解直角三角形教学设计

合集下载

解直角三角形教案(完美版)

解直角三角形教案(完美版)

解直角三角形一、教育目标(一)知识与技能使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程(一)明确目标1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a bA A A A c c b a====如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例1 在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=287.4,∠B=42°6′,解这个三角形.分析:解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B =90°-42°6′=47°54′,(2)cos ,aB c=∴a=c . cosB=28.74×0.7420≈213.3.(3) sin bB c=,∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例2 在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. 在学生独立完成之后,选出最好方法,教师板书.(1)104.0tan 5.07620.49a b α=≈≈查表得A=78°51′;(2)∠B=90°-78°51′=11°9′(3)104.0sin ,.sin 0.9812106a a A c c A =∴==≈ .注意:例1中的b 和例2中的c 都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生完成注:上表中“√”表示已知。

湘教版数学九年级上册4.3《解直角三角形》教学设计

湘教版数学九年级上册4.3《解直角三角形》教学设计

湘教版数学九年级上册4.3《解直角三角形》教学设计一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是本册教材中关于直角三角形知识的重要内容。

本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的,主要让学生了解解直角三角形的意义和作用,学会使用解直角三角形的方法,提高解决实际问题的能力。

教材通过引入直角三角形中的边长和角度的关系,引导学生利用已学的锐角三角函数知识来解决直角三角形中的问题。

教材内容由浅入深,逐步引导学生掌握解直角三角形的方法,同时注重培养学生的空间想象能力和解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形和锐角三角函数有一定的了解。

但是,学生对解直角三角形的理解和应用能力参差不齐,部分学生可能对解直角三角形的实际应用还存在一定的困难。

因此,在教学过程中,教师需要关注学生的个体差异,针对不同层次的学生进行有针对性的教学,引导学生理解解直角三角形的意义,提高学生解决实际问题的能力。

三. 教学目标1.知识与技能:让学生掌握解直角三角形的方法,能够运用解直角三角形解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,引导学生自主探索解直角三角形的规律,提高学生的空间想象能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和勇于挑战的精神。

四. 教学重难点1.重点:让学生掌握解直角三角形的方法,能够运用解直角三角形解决实际问题。

2.难点:引导学生理解解直角三角形的实际应用,提高学生解决实际问题的能力。

五. 教学方法1.情境教学法:通过生活实例引入解直角三角形的概念,激发学生的学习兴趣。

2.引导发现法:引导学生观察、分析、归纳解直角三角形的规律,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。

4.实践操作法:让学生通过动手操作,加深对解直角三角形的理解和应用。

《解直角三角形》教案

《解直角三角形》教案

《解直角三角形》教案一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)能够将实际问题转化为数学问题,建立解直角三角形的数学模型,并运用解直角三角形的方法解决实际问题。

2、过程与方法目标(1)通过对解直角三角形的学习,培养学生分析问题和解决问题的能力,以及数学建模的思想。

(2)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高学生的运算能力和逻辑推理能力。

3、情感态度与价值观目标(1)让学生在学习过程中体会数学与实际生活的紧密联系,激发学生学习数学的兴趣。

(2)通过解决实际问题,培养学生的应用意识和创新精神,让学生在成功中获得自信,在挫折中锻炼意志。

二、教学重难点1、教学重点(1)直角三角形中五个元素之间的关系。

(2)解直角三角形的方法。

2、教学难点(1)将实际问题转化为数学问题,建立解直角三角形的数学模型。

(2)正确选择合适的锐角三角函数关系式解直角三角形。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些与直角三角形相关的实际问题,如测量建筑物的高度、计算斜坡的长度等,引出解直角三角形的概念,激发学生的学习兴趣。

2、知识讲解(1)直角三角形的五个元素直角三角形有三条边和两个锐角,共五个元素,分别是两条直角边a、b 和斜边 c,以及两个锐角 A 和 B。

(2)五个元素之间的关系①三边关系(勾股定理):a²+ b²= c²②锐角关系:∠A +∠B = 90°③边角关系:sin A = a/c,cos A = b/c,tan A = a/b(3)解直角三角形由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。

3、例题讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求 b 和∠A、∠B 的度数。

解直角三角形应用教案

解直角三角形应用教案

解直角三角形应用教案【篇一:《解直角三角形的应用(3)》教学设计】九年级数学上册第二章解直角三角形2.5解直角三角形的应用第三课时教学目标1.知道坡角、破比(坡度)的意义.2.能将有关实际问题转化为解直角三角形的问题.3.培养严谨致学的学习态度.教学重点与难点将实际问题中的数量关系转化为直角三角形中元素之间关系进行解题.教学过程一、知识回顾解决直角三角形的应用思路。

