初中数学《正数 负数以及零的意义》

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学七年级上

《正数负数以及零的意义》教学设计

宝丰县山河路小学

董霞

2019年6月

初中数学七年级上

《正数负数以及零的意义》教学设计

教学目标

1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;

2. 会初步应用正负数表示具有相反意义的量;

3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;

4.培养学生逐步树立分类讨论的思想;

5. 通过本节课的教学,渗透对立统一的辩证思想。

教学建议

一、重点、难点分析

本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。

正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。

关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

二、教法建议

这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.

为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。

三、正数与负数概念的理解

1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。

2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如 (6)

-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

四、有理数的分类

整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。

2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。

3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。

4)分数和小数的区别:

分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。

5)到目前为止,所学过的数(除π外)都是有理数。

初中数学正数与负数的教学过程设计

(一)营造问题情境,导入新课

1.复习回顾,做好衔接

同学们已经有了六年学习数学的经验,数对每一位同学来说并不陌生,

相信同学们已经认识到数的产生和发展离不开生产和生

自然数的产生、分数的产生。

演示课件,展示图片,直观说明数的产生和扩充:(出示图片说明自然数

的产生、分数的产生。让学生理解数的符号的产生的好处)

师生活动(引导学生观察图片,试着解释图片意义):我们知道,为了表示

物体的个数(如原始社会打猎计数)或事物的顺序,产生了数1,2,3,...;为了

表示“没有”(比如猎物分完),引入了数0;有时分配、测量(丈量土地)的结果不

是整数,需要用分数(小数)表示. 总之,数是为了满足生产和生活的需要而产

生发展起来的.

设计意图:数的产生和发展离不开生活和生产的需要。

2.自主学习,合作交流,导入新课

游戏(规则):各组派两名同学进行如下活动:一名同学按老师的指令表演,另一名同学在黑板上速记,看哪一组获胜。

师生活动:

教师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前四步,向后一步;

向前四步,向后两步。

……

一名学生按老师的指令表演,另一名学生在黑板上速记。

设计意图:通过活动,激发学生参与课堂教学的热情,使学生进入问题情境。在教师分析同学们的活动情况下,指导学生引入数学符号刻画游戏本质:向前与向后是一组互为相反意义的的量。规定向前用“+”,向后用“-”表示,这样上述游戏可用一组数学符号表示为+2、-2、+1、-3、+4、-1、+4、-2…。让其感受到引入数学符号的必要性,由此引入新课(研究数字前面添上“+”或“-”的数,即互为相反意义的量)。

(二)自主探索,获取新知

1.问题背景展示,获取具有相反意义的量常识

在生活、生产、科研中,经常遇到数的表示与运算的问题。

①章前图(引言)

演示课件,展示问题及相应的图片。

问题(1)北京冬季里某天的温度为-3~3,它的确切含义是什么?这一天北京的温差是多少?

问题(2)有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0)三个队的净胜球数分别是2,-2,0,如何确定排名顺序?

问题(3)2006年我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里增长-2.7%代表什么意思?

师生活动:教师演示课件并对问题背景做些说明:例如在净胜球的问题中,先介绍确定足球比赛排名顺序的规定:两队积分不相同,积分高的队排名在前;两队积分相同,净胜球多的队排名在前;两队积分、净胜球都相同,进

相关文档
最新文档