小学数学思维方法:染色问题

合集下载

小学思维数学讲义:乘法原理之染色问题-带详解

小学思维数学讲义:乘法原理之染色问题-带详解

乘法原理之染色问题教学目标1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.知识要点一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?DC B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选.根据乘法原理,不同的涂法有32212⨯⨯=种;当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同).根据乘法原理,不同的涂法有32116⨯⨯⨯=种.综上,根据加法原理,共有12618+=种不同的涂法.【答案】18【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有326⨯=种方法,D 剩下2种方法,对该图的染色方法一共有43332284⨯⨯+⨯⨯=()种方法.【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.【答案】84【例 2】 在右图的每个区域内涂上A 、B 、C 、D 四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.7654321【考点】乘法原理之染色问题 【难度】4星 【题型】解答【解析】 因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有43224⨯⨯=种染色方法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【答案】24【例 3】 如图,地图上有A ,B ,C ,D 四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?例题精讲DCB A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给A 染色,有5种颜色可选.第二步:给B 染色,由于B 不能与A 同色,所以B 有4种颜色可选.第三步:给C 染色,由于C 不能与A 、B 同色,所以C 有3种颜色可选.第四步:给D 染色,由于D 不能与B 、C 同色,但可以与A 同色,所以D 有3种颜色可选.根据分步计数的乘法原理,用5种颜色给地图染色共有5433180⨯⨯⨯=种不同的染色方法.【答案】180【巩固】 如图,一张地图上有五个国家A ,B ,C ,D ,E ,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?ED C BA【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,给A 国上色,可以任选颜色,有四种选择;第二步,给B 国上色,B 国不能使用A 国的颜色,有三种选择;第三步,给C 国上色,C 国与B ,A 两国相邻,所以不能使用A ,B 国的颜色,只有两种选择;第四步,给D 国上色,D 国与B ,C 两国相邻,因此也只有两种选择;第五步,给E 国上色,E 国与C ,D 两国相邻,有两种选择. 共有4322296⨯⨯⨯⨯=种着色方法.【答案】96【例 4】 如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2……,所以一共有:4322222221536⨯⨯⨯⨯⨯⨯⨯⨯=种.【答案】1536【巩固】 用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?ABC【考点】乘法原理之染色问题【难度】2星【题型】解答【解析】涂三块毫无疑问是分成三步.第一步,涂A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了.然后再根据乘法原理.3216⨯⨯=【答案】6【例 5】如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有4322296⨯⨯⨯⨯=种方法.【讨论】如果染色步骤为----C A BD E,那么应该该如何解答?答案:也是4322296⨯⨯⨯⨯=种方法.如果染色步骤为----C AD B E那么应该如何解答?答案:染色的前两步一共有4×3种方法,但染第三步时需要分类讨论,如果D与A颜色相同,那么B有2种染法,E也有2种方法,如果D与A染不同的颜色,那么D有2种染法那么B只有一种染法,E有2种染法,所以一共应该有43(122212)96⨯⨯⨯⨯+⨯⨯=种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所染的区块相邻.【答案】96【巩固】某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】为了便于分析,把地图上的7个县分别编号为A、B、C、D、E、F、G(如左下图).GF DC B AE为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图.那么,为了完成地图染色这件工作需要多少步呢?由于有7个区域,我们不妨按A 、B 、C 、D 、E 、F 、G 的顺序,用红、黑、绿、蓝、紫五种颜色依次分7步来完成染色任务.