1.把实际问题转化为解直角三角形的问题,关键是找出实际问题中的,直角三角形之间的关系,是解决与直角三角形有关的实际问题的重要工具。

2.解答过程的思路:实际问题转化解直角三角形的问题二、探究新知(一)学习坡角和坡比(坡度)的定义.从爬山引入:有的山坡很陡,有的山坡比较缓,那么我们如何从数量上来描述山坡的陡的程度呢?问题答案求出有关的边或角比较上面两个斜坡,给出坡度的定义.定义:坡面的铅垂高度(h)与水平宽度(l)的比叫做坡面的坡度(或坡比),记作i,即i=h. llh坡度通常写成1∶m的形式.问:根据定义,你能用坡度来刻画斜坡的倾斜、即陡的程度吗?答:坡度越大,坡面越陡.小练习:2.斜坡的坡角是450 ,则坡比是 _______。

3.斜坡长是12米,坡高6米,则坡比是_______。

4.在一次军事训练中,有一辆坦克准备通过如图的一座小山,ac为1000米,bc为400米,如果这辆坦克能够爬300 的斜坡,试问:它能不能通过这座小山?能爬过。

那么反过来,你能利用我们今天学习的知识来阻止坦克爬过这个斜坡吗?(二)有关坡角与坡比(坡度)的实际应用学生分组讨论以下问题:(1)梯形的常用辅助线的作法之一是作高,其目的是什么?(2)找出题目中的已知量,未知量,并在图中标示出来。

(3)说一说坡度i=1:3,i=1:2.5在本题中的含义?(4)写出解答过程,同桌互查互纠。

变式训练1.水库大坝的横断面是梯形,坝顶宽6m,坝高20m,斜坡ab的坡度 i=1∶3 ,斜坡cd的坡度i=1∶1.2.水库大坝的横断面是梯形,坝顶宽6m,坝高20m,为了提高防洪力,决定在堤坝背水一方加固石土,(如图)使斜坡cd,的坡度变为1:1.5小结:在有些实际问题中没有直角三角形,可以适当添加辅助线构造直角三角形.(三)例题探究学生分组讨论以下问题:(1)找出题目中的已知量,未知量,并在图中标示出来。

华师大版数学九年级上册《解直角三角形》教学设计3

华师大版数学九年级上册《解直角三角形》教学设计3

华师大版数学九年级上册《解直角三角形》教学设计3一. 教材分析华师大版数学九年级上册《解直角三角形》是学生在初中阶段最后一节关于三角形的课程,学生在之前的学习中已经掌握了锐角三角形和钝角三角形的性质以及三角形的分类。

本节课主要让学生了解直角三角形的性质,学会用勾股定理计算直角三角形的边长,并用三角函数表示直角三角形的边角关系。

教材通过丰富的情境图和实例,激发学生的学习兴趣,引导学生探究直角三角形的性质,培养学生的动手操作能力和数学思维能力。

二. 学情分析九年级的学生已经具备了一定的几何知识,对三角形有了一定的了解。

但是部分学生对三角形性质的掌握不够扎实,对勾股定理的理解和应用还不够熟练。

此外,学生在学习过程中往往存在对理论知识掌握较好,但实际操作能力较弱的问题。

因此,在教学过程中,需要注重引导学生运用已有的知识解决实际问题,提高学生的动手操作能力和解决问题的能力。

三. 教学目标1.知识与技能:让学生掌握直角三角形的性质,学会用勾股定理计算直角三角形的边长,会用三角函数表示直角三角形的边角关系。

2.过程与方法:通过观察、操作、探究等活动,培养学生合作交流、归纳总结的能力,提高学生解决实际问题的能力。

3.情感态度与价值观:让学生在解决实际问题的过程中,体验数学学习的乐趣,增强学生对数学学科的学习兴趣。

四. 教学重难点1.重点:让学生掌握直角三角形的性质,会用勾股定理计算直角三角形的边长。

2.难点:让学生会用三角函数表示直角三角形的边角关系。

五. 教学方法1.情境教学法:通过情境图和实例,激发学生的学习兴趣,引导学生探究直角三角形的性质。

2.启发式教学法:在教学过程中,教师提问引导学生思考,激发学生的求知欲,培养学生独立思考的能力。

3.合作学习法:学生进行小组讨论,培养学生的团队协作能力和归纳总结能力。

4.实践操作法:让学生动手操作,解决实际问题,提高学生的动手能力和解决问题的能力。

六. 教学准备1.教学课件:制作华师大版数学九年级上册《解直角三角形》的教学课件。

湘教版数学九年级上册4.3《解直角三角形》教学设计

湘教版数学九年级上册4.3《解直角三角形》教学设计

湘教版数学九年级上册4.3《解直角三角形》教学设计一. 教材分析《解直角三角形》是湘教版数学九年级上册4.3的内容,这部分内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的。

