂的除法.【思路分析】根据同底数幂的除法的运算方法,以及同底数幂的乘法的运算方法,逐项判断即可.【解答过程】解:∵a5+a3≠a10,∴选项①不符合题意;∵(﹣a)6•(﹣a)3•a=﹣a10,∴选项②不符合题意;∵﹣a4•(﹣a)5=a9,∴选项③不符合题意;∵(﹣a)5÷a2=﹣a3,∴选项④符合题意,∴等式中正确的有1个:④.故选:A.【总结归纳】此题主要考查了同底数幂的除法的运算方法,以及同底数幂的乘法的运算方法,要熟练掌握.13.(2019•内江模拟)2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.6【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答过程】解:0.0000084=8.4×10﹣6,则n为﹣6.故选:B.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(2019•邵阳县一模)近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣5【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答过程】解:0.00016=1.6×10﹣4,故选:C.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.(2019•烟台一模)碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米【知识考点】科学记数法—表示较小的数.【思路分析】0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米.小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,在本题中a为5,n为5前面0的个数.【解答过程】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.故选:D.【总结归纳】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数.注意应先把0.5纳米转化为用米表示的数.16.(2018•务川县二模)计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a【知识考点】幂的乘方与积的乘方;单项式乘单项式;零指数幂;负整数指数幂.【思路分析】根据整式乘法运算法则以及实数运算法则即可求出答案.【解答过程】解:(A)原式=1,故本选项不符合题意;(B)x3与x4不是同类项,不能进行合并,故本选项不符合题意;(C)原式=a4b6,故本选项不符合题意;(D)2a2•a﹣1=2a,故本选项符合题意.故选:D.【总结归纳】本题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17.(2016•满洲里市模拟)下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a6【知识考点】合并同类项;去括号与添括号;幂的乘方与积的乘方;单项式乘单项式.【思路分析】根据乘法分配律;合并同类项系数相加字母及指数不变;系数乘系数,同底数幂的乘法底数不变指数相加;积的乘方等于乘方的积,可得答案.【解答过程】解:A、﹣5(a﹣1)=﹣5a+5,故本选项不符合题意;B、合并同类项系数相加字母及指数不变,故本选项不符合题意;C、系数乘系数,同底数幂的乘法底数不变指数相加,故本选项不符合题意;D、积的乘方等于乘方的积,故本选项符合题意;故选:D.【总结归纳】本题考查了单项式的乘法,熟记法则并根据法则计算是解题关键.18.(2014春•桥东区期末)下列计算错误的是()A.﹣3x(2﹣x)=﹣6x+3x2B.(2m2n﹣3mn2)(﹣mn)=﹣2m3n2+3m2n3C.xy(x2y﹣3xy2﹣1)=x3y2﹣x2y3D.(x n+1﹣y)xy=x n+2y﹣xy2【知识考点】单项式乘多项式.【思路分析】各项利用单项式乘多项式法则计算得到结果,即可做出判断.【解答过程】解:A、﹣3x(2﹣x)=﹣6x+3x2,计算正确,故本选项不符合题意;B、(2m2n﹣3mn2)(﹣mn)=﹣2m3n2+3m2n3,计算正确,故本选项不符合题意;C、xy(x2y﹣3xy2﹣1)=x3y2﹣3x2y3﹣xy,计算错误,故本选项符合题意;D、(x n+1﹣y)xy=x n+2y﹣xy2,计算正确,故本选项不符合题意.故选:C.【总结归纳】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.19.(2017春•全椒县期末)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0【知识考点】多项式乘多项式.【思路分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答过程】解:(x2+px+q)(x﹣2)=x3﹣2x2+px2﹣2px+qx﹣2q=x3+(p﹣2)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【总结归纳】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.20.(2018春•杭州期中)已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=9【知识考点】多项式乘多项式.【思路分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.不含某一项就是说这一项的系数为0.【解答过程】解:∵原式=x3+(m﹣3)x2+(n﹣3m)x﹣3n,又∵乘积项中不含x2和x项,∴(m﹣3)=0,(n﹣3m)=0,解得,m=3,n=9.故选:A.【总结归纳】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.21.(2019秋•张掖期末)下列各式中,能用平方差公式计算的是()A.(﹣a﹣b)(a+b)B.(﹣a﹣b)(a﹣b)C.(﹣a﹣b+c)(﹣a﹣b+c)D.(﹣a+b)(a﹣b)【知识考点】平方差公式.【思路分析】分别将四个选项变形,找到符合a2﹣b2=(a﹣b)(a+b)的即可解答.