第1步:先染区域A ,有5种颜色可供选择;第2步:再染区域B ,由于B 不能与A 同色,所以区域B 的染色方式有4种;第3步:染区域C ,由于C 不能与B 、A 同色,所以区域C 的染色方式有3种;第4步:染区域D ,由于D 不能与C 、A 同色,所以区域D 的染色方式有3种;第5步:染区域E ,由于E 不能与D 、A 同色,所以区域E 的染色方式有3种;第6步:染区域F ,由于F 不能与E 、A 同色,所以区域F 的染色方式有3种;第7步:染区域G ,由于G 不能与C 、D 同色,所以区域G 的染色方式有3种.根据分步计数的乘法原理,共有54333334860⨯⨯⨯⨯⨯⨯=种不同的染色方法.【答案】4860【例 6】 用3种颜色把一个33⨯的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有 种不同的染色法.【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 根据题意可知,染完后这个33⨯的方格表每一行和每一列都恰有3个颜色.用3种颜色染第一行,有336P =种染法;染完第一行后再染第一列剩下的2个方格,有2种染法;当第一行和第一列都染好后,再根据每一行和每一列都恰有3个颜色对剩下的方格进行染色,可知其余的方格都只有唯一一种染法.所以,根据乘法原理,共有326⨯=种不同的染法.【答案】6【例 7】 如右图,有A 、B 、C 、D 、E 五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?EDC BA 【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 先采用分步:第一步给A 染色,有5种方法;第二步给B 染色,有4种方式;第三步给C 染色,有3种方式;第四步给D 染色,有3种方式;第五步,给E 染色,由于E 不能与A 、B 、D 同色,但可以和C 同色.此时就出现了问题:当D 与B 同色时,E 有3种颜色可染;而当D 与B 异色时,E 有2种颜色可染.所以必须从第四步就开始分类:第一类,D 与B 同色.E 有3种颜色可染,共有5433180⨯⨯⨯=(种)染色方式;第二类,D 与B 异色.D 有2种颜色可染,E 有2种颜色可染,共有54322240⨯⨯⨯⨯=(种)染色方式.根据加法原理,共有180240420+=(种)染色方式.【注意】给图形染色问题中有的可以直接用乘法原理解决,但如果碰到有首尾相接的图形往往需要分类解决.【答案】420【巩固】 如右图,有A ,B ,C ,D 四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?D C B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有4种颜色可选,然后分类:第一类:B ,D 取相同的颜色.有3种颜色可染,此时D 也有3种颜色可选.根据乘法原理,不同的染法有43336⨯⨯=(种);第二类:当B ,D 取不同的颜色时,B 有3种颜色可染,C 有2种颜色可染,此时D 也有2种颜色可染.根据乘法原理,不同的染法有432248⨯⨯⨯=(种).根据加法原理,共有364884+=(种)染色方法.【答案】84【巩固】用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?学奥而思数【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有32212⨯⨯=种;当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有32116⨯⨯⨯=种.所以,根据加法原理,共有43(222)72⨯⨯⨯+=种不同的涂法.【答案】72【例 8】分别用五种颜色中的某一种对下图的A,B,C,D,E,F六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】先按A,B,D,C,E的次序染色,可供选择的颜色依次有5,4,3,2,3种,注意E与D的颜色搭配有339⨯=(种),其中有3种E和D同色,有6种E和D异色.最后染F,当E与D同色时有3种颜色可选,当E与D异色时有2种颜色可选,所以共有542(3362)840⨯⨯⨯⨯+⨯=种染法.【答案】840【例 9】将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?D CBA【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】如右上图,当A,B,C,D的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A,B,C,D有多少种不同涂法.按先A,再B,D,后C的顺序涂色.按---A B D C的顺序涂颜色:A有3种颜色可选;当B,D取相同的颜色时,有2种颜色可选,此时C也有2种颜色可选,不同的涂法有32212⨯⨯=种;当B,D取不同的颜色时,B有2种颜色可选,D仅剩1种颜色可选,此时C也只有1种颜色可选(与A相同),不同的涂法有32116⨯⨯⨯=(种).所以,根据加法原理,共有12618+=种不同的涂法.【答案】18【例 10】用4种不同的颜色来涂正四面体(如图,每个面都是完全相同的正三角形)的4个面,使不同的面涂有不同的颜色,共有________种不同的涂法.(将正四面体任意旋转后仍然不同的涂色法,才被认为是不同的)【考点】乘法原理之染色问题【难度】4星【题型】填空【关键词】迎春杯,中年级,复赛,第9题【解析】不旋转时共有4×3×2×1=24种染色方式,而一个正四面体有4×3=12种放置方法(4个面中选1个作底面,再从剩余3个面中选1个作正面),所以每种染色方式被重复计算了12次,则不同的染色方法有24÷12=2种。