本节课的主要内容有:了解解直角三角形的概念,学会用锐角三角函数解直角三角形,能运用解直角三角形的知识解决实际问题。

本节课的内容在数学学科中占有重要的地位,它不仅巩固了锐角三角函数的知识,而且为后续学习三角函数的图像和性质奠定了基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数和直角三角形的性质有一定的了解。

但是,对于解直角三角形的概念和运用可能还不够熟练。

因此,在教学过程中,需要引导学生通过实际问题来理解和掌握解直角三角形的方法,提高他们运用数学知识解决实际问题的能力。

三. 教学目标1.了解解直角三角形的概念,掌握用锐角三角函数解直角三角形的方法。

2.能够运用解直角三角形的知识解决实际问题。

3.提高学生运用数学知识解决实际问题的能力,培养学生的逻辑思维能力。

四. 教学重难点1.重点:解直角三角形的概念,用锐角三角函数解直角三角形的方法。

2.难点:如何引导学生从实际问题中发现解直角三角形的规律,运用解直角三角形的知识解决实际问题。

五. 教学方法1.情境教学法:通过设计实际问题,引导学生理解和掌握解直角三角形的方法。

2.小组合作学习:学生在小组内讨论和分享解直角三角形的方法,培养学生的合作意识和团队精神。

3.案例教学法:通过分析具体的案例,让学生理解解直角三角形的应用。

六. 教学准备1.准备相关的实际问题,用于引导学生理解和掌握解直角三角形的方法。

2.准备解直角三角形的案例,用于分析和讲解。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何求解直角三角形的边长。

例如,一个直角三角形的两个锐角分别是30度和60度,求这个三角形的斜边长。

2.呈现(10分钟)呈现相关的实际问题,让学生独立思考和解决问题。

解直角三角形教案

解直角三角形教案

解直角三角形教案作为一名教学工作者,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

那么优秀的教案是什么样的呢?以下是小编整理的解直角三角形教案,欢迎阅读与收藏。

解直角三角形教案1一、教学目标(一)知识教学点巩固用三角函数有关知识解决问题,学会解决坡度问题。

(二)能力目标逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。

(三)德育目标培养学生用数学的意识,渗透理论联系实际的观点。

二、教学重点、难点和疑点1.重点:解决有关坡度的实际问题。

2.难点:理解坡度的有关术语。

3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。

三、教学过程1.创设情境,导入新课。

例同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。

同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚。

这时,教师应根据学生想学的心情,及时点拨。

通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。

但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的`意义。

解直角三角形教案2教材与学情:解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

《解直角三角形》教学设计

《解直角三角形》教学设计

《解直角三角形》教学设计(续表)图28-2-5 教师呈现问题并引导学生结合图形,观察已知和的正弦来求∠A的(续表)(续表)【学习目标】 1.知识技能(1)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.(2) 理解解一个直角三角形的前提条件. 2.解决问题通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3.数学思考 让学生思考:为什么一个直角三角形可以解的前提条件是必须有两个元素(其中一个必须为边).从而让学生理解画一个直角三角形的条件.4.情感态度(1) 通过给定具体的两个条件(其中一个为边),让学生们画直角三角形,培养学生合作交流的意识和探索精神.(2)通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯. 【学习重难点】重点:直角三角形的解法.难点: (1)三角函数在解直角三角形中的灵活运用.(2)学生可能不理解在已知的两个元素中,为什么至少有一个是边.课前延伸【知识梳理】(1) 在Rt △ABC 中,∠C =90°,a =3,c =4,则b =. (2) 在Rt △ABC 中,∠C =90°,∠A =28°,那么∠B =__62°__.(3) 在Rt △ABC 中,∠C =90°,a =4,b =5,则sin A =41,cos A =41,tan A =__45__(4) 在Rt △ABC 中,∠C =90°, ∠A =30°,a =6,则c =__12__,b =. (5) 在Rt △ABC 中,∠C =90°,已知c =6, ∠A =50°,则a =__6_sin50°__. (6) 意大利披萨斜塔在建成的时候就已倾斜,其塔顶中心点偏离垂直中心线2.1米,1972年披萨地区发生地震,这座高54.5米的斜塔在大幅摇摆后依然屹立,但塔顶中心点偏离垂直中心线增至5.2米,请你算出这时塔身中心线与垂直中心线的夹角.课内探究一、 课堂探究1(问题探究,自主学习)(1)在Rt △ABC 中,∠C =90°,c =28, ∠B =60°,解这个直角三角形. (2)在Rt △ACB 中,c =90°,a =30, ∠B =80°, 解这个直角三角形. (3)在Rt △ABC 中,c =90°,a =3,b =3, 解这个直角三角形.二、课堂探究2(分组讨论,合作探究)(1) 画一个直角三角形,使两条直角边分别为3和4.(2) 画一个直角三角形,使一条直角边为3,一个锐角为35°.(3) 画一个直角三角形,使斜边长为8,一个锐角为40°.(4) 画一个直角三角形,使两个锐角分别为30°和60°.各小组比较由(1)(2)(3)(4)画出的直角三角形.讨论1:你觉得给出什么样的条件可以画出一个确定的三角形.讨论2:你觉得确定一个直角三角形需要的元素有什么条件?三、反馈训练1.必做题在Rt△ABC中,∠C=90°,已知b=20, ∠B=35°,解这个直角三角形(结果保留小数);(2)在Rt△ABC中,∠C=90°,已知a=10 3,b=20, 解这个直角三角形.2.选做题在Rt△ABC中,∠C=90°,AC=15, ∠A的平分线AD=10 3,解这个直角三角形.课后提升1. 在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.2. 已知在△ABC中,∠B=60°,∠C=45°,AB=6,求BC长.3. 如图,在两面墙之间有一个底端在点A的梯子,当它靠在一侧墙上时,梯子的顶端在点B处;当它靠在另一侧墙上时,梯子的顶端在点D处.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 2 m.求点B到地面的垂直距离BC.图28-2-9。