【解答过程】解:A、(﹣a﹣b)(a+b)=﹣(a+b)(a+b),不符合平方差公式,故本选项不符合题意;B、(﹣a﹣b)(a﹣b)=﹣(a+b)(a﹣b)=b2﹣a2,符合平方差公式,故本选项符合题意;C、(﹣a﹣b+c)(﹣a﹣b+c)=[c﹣(a+b)]2,不符合平方差公式,故本选项不符合题意;D、(﹣a+b)(a﹣b)=﹣(a﹣b)(a﹣b),不符合平方差公式,故本选项不符合题意.故选:B.【总结归纳】本题考查了平方差公式,将算式适当变形是解题的关键.22.(2019秋•张掖期末)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2【知识考点】平方差公式.【思路分析】根据平方差公式的逆用找出这两个数写出即可.【解答过程】解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.【总结归纳】本题主要考查了平方差公式,熟记公式结构是解题的关键.23.(2019秋•海安市期中)下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)【知识考点】平方差公式.【思路分析】利用平方差公式的结构特征判断即可.【解答过程】解:能用平方差公式计算的是(a2﹣1)(﹣a2﹣1)=﹣(a2﹣1)(a2+1),相同项是a2,相反项是1.故选:C.【总结归纳】此题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.24.(2019秋•田家庵区期末)如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)【知识考点】4G:平方差公式的几何背景.【思路分析】由大正方形的面积﹣小正方形的面积=矩形的面积,进而可以证明平方差公式.【解答过程】解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故(a+b)(a﹣b)=a2﹣b2,故选:A.【总结归纳】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.25.(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【知识考点】4G:平方差公式的几何背景.【思路分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答过程】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【总结归纳】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.26.(2017•南召县一模)在下列运算中,计算正确的是()A.(x5)2=x7B.(x﹣y)2=x2﹣y2C.x13÷x3=x10D.x3+x3=x6【知识考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式.【思路分析】利用积的乘方,完全平方公式,同底数的幂的除法,以及合并同类项求出结果即可确定答案.【解答过程】解:A、(x5)2=x10,故本选项不符合题意;B、(x﹣y)2=x2﹣2xy+y2,故本选项不符合题意;C、x13÷x3=x10,故本选项符合题意;D、x3+x3=2x3,故本选项不符合题意.故选:C.【总结归纳】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.27.(2016•武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+9【知识考点】4C:完全平方公式.【思路分析】根据完全平方公式,即可解答.【解答过程】解:(x+3)2=x2+6x+9,故选:C.。
数学中考一轮复习专项突破训练:整式的乘除与因式分解(含答案)
数学中考一轮复习专项突破训练:整式的乘除与因式分解(附答案)1.计算:m 6•m 2的结果为( )A .m 12B .m 8C .m 4D .m 32.下列计算结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)23.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -=D .(﹣2a )3=﹣8a 34.如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-65.从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 26.下列因式分解正确的是( )A .4a b ﹣63a b+92a b=2a b (2a ﹣6a+9)B .2x ﹣x+=21()2x -C .2x ﹣2x+4=2(2)x -D .42x ﹣2y =(4x+y )(4x ﹣y )7.如图①,在边长为a 的正方形中剪去一个边长为b (b <a )的小正方形,把剩下部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的等式是( )A .a 2+b 2=(a +b )(a -b )B .(a -b )2=a 2-2ab +b 2C .(a +b )2=a 2+2ab +b 2D .a 2-b 2=(a +b )(a -b )8.已知x+1x=6,则x 2+21x =( ) A .38 B .36 C .34 D .329.分解因式b 2(x -3)+b (x -3)的正确结果是A .(x -3)(b 2+b )B .b (x -3)(b +1)C .(x -3)(b 2-b )D .b (x -3)(b -1)10.在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=,()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030 B .201010 C .301020 D .20301011.已知,,则的值是____.12.把多项式9x 3﹣x 分解因式的结果是_____.13.如图,小倩家买了一套新房,其结构如图所示(单位:m ).施工方已经根据合同约定把公共区域(客厅、餐厅、厨房、卫生间)铺上了地板砖,小倩打算把两个卧室铺上实木地板,则小倩需要准备的地板面积是________________.14.计算4444444444(34)(74)(114)(154)...(394)(54)(94)(134)(174) (414)++++++++++ =_____. 15.计算:(1)(﹣4x 2)(3x+1)(2)5x 2y÷(﹣xy )×2xy 216.