第二章 染色体的形态特征及其
2第2章-遗传的细胞学基础-201231211

正 中 中 部 近 中 近 端 端 部 端 部
正 中 着 丝 点 染 色 体 中 着 丝 点 区 染 色 体 近 中 着 丝 点 区 染 色 体 近 端 着 丝 点 区 染 色 体 端 着 丝 点 区 染 色 体 端 着 丝 点 染 色 体
3.大小: 大小:
(1).各物种差异很大,染色体大小主要指长度, (1).各物种差异很大,染色体大小主要指长度, 各物种差异很大 同一物种染色体宽度大致相同。 同一物种染色体宽度大致相同。 植物: 植物: 长约0.20-50µm、 0.20宽约0.20-2.00µm。 0.20-
1.形态: 形态:
(1).组成:着丝粒、长臂和短臂; (1).组成:着丝粒、长臂和短臂; 组成 (2).着丝点: 细胞分裂时, (2).着丝点: 细胞分裂时,纺 着丝点 丝附着在着丝粒区域。 锺 丝附着在着丝粒区域。 着丝粒在特定的染色体中其 位置是恒定的。 位置是恒定的。 (3).次缢痕、随体是识别特定 (3).次缢痕、随体是识别特定 次缢痕 染色体的重要标志; 染色体的重要标志; (4).某些次缢痕具有组成核仁 (4).某些次缢痕具有组成核仁的 某些次缢痕具有组成核仁的 特殊功能。 特殊功能。
叶绿体(chloroplast) 叶绿体(chloroplast)
质体有叶绿体(chloroplast), 质体有叶绿体(chloroplast),有色体 (chloroplast) (chromoplast)和白色体(leukoplast), 和白色体(leukoplast) (chromoplast)和白色体(leukoplast),其 中最主要是叶绿体, 中最主要是叶绿体,这是绿色植物细胞中 所特有的一种细胞器。 所特有的一种细胞器。
三、各类型细胞之间的比较
染色体形态特征

染色体形态特征
染色体是细胞中的重要结构,携带着遗传信息。
染色体的形态特征可以通过染色体带分析、染色体核型分析等方法进行观察和研究。
染色体通常由两个相同的染色体互为同源染色体,其中一条来自母亲,另一条来自父亲。
不同物种的染色体数量和形态也各不相同。
例如,人类有46条染色体,其中包括22对自动体染色体和一对性染色体;而狗有78条染色体,猫有38条染色体。
染色体的形态特征通常可以通过显微镜观察到。
人类染色体的形态通常分为四种基本类型:长臂和短臂长度相近的亚等臂型(metacentric)、长臂稍长的亚长臂型(submetacentric)、长臂明显较长的亚长臂型(acrocentric)和只有短臂的微小染色体(telocentric)。
不同染色体之间的形态和带型也有所不同。
例如,在人类染色体带分析中,第一条染色体上的G带区比C带区暗,而在第二条染色体上,C带区比G带区暗。
染色体形态特征的研究对于深入了解染色体结构、功能以及遗传变异等方面具有重要意义。
- 1 -。
第二节 染色体的形态特征和数目

第二节 染色体的形态特征和数目
• 一、染色体的形态特征 • 1、大小 不同物种染色体大小差异较大。一 般染色体数目少的则体积较大。即使同 一细胞中染色体大小也有较大的差异。 一般情况下,植物大于动物,单子叶植 物大于双子叶植物。草本植物大于木本 植物。
2、染色体形态结构
• 典型的染色体通常由长臂和短臂、着丝点和着 丝粒、次缢痕和随体、端粒等几部分组成。 (1)着丝点(centromere)和着丝粒 (kinetochore) • 着丝点即初级缢痕或主缢痕。中期时,着丝点 不发生收缩,呈现出透明的缢缩状结构,是纺 锤丝(Spindle)附着的部位。着丝点是染色体 不可缺少的重要结构。染色体可以丢失一个臂 或两个臂的大部分仍能复制,但若无着丝点, 便无法复制而自然丢失。
• 所谓核型是指一个个体或物种的染色体 的构成,包括染色体的大小、形态、数 目。即指体细胞染色体在光学显微镜下 所有可测定的表型特征的总称。对一组 染色体的形态特点进行细胞学研究(进 行定性和定量的描述)称为核型分析。 大多以有丝分裂中期染色体为标准,也 有采用粗线期染色体。
二、染色体的数目
• • • 1、染色体的数目特征 恒定性。同一种生物染色体数目是恒定的。 染色体在体细胞中是成对的,在性细胞中总 是成单的。通常用2n和n表示,如水稻2n=24, n=12;普通小麦2n=42,n=21。 • 不同物种染色体数目差异很大。 动物中最少的只有1对染色体(n=1)(即 线虫类的一种马蛔虫变种;而另有一种蝴蝶 (Lysandra)可达191对染色体(n=19)植物中, 菊科植物Haplopappus graxillis只有2对,隐花植 物中瓶尔小草属(Ophioglossum)的一些物种 含有400-600对以上的染色体。但染色体数目多 少与物种的进化无关。