《解直角三角形》教学设计 【完整版】

《解直角三角形》教学设计 【完整版】

小组合作问题1:
你能否编一道“解直角三角形”的问题,让别的同学验证一下,看是否能求出其它元素?
小组合作问题2:
组织学生分析生活中的实际问题。

(方向角问题) 各小组汇总、归纳解题方法。

三、能力拓展
近日,A 城气象局测得龙卷风中心在A 城的正西方向240公里的B 处,正以每小时12公里的速度向北偏东60º的方向转移。

距离沙尘暴中心150公里的范围为受影响区域。

问:A 城是否受这次龙卷风的影响? 遵循巩固与发展相结合的原则,培养学生的创新意识
四、归纳总结 学生归纳总结
西 东

B
A
O。

解直角三角形初中三年级教案

解直角三角形初中三年级教案

教学目标:1.了解直角三角形的定义和性质;2.掌握直角三角形的判别方法;3.能够应用直角三角形的性质解决实际问题。

教学重点:1.直角三角形的定义和性质;2.直角三角形的判别方法。

教学难点:1.直角三角形的应用。

教学准备:教师:直角三角形的示意图、直角三角形的定义和性质的板书。

学生:直尺、量角器等。

教学过程:一、导入(10分钟)1.老师出示一张直角三角形的示意图,让学生观察并回答问题:你们看到这个图形有什么特点?2.学生回答后,教师引导学生总结:这个图形有一个直角和其他两个锐角。

3.教师板书直角三角形的定义:“一个三角形有一个角是直角,就叫做直角三角形。

”二、讲解直角三角形的性质(15分钟)1.教师出示直角三角形的定义的板书,解释直角三角形的性质:直角三角形的两条边相互垂直。

2.教师提问:在一个直角三角形中,直角和两条边的关系是什么?3.学生回答后,教师解释:直角和两条边的关系是直角三角形的基本性质之一,直角所对的边叫做斜边,其他两条边叫做直角边。