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】
解析:对房间染色,使最下面的两个房间染成黑色,与黑色相邻的
房染成白色,
则图中有7个黑色房间和5个白色房间.
如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.
点评:完成本题也可根据要求据图中的房间实际找下路线,看是
否能够找到.
【第二篇】
展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入
口进去,不重复地参观完全部展室后,从出口出来呢?
答案:
不能.对展室实行染色,使相邻两房间分别是黑色和白色的.此时入
口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个
展室,入口与出口展室的颜色应该不相同.
【第三篇】
染色问题基本解法:
三面涂色和顶点相关 8个顶点。

两面染色和棱长相关。

即新棱长(棱长-2)×12
一面染色和表面积相关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6
0面染色和体积相关。

用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)
长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】
导读:本文小学奥数杂题染色问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】 1.如图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?
解析:对房间染色,使最下面的两个房间染成黑色,与黑色相邻的房染成白色,
则图中有7个黑色房间和5个白色房间.
如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.
点评:完成本题也可根据要求据图中的房间实际找下路线,看是否能够找到.【第二篇】展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入口进去,不重复地参观完全部展室后,从出口出来呢? 答案:不能.对展室进行染色,使相邻两房间分别是黑色和白色的.此时入口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个展室,入口与出口展室的颜色应该不相同. 【第三篇】染色问题基本解法:三面涂色和顶点有关8个顶点。

两面染色和棱长有关。

即新棱长(棱长-2)×12一面染色和表面积有关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6 0面染色和体积有关。

用新棱长计算体积公式(棱
长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

五年级奥数:染色问题

五年级奥数:染色问题

五年级奥数:染色问题染色问题的解题思路染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。

图一首先,拿到一道题先认真观察,看这个题的突破点。

什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。

例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。

找到这个区域问题就容易解决了。

这个区域可以任意添色就是染最多的颜色。

本题中有4种颜色那么A可以染4种颜色了。

完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。

这道题找到了最特殊的A区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。

区域B跟A、C相连那么 B可以染2种。

D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。

E连接A、D也有两种可能。

F也是连接着A、E有两种可能。

这道题就解出来了。

有4×3×2×2×2=96种可能。

这道题跟以下一道题有异曲同工之效,大家不妨一起看下图二。

图二图中A与B、C相连有4种染色方式,为第一特殊区域。

而B是与A相连的第二特殊区域(切记,此时选第二特殊区域,乃是跟第一特殊区域相连的一个区域)B有3种可能,C连接A、B则有2种可能,D连接B、C则有2种可能,同理E也有2种可能。

所以此题有4×3×2×2×2=96种可能的染色。

再来看一个稍微复杂点的问题如图三 图三图中A有5种染色方式C------ 4,B-----3,D-----3,E------3,F------3,G------3。