染色体的形态特征及核型作业

实验报告作业
1. 2. 3. 4. 实验目的和操作步骤 什么是染色体组型?主要包括那些内容? 蚕豆核型图 核型公式
K(2n)=( )m + ( )sm + ( ) st + ( ) t + ( )( ) sat
5.确定
• 在照片上首先确认每条染色体的着丝粒位置,以此 正中心为界,用Mie软件中测量工具测量染色体的 长臂和短臂,随体长度并记录,测量时按每条染色 体中线进行测量,并注意弯曲处,按上述标准计算 并对每条染色体分类(m、sm、st、t) • 计算染色体长度时,可以包括随体也可以不包括, 但均要注明。 • 据此和目测找出同源染色体 • 用Photoshop软件中魔棒、套索、剪切、变换等工 具,剪下各对染色体,并按m、sm、st、t组顺序 排列,即为它的核型图。
返回
•
剪贴排列的要求
• 排列时要成对排列,并且要求所有的着丝粒都排列 在一条直线上,并一律短臂在上,长臂在下; • 将配好对的同源染色体按下列原则进行排列:并正 式编上序号:即:按m、sm、st、t分为四组;染 色体长的在前,具随体染色体、性染色体排在最后; 若两对染色体等长,则短臂长者在前;若有两对以 上具随体染色体,则大随体染色体在前,小随体染 色体在后,粘贴即为它的核型图。 • 计算染色体长度时,可以包括随体也可以不包括, 但均要注明。
染色体分类
• 染色体分类和臂数计算的标准:染色体分类一般 采用Levan提出的标准,即按臂比(arm ratio = 长臂长度/短臂长度)将染色体分为四类: 类型和臂比
1. 中部着丝粒染色体(metacentrics,m):1.0—1.7 2. 亚中部着丝粒染色体(submetacentrics,sm): 1.7—3.0 3. 亚端部着丝粒染色体(subtelocentrics,st):3.0— 7 4. 端部着丝粒染色体(telocentrics,t):7—∞
细胞遗传学复习资料

第一章绪论一、细胞遗传学的研究对象和任务细胞遗传学是遗传学与细胞学相互交叉与结合的一个遗传学的分支学科。
它是用细胞学和遗传学的方法阐明生物的遗传和变异现象及其表观规律的一门基础科学。
细胞遗传学的研究对象、任务和内容:以高等动植物为主要研究对象.研究任务:揭示染色体与生物遗传、变异和进化的关系.内容包括:染色体的数目、形态、结构、功能与运动等特征以及这些特征的各类变异对遗传传递、重组、表达与调控的作用和影响.第二章染色体的形态特征和结构§1。
染色体的一般形态特征一、染色体数目不同种类动植物染色体数目是相对恒定的。
二、染色体大小不同染色体之间大小有很大差异是染色体最明显的形态特征。
●影响染色体大小变异的因素1.与物种亲缘关系有关一般是亲缘关系越远,大小变异越明显。
科间﹥属间﹥种间﹥种内2.与生长发育有关3。
与外界环境条件有关如化学试剂、温度影响三、着丝粒及其超微结构●定义:着丝粒是一个细长的DNA片段(染色体主缢痕部位的染色质),不紧密卷曲,连接两个染色单体,是染色体分离与运动装置。
缺少着丝粒的染色体不能分离并导致染色体丢失。
●功能:着丝粒又称动原体,是染色体的运动器官,也是姐妹染色单体在分开前相互连接的部位.两侧为异染色质区,由短的DNA串联重复序列构成.着丝粒断裂、缺失,会使染色体运动受阻,造成染色体丢失。
●类型根据着丝粒在染色体上的位置和分布,分为:1。
有固定位置的着丝粒在染色体上着丝粒具有永久性的固定区域.2。
新着丝粒细胞分裂时除了正常着丝粒外,在染色体上出现的具有类似着丝粒功能的其他区域.3。
无固定位置的着丝粒指纺锤体附着点在染色体上没有固定的位置.(1)多着丝粒在一个染色体上可附着多个纺锤丝,且着丝粒被非着丝粒片段隔开。
(2)全身性着丝粒染色体的每一点都表现有着丝粒的活性,即整个染色体上均有着丝粒分布现象,又称为分散型着丝粒。
四、次缢痕、核仁组织区和随体●次缢痕和核仁组织区在一个染色体组中,除了主缢痕外,任何其他的缢痕都属于次缢痕。
染色体的形态和结构

第二章染色体的形态和结构第一节原核细胞和真核细胞一.原核生物和真核生物的概念真核生物的遗传物质集中在有核膜包围的细胞核中,并与特定的蛋白质相结合,经过一定的等级结构形成染色体。