先化简,再求值:(x ﹣2y )2+(x+y )(x ﹣4y ),其中x =5,y =15. 17.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左、右两数之和,它给出了(a +b )n (n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a +b )2=a 2+2ab +b 2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a +b )3=a 3+3a 2b +3ab 2+b 2展开式中的系数等. (1)(a +b )n 展开式中项数共有 项.(2)写出(a +b )5的展开式:(a +b )5= .(3)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.18.在多项式的乘法公式中,完全平方公式()2222a b a ab b +=++是其中重要的一个.(1)请补全完全平方公式的推导过程: ()()()2a b a b a b +=++,22____________a b =+++,22______a b =++.(2)用完全平方公式求2598的值.19.分解因式:(1)x 2﹣16x .(2)(x 2﹣x )2﹣12(x 2﹣x )+36.20.如果一个正整数m 能写成m =a 2﹣b 2(a 、b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a 、b 为m 的一个平方差分解,规定:F (m )=b a. 例如:8=8×1=4×2,由8=a 2﹣b 2=(a +b )(a ﹣b ),可得81a b a b +=⎧⎨-=⎩或42a b a b +=⎧⎨-=⎩.因为a 、b 为正整数,解得31a b =⎧⎨=⎩,所以F (8)=13.又例如:48=132﹣112=82﹣42=72﹣12,所以F (48)=1113或12或17. (1)判断:6 平方差数(填“是“或“不是“),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x 、y 是整数),且满足s +t 是11的倍数,求F (t )的最大值参考答案1.B2.C3.D4.B5.C6.B7. D.8.C9.B10.B11.1012.x(3x+1)(3x﹣1)13.10ab14.1 35315.(1)(﹣4x2)(3x+1)=﹣12x3﹣4x2;(2)5x2y÷(﹣xy)×2xy2=﹣5x×2xy2=﹣10x2y2.16.原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=15时,原式=50﹣7=43.17.解:(1))(a+b)n展开式中项数共有n+1项,故答案为n+1;(2)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5故答案为a5+5a4b+10a3b2+10a2b3+5ab4+b5(3)25﹣5×24+10×23﹣10×22+5×2﹣1=25+5×24×(﹣1)+10×23×(﹣1)2+10×22×(﹣1)3+5×2×(﹣1)4+(﹣1)5=(2﹣1)5=1.18.(1)(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2故答案为:ab,ab,2ab;(2)5982=[(600+(-2)]2=6002+2×600×(-2)+(-2)2=360000-2400+4=357604.或5982=(600-2)2=6002-2×600×2+22=360000-2400+4=357604.19.(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.20.解:(1)根据题意,6=2×3=1×6,由6=a2﹣b2=(a+b)(a﹣b)可得,23a ba b+=⎧⎨-=⎩或16a ba b+=⎧⎨-=⎩,因为a,b为正整数,则可判断出6不是平方差数.故答案为:不是.根据题意,45=3×15=5×9=1×45,由45=a2﹣b2=(a+b)(a﹣b),可得153a ba b+=⎧⎨-=⎩或95a ba b+=⎧⎨-=⎩或451a ba b+=⎧⎨-=⎩.∵a和b都为正整数,解得96ab=⎧⎨=⎩或72ab=⎧⎨=⎩或2322ab=⎧⎨=⎩,∵F(45)=23或27或2223.(2)根据题意,s=100x+5,t=10y+x,∵s+t=100x+10y+x+5∵1≤x≤4,1≤y≤9,x、y是整数∵100≤100x≤400,10≤10≤90,6≤x+5≤9∵116≤s+t≤499∵s+t为11的倍数∵s+t最小为11的11倍,最大为11的45倍∵100x末位为0,10y末位为0,x+5末位为6到9之间的任意一个整数∵s+t为一个末位是6到9之间的任意一个整数∵当x=1时,x+5=6∵11×16=176,此时x=1,y=7∵t=71根据题意,71=71×1,由71=a2﹣b2=(a+b)(a﹣b),可得711a ba b+=⎧⎨-=⎩,解得3635ab=⎧⎨=⎩,∵F(t)=3536∵当x=2时,x+5=7∵11×27=297,此时x=2,y=9∵t=92根据题意,92=92×1=46×2=23×4,由92=a2﹣b2=(a+b)(a﹣b),可得921a ba b+=⎧⎨-=⎩或462a ba b+=⎧⎨-=⎩或234a ba b+=⎧⎨-=⎩解得2422 ab=⎧⎨=⎩,∵F(t)=11 12∵当x=3时,x+5=8∵11×38=418,此时x=3,y没有符合题意的值∵11×28=308,此时x=3,y没有符合题意的值∵当x=4时,x+5=9∵11×39=429,此时x=4,y=2∵t=24根据题意,24=24×1=12×2=8×3=6×4,由24=a2﹣b2=(a+b)(a﹣b),可得241a ba b+=⎧⎨-=⎩或122a ba b+=⎧⎨-=⎩或83a ba b+=⎧⎨-=⎩或64 a ba b+=⎧⎨-=⎩解得75ab=⎧⎨=⎩或51ab=⎧⎨=⎩,∵F(t)=57或1511×49=539不符合题意综上,F(t)=3536或F(t)=1112或F(t)=57或F(t)=15∵F(t)的最大值为35 36。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考之整式的乘除专题训练
一、选择题(共10小题,每小题3分,共30分)
温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1.下列运算正确的是( )
A. 9
5
4
a a a =+ B. 3
