全等三角形的判定(2)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.2 三角形全等的条件(二)
创设情景
A
B
因铺设电线的需要,要在 池塘两侧A、B处各埋设一根 电线杆(如图),因无法直 接量出A、B两点的距离,现 有一足够的米尺。怎样测出A、 B两杆之间的距离呢?。
知识回顾
三边对应相等的两个三角形全等(可以简写 为“边边边”或“SSS”)。 用 数学语言表述:
1. 三角形全等的条件,两边和它们的夹角对应相等的两 个三角形全等 (边角边或SAS) 2. 用尺规作图:已知两边及其夹角的三角形画三角 形 3、会判定三角形全等
作业
• 1、P43 2 3 10 • 2、《名师学案》
A B 归纳:判定两条线段相等或二个角相等可以通 过从它们所在的两个三角形全等而得到。
探究新知
A
B
因铺设电线的需要,要在 池塘两侧A、B处各埋设一根 电线杆(如图),因无法直 接量出A、B两点的距离,现 有一足够的米尺。请你设计 一种方案,粗略测出A、B两 杆之间的距离。。
小明的设计方案:先在池塘旁取一 个能直接到达A和B处的点C,连结AC并 延长至D点,使AC=DC,连结BC并延长 至E点,使BC=EC,连结CD,用米尺测 出DE的长,这个长度就等于A,B两点的 距离。请你说明理由。
A
分析: △ ABD ≌△ CBD
边: AB=CB(已知) (SAS)
B
D
角: ∠ABD= ∠CBD(已知) 边:
C
?
现在例1的已知条件不改变,而问题改 变成:
问AD=CD,BD平分∠ADC吗?
例题 推广
已知:如图, AB=CB ,∠ ABD= ∠ CBD 。
问AD=CD, BD 平分∠ ADC 吗?
A
B C
D
练习 (2) 已知:AD=CD, BD 平分∠ ADC 。 问∠A=∠ C 吗?
A B C
D
补充题:
例1 如图AC与BD相交于点O, 已知OA=OC,OB=OD,说明 △AOB≌△COD的理由。 A B
O
D C C D
例2 如图,AC=BD, ∠CAB= ∠DBA,你能判断 BC=AD吗?说明理由。
D
E
B
C
三个角对应相等的两个三角形不一定全等
探究2
做一做:画△ABC,使AB=3cm,AC=4cm。 这样画出来的三角形与同桌所画的三角形 进行比较,它们互相重合吗? 若再加一个条件,使∠A=45°,画出△ABC
画法: 1. 画∠MAN= 45° 2. 在射线AM上截取AB= 3cm
3. 在射线AN上截取AC=4cm 4.连接BC ∴△ABC就是所求的三角形 把你们所画的三角形剪下来与同桌所画的三角 形进行比较,它们能互相重合吗?
问:如图△ABC和△ DEF 中,
AB=DE=3 ㎝,∠ B=∠ E=300 , BC=EF=5 ㎝
则它们完全重合?即△ABC≌△ DEF ? A 3㎝ B
300
D 3㎝
300
5㎝
CE
5㎝
F
问:如图△ABC和△ DEF 中,
AB=DE=3 ㎝,∠ B=∠ E=30°, BC=EF=5 ㎝
则它们完全重合?即△ABC≌△ DEF ? A D 3㎝ B E
300
5㎝
C F
三角形全等判定方法2
两边和它们的夹角对应相等的两个三 角形全等。简写成“边角边”或“SAS” 用符号语言表达为: 在△ABC与△DEF中 AB=DE
A
∠B=∠E BC=EF
B
C
D
∴△ABC≌△DEF(SAS)
E
F
例1
已知:如图, AB=CB ,∠ ABD= ∠ CBD △ ABD 和△ CBD 全等吗?
C FBiblioteka Baidu
A 40°
B
D
40°
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等
猜一猜: 是不是二条边和一个角对应相等,这样的两 个三角形一定全等吗?你能举例说明吗? 如图△ABC与△ABD中, AB=AB,AC=BD, ∠B=∠B 他们全等吗?
B C D
A
注:这个角一定要是这两边所夹的角
课堂小结:
AC=DC ∠ACB=∠DCE BC=EC △ACB≌△DCE AB=DE
小明做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件标注 在图中,小明不用测量就能知道EH=FH吗? 与同桌进行交流。
D E F
H
△EDH≌△FDH 根据“SAS”,所 以EH=FH
探究2
以3cm,5cm为三角形的两边,长度为 5cm的边所对的角为40° ,情况又怎样? 动手画一画,你发现了什么?