原核生物的遗传物质只以裸露的核酸分子方式存在,虽与少量的蛋白质结合,但是没有真核生物染色体那样的等级结构。
习惯上,原核生物的核酸分子也称为染色体。
二、原核细胞与真核细胞的区别在生物界中,从细胞结构来看,可分为两大类:1.为真核体。
真核体包括:高等动植物、原生动物、真菌,以及一些藻类。
2.为原核体。
原核体包括:细菌、病毒以及蓝藻等。
两细胞系的区别如下:①一个典型的真核细胞体积(10um)比一个原核细胞体积(1-10um)大约十几倍甚至上万倍,因此在化学组分的总量上不同,真核细胞总量远远高于原核细胞总量。
②在真核细胞中,有一个由核膜所包围的细胞核。
在核中含有由DNA、蛋白质、RNA组成的多条染色体③原核体的染色体具有单个的DNA或RNA分子并在不同的有机体中表现不同。
④原核体细胞DNA的总量比真核体细胞的DNA总量少得多。
但是就单个DNA分子长度与该细胞大小相比却长得多。
⑤在遗传物质的交换与重组方面,真核生物通过雌雄配子融合形成合子并通过细胞分裂来完成遗传物质的交换与重组,而原核生物只是通过质粒介导来实现单向的遗传物质的交换。
⑥原核细胞mRNA的合成在许多重要方面不同于真核细胞。
⑦原核细胞mRNA常常在它的翻译刚开始之后,就开始从5’---端开始降解,即使它的合成还没有完成。
⑧细胞分裂方式不同,在原核细胞周期中,DNA复制后,紧接着便是细胞分裂,而真核细胞的细胞周期可分为几个不同的时期。
⑨由于原核细胞无溶菌体,因此不能通过吞噬和胞饮作用来进行异物的消化作用,原核细胞的电子传递部位在细胞膜,而真核细胞的电子传递部位在线粒体膜。
上述差异只是原核细胞与真核细胞在细胞水平上的差异,在分子上水平,原核细胞与真核细胞还具有明显的不同,如基因的序列组织、遗传物质的复制以及基因结构、表达方式、产物修饰、调控等方面均各有特点。
染色体

第二章遗传的染色体基础遗传物质脱氧核糖核酸(DNA)是以与蛋白质相结合成染色质的形式存在于间期细胞核中,它具有贮存遗传信息、准确地自我复制、转录和调控各种复杂的生命活动等功能。
通过精卵生殖细胞的形成和受精,遗传物质又以染色体的形式由亲代传给子代。
因此,生殖细胞是联系亲代与子代的桥梁,染色体是遗传物质的载体,是复杂的遗传与变异现象的细胞基础。
第一节染色质和染色体1882年Flemming将细胞核内易被碱性染料着色的物质称为染色质(chromatin)。
电镜下,间期核内的染色质呈细微纤丝状,当细胞进入分裂时期,细微纤丝状的染色质经过盘绕折叠成高度凝集的染色体(chromosome)。
因此,染色质和染色体是同一物质在细胞周期的不同时期不同形态结构表现。
一、染色质与染色体的化学组成和结构单位(一)染色质的化学组成通过对多种细胞的染色质进行分析,证明染色质的主要组成成分是DNA、组蛋白、非组蛋白和少量的RNA。
DNA和组蛋白的含量比较稳定,非组蛋白和RNA的含量常随细胞生理状态的不同而改变。
1.DNA 生物体的遗传信息就蕴含于DNA分子的核苷酸序列之中。
因此,DNA就是遗传信息的载体。
DNA的结构性质稳定,不会因细胞的分化而丢失,在同种生物的各类细胞中其含量恒定,生殖细胞中DNA的含量是体细胞的一半。
人类一个体细胞内的DNA重约7.0×10-8g,总长度约2m。
一个基因组的DNA分子大约3×109个碱基对。
真核细胞的DNA总是和大量的蛋白质结合在一起以染色质或染色体的形式存在,每条染色单体只含一个DNA分子。
这类DNA分子中含有单一序列(unique sequence)和重复序列(repetitive sequence),重复序列又按其重复程度分为中等重复序列和高度重复序列。
2.组蛋白(histone)组蛋白是染色质中富含精氨酸和赖氨酸等碱性氨基酸的蛋白质,带正电荷。
根据其所含精氨酸和赖氨酸的比例不同而分为5种类型:即H1、H2A、H2B、H3、H4。
第二章 基因组DNA和染色体

倍。
最简单的多细胞生物线虫其基因组有8×107bp,大 约是酵母的4倍,而进化到昆虫,基因组必须大于 8×108 bp,进化到哺乳动物更要具有大于2×109bp 的基因组。DNA的含量与有机体之间存在这样的关 系并不难理解,随着有机体变的复杂,他们需要更多 的核DNA。
a a a a a cut a a a a a
aa
a
denaturation
aa
a renaturation
a
aa a
a
DNA with unique sequence. Its complexity is high.