3
3
3
3a a a a =⋅⋅ C. 9
5
4
632a a a =⨯ D. ()
74
3
a a =-
=⎪
⎭⎫ ⎝
⎛
-⨯⎪⎭
⎫ ⎝⎛-2012
2012
532135.2( )
A. 1-
B. 1
C. 0
D. 1997 3.设()()A b a b a +-=+2
2
3535,则A=( )
A. 30ab
B. 60ab
C. 15ab
D. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )
A. 25. B 25- C 19 D 、19- 5.已知,5,3==b
a
x x 则=-b
a x 23( )
A 、
2527 B 、10
9
C 、53
D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有
A 、①②
B 、③④
C 、①②③
D 、①②③④ ( ) 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3
B 、3
C 、0
D 、1
8.已知.(a+b)2=9,ab= -11
2 ,则a²+b 2的值等于( )
A 、84
B 、78
C 、12
D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )
n
m a b
a
A .a 8+2a 4b 4+b 8
B .a 8-2a 4b 4+b 8
C .a 8+b 8
D .a 8-b 8 10.已知m m Q m P 15
8
,11572-=-=
(m 为任意实数),则P 、Q 的大小关系为 ( )
A 、Q P >
B 、Q P =
C 、Q P <
D 、不能确定
二、填空题(共6小题,每小题4分,共24分)
温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11.设12142
++mx x 是一个完全平方式,则m =_______。
12.已知51
=+
x x ,那么221x
x +=_______。
13.方程()()()()41812523=-+--+x x x x 的解是_______。
14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。
15.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________. 16.若622=-n m ,且3=-n m ,则=+n m . 三、解答题(共8题,共66分)
温馨提示:解答题必须将解答过程清楚地表述出来! 17计算:(本题9分) (1)()()0
2
2012
14.3211π--⎪⎭
⎫ ⎝⎛-+--
(2)(2)()()()()2
3
3
2
32222x y x xy y x ÷-+-⋅
(3)(
)()2
2
2223366m m n m n m -÷--
18、(本题9分)(1)先化简,再求值:()()()()2
2
1112++++-+--a b a b a b a ,
其中2
1
=a ,2-=b 。
(2)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.
(3)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .
19、(本题8分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,且E 为AB 边的中点,CF=1
3 BC ,现打算在阴影部分种植一片草坪,求这片草坪的面积。
20、(本题8分)若(x 2+mx-8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值
21、(本题8分)若a =2005,b =2006,c =2007,求ac bc ab c b a ---++2
2
2
的值。
22、(本题8分).说明代数式[]
y y y x y x y x +-÷-+--)2())(()(2的值,与y 的值无关。
23、(本题8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形
地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?•并求出当a=3,b=2时的绿化面积.
24、(本题8分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:
若每月每户用水不超过a吨,每吨m元;若超过a吨,则超过的部分以每吨2m 元计算.•现有一居民本月用水x吨,则应交水费多少元?
参考答案
一、选择题
二、填空题
11.
44± 12. 23 13.
14
11
-
=x 14. -3 15. a+b=c 16. 2
D
三、解答题
17计算:(本题9分)
4141)1(=-+=解原式
3522642)2(4)2(y x x xy y x -=÷-⋅=解原式 122)3(2++-=n n 解原式
13
841,2,2
1
244)1()1(44)1.(182
22
2222=++=-==+-=++++-+-=原式时当解原式b a b ab a a b a b ab a
(2)由31=-x 得13+=x
化简原式=444122+--++x x x
=122+-x x =1)13(2)13(2++-+ =12321323+--++ =3
(3)原式=a a 62
+, 当12-=
a 时,原式=324-.
ab b a ab ab S 222
1
621619=⨯-⨯-
=阴影解
⎩⎨
⎧==∴⎩⎨⎧=--=-∴-++--+-+=-+-+-++-=17
3
08303,8)24()83()3(8248332032234223234n m m n m x x n x m n x m n x m x n x x m nx m x m x nx x x 项和不含解原式
[]
()34112
1
2007,2006,2005,)()()(2
1
2122=++=
===-+-+-=原式时当解原式c b a c a c b b a
无关
代数式的值与解原式y x y y x y y y x y xy x ∴=+-=+-÷+-+-=)2()2(222222
ma
mx ma mx am a x m am a x mx a x -=-+=-+≤222)(2,;
,24时如果元应交水费时解如果 63
,2,335)()3)(2(.2322===+=+-++=原式时当解绿化b a ab
a b a b a b a S。