4.教师出示直角三角形的示意图,引导学生观察,总结直角边和斜边的关系。

三、直角三角形的判别方法(15分钟)1.教师出示几个图形,让学生观察并判断哪些是直角三角形。

2.学生回答后,教师引导学生总结直角三角形的判别方法:通过角的大小来判断。

3.教师出示两条边并标注角的示意图,解释判断直角三角形的方法:如果两条直角边的平方和等于斜边的平方,那么这个三角形就是直角三角形。

四、应用直角三角形的性质解决实际问题(30分钟)1.教师出示一些实际问题,让学生运用直角三角形的性质解决。

2.学生分小组或个人解答,并在黑板上展示答案。

3.教师对答案进行点评和讲解。

五、小结(10分钟)1.教师带领学生复习直角三角形的定义和性质。

2.教师总结本节课的重点和难点。

教学反思:通过本节课的教学,学生能够了解直角三角形的定义和性质,并掌握判断直角三角形的方法;同时,通过解决实际问题,学生能够应用直角三角形的性质解决实际问题。

初中数学初三数学上册《解直角三角形》教案、教学设计

初中数学初三数学上册《解直角三角形》教案、教学设计
3.小组讨论题需在小组内进行充分讨论,形成统一的解题方案。
4.请家长协助监督,确保学生按时完成作业,养成良好的学习习惯。
6.差异化教学,关注个体:针对学生的个体差异,设计不同难度的练习题,使每位学生都能在原有基础上得到提高。
7.课堂小结,巩固知识:在每个知识点讲解结束后,进行课堂小结,帮助学生梳理所学知识,巩固记忆。
8.作业布置,拓展提高:布置适量的课后作业,包括基础知识和拓展提高题目。让学生在课后巩固所学知识,提高解题能力。
(二)讲授新知
1.首先,我会带领学生回顾直角三角形的基本概念,如直角三角形的定义、特点以及勾股定理等。
2.接着,引入锐角三角函数(正弦、余弦、正切)的概念,通过具体的例子让学生理解它们在直角三角形中的应用。
3.讲解锐角三角函数的表示方法,以及如何运用这些函数求解直角三角形中的边长和角度。
4.结合实际例题,演示如何使用勾股定理和锐角三角函数解决实际问题,使学生明白数学知识在实际生活中的价值。
3.小组合作,共同探究:组织学生进行小组讨论和合作,共同解决实际问题。在这个过程中,学生可以相互交流、相互学习,提高解决问题的能力。
4.拓展思维,提高能力:在教学过程中,设置一定的拓展性问题,引导学生进行思考。通过拓展性问题,培养学生的创新意识和解决问题的能力。
5.紧扣教材,注重实践:紧密围绕教材内容,结合生活实际,设计具有针对性的练习题。让学生在实践中掌握知识,提高解题能力。
4.解直角三角形:通过例题,讲解如何运用勾股定理及锐角三角函数解直角三角形。
5.实际应用:让学生分组讨论,解决实际问题,巩固所学知识。
6.总结与拓展:总结解直角三角形的步骤和方法,引导学生进行拓展思考。
7.课后作业:布置适量的练习题,巩固所学知识,提高学生的解题能力。

湘教版数学九年级上册4.3《解直角三角形》教学设计1

湘教版数学九年级上册4.3《解直角三角形》教学设计1

湘教版数学九年级上册4.3《解直角三角形》教学设计1一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是本册教材中关于直角三角形知识的重要内容。

通过本节课的学习,学生能了解直角三角形的性质,掌握解直角三角形的方法,并能运用所学知识解决实际问题。

本节课的内容为后续学习勾股定理和三角函数等知识打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了锐角三角形和钝角三角形的性质,了解了三角形的分类。

在此基础上,学生需要进一步掌握直角三角形的性质,并学会解直角三角形。

此外,学生需要具备一定的观察能力、动手操作能力和逻辑思维能力,以便在学习过程中更好地理解和掌握所学知识。

三. 教学目标1.知识与技能目标:学生能掌握直角三角形的性质,了解解直角三角形的方法,并能运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生动手操作能力、观察能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:直角三角形的性质,解直角三角形的方法。

2.教学难点:解直角三角形的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过设置情境,引导学生观察、操作、思考,激发学生学习兴趣。

2.合作学习法:学生进行小组讨论、合作探究,培养学生团队合作精神。

3.启发式教学法:教师引导学生发现问题、分析问题、解决问题,培养学生的逻辑思维能力。

4.实践操作法:让学生动手操作,加深对知识的理解和记忆。

六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画、例题等。

2.教学道具:准备直角三角形模型、三角板等道具,以便进行实物演示。

3.练习题:挑选一些有关直角三角形的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如教室的黑板、楼梯的扶手等,引导学生关注直角三角形。

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1一. 教材分析《解直角三角形》是九年义务教育课程标准人教版九年级数学下册第28章第2节的一部分。

本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行的。

本节主要让学生了解解直角三角形的意义和方法,学会使用锐角三角函数来解直角三角形,为以后学习三角函数和解其他三角形打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。

但是,对于如何运用锐角三角函数来解直角三角形,他们可能还比较陌生。

因此,在教学过程中,我需要引导学生理解和掌握锐角三角函数在解直角三角形中的应用。

三. 教学目标1.了解解直角三角形的意义和方法。

2.学会使用锐角三角函数来解直角三角形。

3.能够运用解直角三角形的方法解决实际问题。

四. 教学重难点1.重点:解直角三角形的方法和锐角三角函数在解直角三角形中的应用。

2.难点:如何引导学生理解和掌握锐角三角函数在解直角三角形中的应用。

五. 教学方法采用讲授法、引导法、实践法、讨论法等教学方法,引导学生通过自主学习、合作学习、探究学习,从而掌握解直角三角形的方法和锐角三角函数在解直角三角形中的应用。

六. 教学准备1.准备直角三角形的相关图片和实例。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备相关的练习题和测试题。

七. 教学过程1.导入(5分钟)通过展示一些与直角三角形相关的图片和实例,引导学生回顾直角三角形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)讲解解直角三角形的意义和方法,引导学生理解解直角三角形的重要性。

通过示例,讲解如何使用锐角三角函数来解直角三角形。

3.操练(10分钟)让学生分组进行实践,运用锐角三角函数来解直角三角形。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验他们是否掌握了解直角三角形的方法和锐角三角函数在解直角三角形中的应用。