b c d e cut
f
Note that the size of the
g
genome by itself does not h
简单序列DNA又叫卫星DNA(satellite DNA),当用密度梯 度离心法分离基因组DNA时,含有简单序列DNA的片断就会 形成卫星带(satellite band)。例如,将人的基因组DNA截断 成50~100 Kb的片段,就会形成一个主带(浮力密度为1.701 gcm-3)和三个卫星带(1.687, 1.693以及1.697 gcm-3)
Main Components in Eukaryotic Genomes
1、快速复性组分
在复性动力学实验中,大约10-15%的哺乳动物DNA快速 复性组分,其Cot½ 值小于0.01。快速复性组分代表着简单序 列DNA。简单序列DNA是由重复序列(repetitive sequence)构成的,所谓重复DNA是指在DNA分子或整个 基因组中出现两次以上的一段DNA序列。构成简单序列DNA 的重复序列一般由一些完全相同或相似的短寡聚核苷酸序列 串连在一起形成的,长度可能有几百Kb,因此又称串连重复 DNA(tandem repeats)。一个基因组可能含有几种不同类 型的简单序列DNA,各含有一个不同的重复单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染色体的形态特征及其 与遗传的关系
染色体的一般形态特征 常染色质和异染色质 染色体带型 染色体直线图和遗传图 特化染色体
2018/7/19 1
第一节 染色体的一般形态特征
1、染色体的大小(略) 2、着丝粒 3、副缢痕、核仁组织者和随体(略) 4、染色粒(略) 5、染色纽(略) 6、端粒(略)
2018/7/19
9
第二节 常染色质和异染色质
染色质:细胞核内能被碱性染料染 色的物质。
常染色质
异染色质:结构异染色质
功能异染色质
异染色质的特殊功能
2018/7/19
10
两种染色质的区别
常染色质
间期染色淡 中期染色深 染色体大部分区域 含基因 复制早,可转录 收缩程度大
结构异染色质
染色深 染色淡 着丝粒附近 不含基因 复制迟,不转录 收缩程度小 11
26
黑麦(2n=14)染色体 C-带带型
2018/7/19
27
2018/7/19
2
染色体结构的辐射环/支架模型中染色质包装水平: 以螺线管排列的30nm核小体染色质丝组成环形结构,这些环形结构由中央的染色体支架向外辐射 240nm的间期染色单体丝,进一步经过纵向和横向凝聚形成中期染色单体。这种模型称为染色体 3 射环/支架模型。 2018/7/19
着丝粒
着丝粒与染色体的形态 着丝粒的分裂 着丝粒的断裂 异染色体新生着丝粒
2018/7/19
18
玉米染色体荧光免疫染色(immunostaining)结果 黄绿色信号为CENH3抗体,箭头所指为玉米B染色体(信号相对较弱)
2018/7/19
19
遗传行为和方式 可以联会,交叉少,提前解离
提高A染色体交叉率,促进基因重组
雌配子传递基本正常 雄配子传递异常--小孢子第二次分裂时B染色体不分离 定向受精或优先受精
2018/7/19 4
着丝粒和染色体的形态
2018/7/19
5
名
称
符号 M.m S.m T St Sat
臂比 1~1.7 1.7~3.0 7.0~ 3.0~7.0
中 部 着 丝 粒 染 色 体 ( melacentric chromosome) 亚 中 着 丝 粒 染 色 体 ( submetacentric chromosome) 端 部 着 丝 粒 染 色 体 ( telocentric chromosome) 亚 端 着 丝 粒 染 色 体 ( subtelocentric chromosome) 随体染色体(satellite chromosome)
2018/7/19
23
第五节 染色体带型
C G R T Q