解决小学奥数问题的方法:染色分类法

解决小学奥数问题的方法:染色分类法

一种解决数学问题的新方法:染色分类法【摘要】:在现实生活中,有一些判断能与否的数学问题涉及到的知识点很少,难以快速地找到解题思路。

本文主要介绍一种解决这类数学问题的新方法:染色分类法。

对研究对象进行染色,可以形象、直观地使某些隐蔽的条件显露,从而 获得简明的解答。

【关键字】:染色 分类 数学问题一、 用染色解决图形覆盖问题:在中学数学竞赛中,我们常常会碰到这样的题目:用多个几何图形去覆盖另一个几何图形,问能否实现。

如果我们每一种情况都去试,不仅花时间,而且容易因考虑不全而出错。

对于这一类问题,我们不妨对涉及到的几何对象进行染色,再来寻找解题思路。

问题一:能否用2个田字形和7个T 字形恰好覆盖一个6⨯6网格?分析:这道题看似简单,但是如果要穷尽每种情况去试一试,却不太可行。

考虑到网格中共有36个小方格,不妨通过染色把这36个小方格分成黑白两类,然后看用田字形能覆盖住多少个,T 字形能覆盖住多少个,从而判断该题是否有解。

解:由于用黑白两种颜色对6⨯6 网格进行染色(如图),可以看到图中有18个黑格,18个白格。

而用一个田字形,无论放在哪里,都能覆盖住一个黑格,一个白格;而T 字形能覆盖住1个或3个白格。

所以2个田字形和7个T 字形总共覆盖住奇数个白格,而6⨯6 网格中总共有18(偶数)个白格,所以不能完全覆盖住。

问题二 :要用40块方形瓷砖铺设如图2所示图形的地面,但当时商店只有长方形瓷砖,每块大小等于方形的两块,一人买了20块长方形瓷砖,结果弄来弄去始终无法完整铺设好,你能否用这20块瓷砖(不分割任何一块)帮他铺好地面?图2 图3分析:要得出这道题的答案并不难,但是如何从理论上证明却没那么简单。