解直角三角形优秀教案

解直角三角形优秀教案

解直角三角形【教学目标】1.让学生感受通过作辅助线,把非直角三角形转化为直角三角形来解决问题的方法。

2.让学生经历观察、操作、实践,培养学生运用所学知识解决未知问题的能力,实现从感性到理性,从已知到新知的矛盾特征的转化过程,形成新的知识网络。

3.通过课堂为学生提供的充分从事数学活动的机会,让学生理解并掌握基本数学知识与技能,了解数形结合的思想方法,培养转化、化归的思想方法,进而获得广泛的数学活动的经验。

4.通过学习,让学生在学习活动中获得成功的体验,锻炼克服困难,战胜困难的意志,建立自信心。

5.在学生充分参与知识形成过程中,学会与人合作、交流的学习方法,形成大胆质疑、实事求是的科学态度,感受数学的严谨性及数学结论的确定性。

【教学重点】非直角三角形的解法。

【教学难点】通过作辅助线,把非直角三角形转化为直角三角形。

【教学方法】谈话法、小组合作法、指导练习法。

【教学准备】三角板【教学过程】一、探索新知(一)问题:1.在一个三角形中共有几条边?几个内角?(引出“元素”这个词语)2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?讨论复习:师:Rt△ABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边、角关系(板书)(1)两锐角互余∠A +∠B =90°;(2)三边满足勾股定理a 2+b 2=c 2;(3)边与角关系sinA =cosB=a c ,cosA =sinB=b c ,tanA =a b ,tanB=b a 。

利用上面这些关系,如果知道直角三角形中的两个元素,就可以求出其他元素。

由直角三角形中已知的元素,求出其他所有未知元素的过程,叫做解直角三角形。

3.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a=4、c=8,求这个三角形的其他元素。

(出示问题,小组研讨后,找生板书过程)解:在Rt △ABC 中,∠C=90°,根据勾股定理,a 2+b 2=c 2,a=4,c=8∴b=.344822=-在Rt △ABC 中,∠C=90°,sinB=,2184a ==c ∴∠A=30°,∠B=90°-30°=60°师:我们已知直角三角形的两边长,求出其他未知元素,这个过程叫做什么呢?师:在直角三角形中,已知两边,我们可以求出其他未知元素,在Rt △ABC 中,如果已知一边和一个锐角,你能求出这个三角形的其他元素吗?4.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=128,∠B=60°,解这个直角三角形。

解直角三角形教学设计

解直角三角形教学设计

《解直角三角形》教学设计一、教材分析:本节课是在学习了“勾股定理”“锐角三角函数”等内容的基础上对运用所学知识解直角三角形的进一步探究。

通过直角三角形中边角关系的学习,学生将进一步体会数学知识之间的联系,并为运用解直角三角形的相关知识解决简单的实际问题奠定了基础。

二、学情分析:学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用还不熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养。

三、学习目标:1.知道直角三角形的六个元素和解直角三角形的含义.2.会用勾股定理和锐角三角函数解直角三角形,并能解决简单的实际问题.四、学习重点:会通过已知条件解直角三角形五、教学过程:1.自主学习(1)直角三角形有哪些元素?分别是什么?它们之间有什么关系? 三边之间的关系:a 2+b 2=_____;锐角之间的关系:∠A+∠B=_____; 边角之间的关系:sinA=_____,cosA=_____,tanA=_____.(2)利用这些关系,除直角外,至少需要知道几个元素就可以求其他的元素了?2.重点研讨(1)已知两边例1:如图,在Rt △ABC 中,∠C = 90°,2=AC ,6=BC ,求这个直角三角形的其他元素.(2)已知一边和一锐角例2:如图,在Rt △ABC 中,∠C =90°,∠B =30°,b=20,求这个直角三角形的其他元素 .AB C 26A C B c a b=20 30° BAC c a b小结:1.在直角三角形中,除直角外有5个元素(即3条边、2个锐角),只要知道其中的 个元素(至少有1个是 ),就可以求出其余的3个未知元素.2.由直角三角形中 求出 的过程,叫做 .3.巩固训练(1)在△ACB 中,∠C=90°,AB=4,AC=3,欲求∠A 的值,最适宜的做法是( )A.计算tanA 的值求出B.计算sinA 的值求出C.计算cosA 的值求出D.先根据sinB 求出∠B ,再利用90°-∠B 求出(2)在Rt △ABC 中,∠C=90°,∠B=35°,AB=3,则BC 的长为( )A.3sin35°B.2cos35°C.3cos35°D.3tan35° (3)在Rt △ABC 中,∠C=90°,根据下列条件解直角三角形:(1)∠B=45°,c=14;(2)b=15,∠B=60°.4.延伸迁移 (1)如图,在△ABC 中, 求sinA 的值.(2)在△ABC 中,∠ABC=60°,AD 是BC 边上的高, 求△ABC 的面积.4.达标检测(1)如果等腰三角形的底角为30°,腰长为 6 cm ,那么这个三角形的面积为( )A.4.5 cm 2B. 39 cm 2C. 318 cm 2D.36 cm 2(2)如图,在 △ABC 中,32=AC ,︒=∠30A ,︒=∠45B ,求AB 的长.A B 410,sin 5AB AC B ===5. 学习反思:通过本节课的学习,你有什么收获?六、作业布置:(1)《作业设计》1-5.(2)选做题:《作业设计》6.七、板书设计:八、教学反思:通过本节课的学习,学生进一步熟悉了直角三角形边角之间的关系,并为运用解直角三角形解决实际问题做了准备,在本章的教学中具有承上启下的作用。