A
在△ABC和△ DEF中 AB=DE BC=EF CA=FD ∴ △ABC ≌△ DEF(SSS)
B
C
D
E
F
探究1
对于三个角对应相等的两个三角形全等吗? A 如图, △ABC和△ADE中, 如果 DE∥AB,则 ∠A=∠A,∠B=∠ADE, ∠C= ∠ AED,但△ABC 和△ADE不重合,所以不 全等。
创设情景
A
B
因铺设电线的需要,要在 池塘两侧A、B处各埋设一根 电线杆(如图),因无法直 接量出A、B两点的距离,现 有一足够的米尺。怎样测出A、 B两杆之间的距离呢?。
知识回顾
三边对应相等的两个三角形全等(可以简写 为“边边边”或“SSS”)。 用 数学语言表述:
1. 三角形全等的条件,两边和它们的夹角对应相等的两 个三角形全等 (边角边或SAS) 2. 用尺规作图:已知两边及其夹角的三角形画三角 形 3、会判定三角形全等
作业
• 1、P43 2 3 10 • 2、《名师学案》
A B 归纳:判定两条线段相等或二个角相等可以通 过从它们所在的两个三角形全等而得到。
探究新知
A
B
因铺设电线的需要,要在 池塘两侧A、B处各埋设一根 电线杆(如图),因无法直 接量出A、B两点的距离,现 有一足够的米尺。请你设计 一种方案,粗略测出A、B两 杆之间的距离。。
小明的设计方案:先在池塘旁取一 个能直接到达A和B处的点C,连结AC并 延长至D点,使AC=DC,连结BC并延长 至E点,使BC=EC,连结CD,用米尺测 出DE的长,这个长度就等于A,B两点的 距离。请你说明理由。
A
分析: △ ABD ≌△ CBD
边: AB=CB(已知) (SAS)
B
D
角: ∠ABD= ∠CBD(已知) 边:
C
?
现在例1的已知条件不改变,而问题改 变成:
问AD=CD,BD平分∠ADC吗?
例题 推广
已知:如图, AB=CB ,∠ ABD= ∠ CBD 。
问AD=CD, BD 平分∠ ADC 吗?
A
B C
D
练习 (2) 已知:AD=CD, BD 平分∠ ADC 。 问∠A=∠ C 吗?
A B C
D
补充题:
例1 如图AC与BD相交于点O, 已知OA=OC,OB=OD,说明 △AOB≌△COD的理由。 A B
O
D C C D
例2 如图,AC=BD, ∠CAB= ∠DBA,你能判断 BC=AD吗?说明理由。
D
E
B
C
三个角对应相等的两个三角形不一定全等
探究2
做一做:画△ABC,使AB=3cm,AC=4cm。 这样画出来的三角形与同桌所画的三角形 进行比较,它们互相重合吗? 若再加一个条件,使∠A=45°,画出△ABC
画法: 1. 画∠MAN= 45° 2. 在射线AM上截取AB= 3cm
3. 在射线AN上截取AC=4cm 4.连接BC ∴△ABC就是所求的三角形 把你们所画的三角形剪下来与同桌所画的三角 形进行比较,它们能互相重合吗?
问:如图△ABC和△ DEF 中,
AB=DE=3 ㎝,∠ B=∠ E=300 , BC=EF=5 ㎝
则它们完全重合?即△ABC≌△ DEF ? A 3㎝ B
300
D 3㎝
300
5㎝
CE
5㎝
F
问:如图△ABC和△ DEF 中,
AB=DE=3 ㎝,∠ B=∠ E=30°, BC=EF=5 ㎝
则它们完全重合?即△ABC≌△ DEF ? A D 3㎝ B E
300
5㎝
C F
三角形全等判定方法2
两边和它们的夹角对应相等的两个三 角形全等。简写成“边角边”或“SAS” 用符号语言表达为: 在△ABC与△DEF中 AB=DE
A
∠B=∠E BC=EF
B
C
D
∴△ABC≌△DEF(SAS)
E
F
例1
已知:如图, AB=CB ,∠ ABD= ∠ CBD △ ABD 和△ CBD 全等吗?
C FBiblioteka Baidu
A 40°
B
D
40°
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等
猜一猜: 是不是二条边和一个角对应相等,这样的两 个三角形一定全等吗?你能举例说明吗? 如图△ABC与△ABD中, AB=AB,AC=BD, ∠B=∠B 他们全等吗?
B C D
A
注:这个角一定要是这两边所夹的角
课堂小结:
AC=DC ∠ACB=∠DCE BC=EC △ACB≌△DCE AB=DE
小明做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件标注 在图中,小明不用测量就能知道EH=FH吗? 与同桌进行交流。
D E F
H
△EDH≌△FDH 根据“SAS”,所 以EH=FH
探究2
以3cm,5cm为三角形的两边,长度为 5cm的边所对的角为40° ,情况又怎样? 动手画一画,你发现了什么?
A
在△ABC和△ DEF中 AB=DE BC=EF CA=FD ∴ △ABC ≌△ DEF(SSS)
B
C
D
E
F
探究1
对于三个角对应相等的两个三角形全等吗? A 如图, △ABC和△ADE中, 如果 DE∥AB,则 ∠A=∠A,∠B=∠ADE, ∠C= ∠ AED,但△ABC 和△ADE不重合,所以不 全等。