这里,如果我们仿照问题一采用染色方法,不仅能更快得出答案,更能较好地说明理由,让读者一目了然。

解:在图形上黑、白相间地染色,如图3。

则共有19个白格和21个黑格。

一块长方形瓷砖只可盖住一白一黑两格。

为了把所有的白格都盖住,需要19块长方形瓷砖,但19块长方形瓷砖只能盖住19个黑格,还有两个黑格没有盖住。

六年级下册奥数讲义-奥数方法:染色法 全国通用

六年级下册奥数讲义-奥数方法:染色法 全国通用

在解决某些数学问题时,我们常常需要把有关元素适当分类.为了使这种分类更为形象,我们可以设想把元素分别涂上不同的颜色.这类用涂色的方法来寻求解题思路的方法叫做染色法.根据染色对象的不同,染色法一般分为方格染色、线段染色和点染色三种,在运用染色法解题的过程中,常结合抽屉原理等组合知识和图论初步知识.解题步骤一般分为:(1)审题,把实际问题用染色图表示出来;(2)运用抽屉原理或图论知识对染色图进行分析;(3)找出问题的答案.[例1] 在平面上有一个27×27的方格棋盘,在横盘的正中间摆好81枚棋子,它们被摆成一个9×9的正方形.按下面的规则进行游戏:每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子,放进紧挨着这枚棋子的空格中,并把越过的这枚棋子取出来.问:是否存在一种方法,使棋盘上最后恰好剩下一枚棋子?思路剖析本题的游戏规则是一枚棋子越过相邻的棋子进行移动,故每一次移动会影响3个棋盘方块的棋子数,可考虑用3种颜色对棋盘染色,研究其变动规律,推出答案.解答如图1所示,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘按颜色分成了三个部分.按照游戏规则,每走一步,有两部分中的棋子数各减少了一个,而第三部分的棋子数的奇偶性都要改变.因为一开始时,81个棋子摆成一个9×9的正方形,显然三个部分的棋子数是相同的,故每走一步,三部分中的棋子数的奇偶性是一致的.但如果在走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另—部分的棋子数为奇数,这种结局是不可能的,即不存在一种走法,使棋盘上最后恰好剩下一枚棋子.[例2]在5×5的方格棋盘中的A格里放一颗棋子,规定每次棋子可向左右或上下移动一格,问这颗棋子走25步后能否回到原处?思路剖析如图2所示,棋子从A出发,每一步都有2┉4种走法,25步以后出现的情况很多.从表面上看,似乎找不到棋子行走的规律,若利用染色法,对棋格作相间染色,很容易发现规律,找到本题答案.解答如图3所示,对棋格作相间染色,则棋子从白格A出发,走l步进入黑格,走2步进入白格,走3步进入黑格,……,显然,棋子从白格A出发. 走奇数步落在黑格,走偶数步落在白格,所以,走25步一定落在黑格,而原处为白格,故本题答案为:这颗棋子走25步后不能回到原处.[例3】如图4所示,把正方体分割成27个相等的小正方体,在中心的那个小正方体中有一只小甲虫,甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任何一个中去.如果要求甲虫只能走到每个小正方体一次,那么甲虫能走遍所有的正方体吗?思路剖析先将正方体进行黑白相间染色(见图5),则小甲虫每移动一次,会改变一次方格的颜色,对小甲虫走过不同颜色的方格数进行考虑,问题便迎刃而解了.解答我们如图5所示,将正方体分割成27个小正方体,涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上黑色.显然,在27个小正方体中,14个是黑的,13个是白的.甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色.故它走27步,应该经过14个白色的小正方体、13个黑色的小正方体.因此在27步中至少有一个小正方体,甲虫进去过两次.由此可见,如果要求甲虫到每一个小正方体只去一次,那么甲虫不能走遍所有的小正方体.[例4] 如图6所示,平面上给定6个点,没有三个点在一条直线上. 证明:用这些点做顶点所组成的一切三角形中,必定有一个三角形,它的最大边同时是另一个三角形的最小边.思路剖析在一般情况下,三角形的三条边互不相等,因此存在一个最大边和最小边,考虑特殊情况,在等腰三角形(或等边三角形)中,最大边可能有2 条(或3条).同样,可用涂色法解决.证明先将每一个三角形中的最大边涂成红色,然后将其余的边染成绿色.(1)先证明这些三角形中至少有一个同色三角形.根据抽屉原理,从A出发的5条线,至少有3条线同色,设有3条红线AB、AC、AD,再分析BC、BD、CD三条线段,若有l条为红色,问题得证,若3条全是绿色.问题也得证.(2)由(1)可知,全部三角形中必有一个为同色三角形,若为红色三角形,则这红色三角形中的最小边必定是某个三角形的最大边;若为绿色三角形,则这个绿色三角形中的最大边必定是某一三角形的最小边,问题得证.[例5】用15个“T"字形纸片和1个“田”字形纸片(如图7所示),能否覆盖一个8×8的棋盘?思路剖析本题看起来无从下手,但我们可以将棋盘的方格进行染色,然后寻找T字形纸片与棋盘方格之间的关系,综合运用假设法,导出本题答案.