解直角三角形教案精选5篇

解直角三角形教案精选5篇

解直角三角形教案精选5篇解直角三角形教案篇一一、教学目标〔一〕知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.〔二〕能力训练点通过综合运用勾股定理,直角三角形的'两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.〔三〕德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在的两个元素中,为什么至少有一个是边.三、教学过程〔一〕明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?〔1〕边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成。

〔2〕三边之间关系a2+b2=c2〔勾股定理〕〔3〕锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.〔二〕整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习稳固.同时,本课又为以后的应用举例打下根底,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.〔三〕重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素〔至少有一个是边〕后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个元素中至少有一条边?〞让全体学生的思维目标一致,在作出准确答复后,教师请学生概括什么是解直角三角形?〔由直角三角形中除直角外的两个元素,求出所有未知元素的过程,叫做解直角三角形〕.3.例题例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比拟各种方法中哪些较好完成之后引导学生小结“一边一角,如何解直角三角形?〞答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比拟可靠,防止第一步错导致一错到底.例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.4.稳固练习解直角三角形是解实际应用题的根底,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比拟繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.〔四〕总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素〔至少有一个是边〕,就可以求出另三个元素.2.出示图表,请学生完成abcAB1√√2√√3√b=acotA√4√b=atanB√5√√6a=btanA√√7a=bcotB√√8a=csinAb=ccosA√√9a=ccosBb=csinB√√10不可求不可求不可求√√注:上表中“√〞表示。

苏科版数学九年级下册7.5《解直角三角形》教学设计

苏科版数学九年级下册7.5《解直角三角形》教学设计

苏科版数学九年级下册7.5《解直角三角形》教学设计一. 教材分析苏科版数学九年级下册7.5《解直角三角形》是直角三角形相关知识的学习,这部分内容在初中数学中占有重要地位。

通过本节课的学习,学生将掌握直角三角形的性质,学会使用勾股定理和锐角三角函数解直角三角形,从而为后续学习立体几何和物理学打下基础。

本节课内容分为两个部分:一是直角三角形的性质;二是解直角三角形的方法。

二. 学情分析九年级的学生已经掌握了锐角三角函数、平行线、相似三角形等基础知识,具备一定的逻辑思维能力和空间想象能力。

但学生在学习过程中,对于直角三角形的性质和解直角三角形的方法容易混淆,因此在教学中需要强调直角三角形的特殊性质,以及解直角三角形的具体步骤。

三. 教学目标1.了解直角三角形的性质,掌握勾股定理和锐角三角函数在解直角三角形中的应用。

2.学会使用勾股定理和锐角三角函数解直角三角形,提高解决问题的能力。

3.培养学生的空间想象能力和逻辑思维能力,提高学生分析问题和解决问题的能力。

四. 教学重难点1.教学重点:直角三角形的性质,勾股定理和锐角三角函数在解直角三角形中的应用。

2.教学难点:解直角三角形的具体步骤和方法。

五. 教学方法1.采用问题驱动法,引导学生通过观察、思考、讨论,发现直角三角形的性质和解直角三角形的方法。

2.使用多媒体课件,展示直角三角形的图形,增强学生的空间想象能力。

3.学生进行小组讨论,培养学生的团队协作能力。

4.通过典型例题,讲解解直角三角形的步骤,让学生在实践中掌握方法。

六. 教学准备1.多媒体课件:制作直角三角形的相关图形和典型例题。

2.教学素材:提供一些关于直角三角形的习题,用于巩固所学知识。

3.教学工具:黑板、粉笔、直尺、三角板等。

七. 教学过程1.导入(5分钟)利用多媒体课件展示直角三角形的图形,引导学生回顾直角三角形的定义和性质。

提问:你们知道直角三角形有哪些特殊的性质吗?2.呈现(10分钟)展示直角三角形的性质,引导学生观察、思考,发现直角三角形的性质。

解直角三角形及应用(教案)