2018/7/19
24
染色质与染色带的关系
带型 与染色质关系 位置 分裂间期的状态 遗传学活性 DNA复制时间 DNA的成分 C 带 着丝粒组成型异染色质 通常在着丝粒 浓 缩 不活泼 晚S期 富含G-C、中性、或富含A-T, 因随体DNA而异 G 带 中间“异染色质” 染色体臂 浓 缩 基本不活泼 晚S期 富含A-T R 带 常染色质 染色体臂 通常分散 通常活泼 早S期 富含G-C
G r g R
×
g g r
r
124
376
96
23
619
841
252
(24.8)
(75.2)
(80.7)
(19.3)
(76.2)
(23.8)
交换后,姊妹染色体各带一染色体纽,带染色体纽的染色体在大孢子减数分裂时更易 到达两极,传递到后代
2018/7/19
13
大孢子发生和雌配子发生
2018/7/19
14
12
2018/7/19
异染色质的特殊功能
后代粒数(及%) 测交组合 G r g R g r g r
非交换类别
G r g R
总
数
交换类别
G R g r
测交穗上 R与r粒数(及%)
R
r
×
1660Biblioteka 699154358
2871
1118
2 717
(70.4)
(29.6)
(30.1)
(69.9)
(29.2)
(71.8)
2018/7/19
功能异染色质
在人类和哺乳动物胚胎发育早期,雌性 胚胎细胞中两条X染色体中的一条,出 现了异固缩现象,移向核膜处,成为染 色很深的异染色质小体,称为性染色质 (sex chromatin)或巴氏小体(Barr body)。这种现象称为X染色体失活或 莱昂化作用(Lyonization)
2018/7/19
20
玉米小孢子第二次分裂中B染色体的不分离现象
2018/7/19
21
玉米B 染色体在正反交后代中的分布
亲本B染色 体数
♀×♂ 0B 1B 0B 2B 1B 0B 2B 0B
含有不同B染色体F1的株数
0
108
F1总株 数
平均B染色 体数
1 35
2 20 37
3 2
4 165 2 61 235 52 0.49 1.34 0.35 0.90
2018/7/19
6
着丝粒的错分裂
2018/7/19
7
玉米9号染色体在X射线照射下发生断裂,一个断点发生 在着丝粒,产生两类缺失9号染色体和两个带有部分着丝 2018/7/19 粒的环状染色体断片
8
玉米异10号染色体引起新生着丝粒区,在后期I发生 染色体端部提前移向两极的现象, 可引起遗传的偏分离。
22
155
77 41
3 3
8
2018/7/19
说明:在B染色体无配对时,1B容易丢失
22
解释
如父本为1B,其最终结局可能是: 1、B丢失……形成0B配子 2、均等分裂……形成1B配子 3、第一次分裂时不分离形成3B或4B配子 4、第二次分裂时不分离形成2B配子 如父本为2B,则B染色体可配对,第一次分裂均等 分离,第二次不分离,形成2B配子。 如母本为1B,其最终结局可能是B染色体无配对, 在走向两极时落后丢失或到其它非卵细胞中。 如母本为2B,则B染色体可配对,基本上均等分裂。
DNA的重复性
DNA的甲基化 与粗线期染色粒关系
通常为随体DNA
通常高度甲基化 着丝粒染色粒
中度重复与单-DNA
± 中间染色粒
中度重复与单-DNA
+ 粒间区
2018/7/19
25
染色体带型的应用
1、核型分析 2、亲缘关系判定 3、外源染色体鉴别 4、结构染色体变异辨别 5、性别鉴定
2018/7/19
第三节 染色体直线图与遗传图
核型分析与染色体直线图 染色体图与遗传图的相互关系
2018/7/19
15
染色体直线图
2018/7/19
16
2018/7/19
玉米染色体直线图
17
第四节 特化染色体
多线染色体(略) 灯刷染色体(略) 超数染色体
概念 分布:目前已发现上千种植物中有异染色体,多数为 异花授粉植物。 遗传效应-异质染色体,无基因,影响发芽率等