解直角三角形及应用(教案)
4.实践活动和小组讨论环节,学生们积极参与,表现出很高的热情。他们在讨论中互相启发,共同解决问题,这有助于培养他们的团队协作能力和沟通能力。
5.学生在小组讨论中提出了很多有趣的观点和想法,这让我意识到他们对解直角三角形的应用有着广泛的兴趣。在今后的教学中,我可以更多地引入类似的实际案例,激发学生的学习兴趣。
6.总结回顾环节,我发现部分学生对正弦、余弦、正切的记忆仍然不够牢固。在接下来的教学中,我需要加强对这些知识点的复习和巩固,确保学生能够熟练掌握。
1.注重理论与实践相结合,让学生在实际问题中感受数学的魅力。
2.加强对重点、难点的讲解和练习,帮助学生扎实掌握知识点。
3.鼓励学生积极参与课堂讨论,培养他们的团队协作和沟通能力。
2.在案例分析环节,我尝试让学生通过实际测量和计算,体验到解直角三角形的实际应用。这让他们对知识点的印象更加深刻,也提高了他们解决实际问题的能力。
3.教学难点方面,正弦、余弦、正切在不同象限的正负问题对学生来说是一个挑战。我通过举例和对比,帮助学生理解和记忆这个难点。但从课堂反应来看,这部分内容还需要在后续的练习中进一步巩固。
3.培养学生的数据运算能力,通过计算特殊角的正弦、余弦、正切值,提高学生的计算准确性和速度。
4.培养学生的数学建模素养,使学生能够将实际问题转化为数学模型,运用数学知识解决现实问题,增强学生的应用意识。
三、教学难点与重点
1.教学重点
-理解并掌握正弦、余弦、正切的定义及其在直角三角形中的应用。
-学会使用计算器计算特殊角的正弦、余弦、正切值。
五、教学反思
在今天的教学中,我发现学生们对于解直角三角形这一章节的内容充满了好奇心。通过引入日常生活中的实际问题,他们能够更直观地感受到数学知识的实用性和趣味性。在讲授新课的过程中,我注意到以下几点:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形
【教学目标】
理解直角三角形中三条边及两个锐角之间的关系,能运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形。

【教学重点】
运用直角三角形的边角关系解直角三角形。

【教学难点】
灵活运用锐角三角函数解直角三角形。

【教学过程】
一、情境导入,初步认识。

如图(1)所示的是意大利的比萨斜塔,设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为C。

如图(2),在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,你能根据上述条件求出图(2)中∠A的度数(即塔身中心线与垂直中心线的夹角的度数)吗?与同伴相互交流。

二、思考探究,获取新知。

在上述问题中,我们已知直角三角形的一条直角边和斜边,利用锐角三角函数可求出它的锐角的度数,事实上,我们还可以借助直角三角形中两锐角互余,求出另一个锐角度数,也可以利用勾股定理得到另一条直角边。

一般地,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三形。

思考。

1.直角三角形中,除直角外的5个元素之间有哪些关系?
2.知道5个元素中的几个,就可以求出其余元素?
3.如图,在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,那么除直角C 外的5个元素之间有如下关系:
(1)三边之间的关系:a 2+b 2=c 2
(2)两锐角之间的关系:∠A+∠B=90°;
(3)边角之间的关系:
sin ,cos =,
tan ,
sin ,cos =tan A a A b A A c c A a A b B b B a B B c c
B b B a
∠∠===∠==∠∠===∠==∠的斜边的邻边斜边斜边的对边斜边的斜边的邻边斜边斜边的对边B 的邻边 通过它们之间的关系,可以发现,知道其中的2个元素(至少有一条是边),就可以求出其他所有元素。

三、典例精析,掌握新知。

1.如图,在Rt △ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c
,且a b ==,解这个直角三角形。

(分析)由首先联想到勾股定理可得,再利用知∠A=30°,从而∠B=60°这是一例除直角外的两个已知元素都是边的情形,
在求它的锐角度
62==b a ,,22=c ,21222sin ===c a B
数时,有时必须借助计算器才行。

2.如图,在Rt △ABC 中,∠C=90°,∠B=40°,且b=20,解这个直角三角形。

(结果保留一位小数)
(分析)本例是已知一条边和一个锐角,求这个直角三角形的另两边长和另一个锐角。


先可轻松得到∠A=50°,再利用可求出a ,c 的值,也可由,则20cos50c ︒=,
求c 的值,再利用勾股定理,或利用锐角的正切函数求出a 的值。

注意:由于40°,50°均不是特殊角,它的三角函数值可利用计算器获得。

四、运用新知,深化理解。

1.Rt △ABC 中,∠C=90°,根据下列条件解直角三角形。

(1)a=30,b=20;
(2)∠B=62°,c=16。

2.已知△ABC 中,AD 是BC 边上的高,且AD=2,
,AB=1。

①如图(1),求∠BAC 度数;
②如图(2),试求∠BAC 的度数。

五、师生互动,课堂小结。

1.常见的解直角三角形问题可分为哪两类?与同伴交流。

2.解直角三角形需要除直角外的两个已知条件,其中必须有一个已知边,为什么?
a B c B 20tan ,20sin ==AB
AC A =cos 22=AC。

相关文档
最新文档