解答如图8所示,先将棋盘染成黑白相间的形状.假设15个T字形纸片和1个田字形纸片可以盖住棋盘,则它们盖住的白格数为32个.显然1个田字形纸片盖住2个白格,故15个T字形纸片盖住30个白格.再来看每个T字形纸片只能盖住1个或3个白格,设有,n(n为自然数)张T字纸片盖住1个白格,则15张T字纸片一共盖住n×1+(15-n)×3=,n+45-3n=45-2n,对45-2n=30求解,显然n没有自然数解,所以不能覆盖棋盘.[例6】6个人参加一个集会,每两个人或者互相认识或者互相不认识.证明:存在两个“三人组”,在每一个“三人组”中的三个人,或者互相认识,或者互相不认识(这两个“三人组”可以有公共成员).思路剖析本题是一个生活中的小问题,可先进行适当转化,使其变成一个纯粹的数学题,可考虑用点表示每个人,利用染色法,对每个人之间的不同关系用点与点之间不同颜色的线段来区分.问题就迎刃而解了.解答现在我们将每个人用一个点表示(A、B、C、D、E、F),如果两人认识就在相应的两个点之间连一条红色线段,否则就连一条蓝色线段.本题即证明图9中是否存在两个同色的三角形.我们先证明存在一个同色的三角形(图9):考虑由A点引出五条线段AB、AC、AD、AE,AF、其中必然有三条被染成了相同的颜色,我们不妨设AB、AC、AD同为红色.再考虑ABCD的三边:若其中有一条是红色,则存在一个红色三角形;若这三条都不是红色,则存在一个蓝色三角形.我们不妨再假设△ABC的三条边都是红色的.若△DEF也是三边同为红色,则显然就有两个同色三角形;若△DEF三边中有一条边为蓝色,设其为DE,再考虑DA,DB,DC三条线段:若其中有两条为红色,则显然有一个红色三角形;若其中有两条是蓝色的,则设其为DA,DB.此时在EA,EB中若有一边为蓝色,则存在一个蓝色三角形;而若两边都是红色,则又存在一个红色三角形.(请读者参照上图作图)答:不论如何染色,总可以找到两个同色的三角形.[例7】某展览馆是由5×5个小方形房组成的25间展室,相邻的两展室之间有一门相通且只有一间展室为进出口房间.一小朋友打算从进口间开始,不重复地依次看完每一展室,然后出来.试问,这位小朋友的希望能实现吗?思路剖析如果我们一条一条地把所有可能的走法都来试验,显然是不明智的,因为走法太多,而且容易发生遗漏.可以考虑染色法,将25个展室用黑白相间的办法涂色,再进行奇偶性分析.解答如图10所示,把25个展室用黑白相间的办法涂色,根据小朋友的愿望,他必须依次由白室走入黑室,经过25道门,最后再到白室.然而,无论他选择什么路线,按其要求走的结果必然是:即,经过25道门后,所到的展室一定是黑室而不是白室,所以,这位小朋友的愿望不能实现.点津染色法是由染色问题引申出来的一类解题方法,其实质也是将一个数学问题转化为一个染色问题.运用它解题的关键在于染色对象和染色方式的选择,一般采用黑白相间的方式,在解答一些更难的问题时可能要用到多种颜色.在题中数量关系发生变动时,考虑这种变动在涂色图形上的反应时,要有较严密的逻辑思维和想像能力.1.如图11所示,正方形被分成6块区域,若给每一块区域都染色,并且相邻的区域颜色不同,问至少需要几种不同的颜色?2.将4x4的正方形剪去两个小正方形,剪法不同得出图12和图13.现用7块l x 2的小矩形去覆盖,问覆盖能否完成.3.如图14用红、黄、蓝、绿4种颜色给一个五边形着色,使相邻两边的颜色不同.问共有多少种不同的着色方法?4.在正方体的每一个面取中心,将这些点两两相连,有些用红线,有些用蓝线,求证:在这些连线中,必然有同一种颜色的线组成的三角形.5.将图15中的点染色,要求相邻的(即有线段连结的)点染成不同的颜色.问至少需要几种颜色?6.一个车间安装了5行缝纫机,每行7台,每台缝纫机由一名工人操作,一个月后,要求每个工人和它相邻的同伴交换工作,这可能吗?为什么?7.线段AB的两个端点一个染黑色,一个染白色.在线段AB内任意取100个点,将AB分成101条首尾相接的线段,请判断,如果将这100个点任意染成黑色点或白色点,那么这101条线段中,两端点不同色的线段的条数是奇数还是偶数?8.在一张白纸上,随着画上一些红色点和一些蓝色点,它们的总和不少于5点.画完之后发现,任意3个红点不共线,任意3个蓝点也不共线. 求证,一定存在3个顶点同颜色的三角形,它至少有一条边(不包括延长线)不含另一种颜色的点.9.一批现成的木箱,尺寸是6 x 6 x 6,现有一批商品,每件都是长方体,尺寸为l x2x4.能不能用这样的商品将木箱填满?。

小学数学思维方法:染色问题

小学数学思维方法:染色问题

染色问题【知识要点】这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法。

染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意染色问题的分析思路,学会几种典型的染色方法。

【典型例题】例1.六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫作它的邻座。

如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?解:画一个57⨯的方格表,其中每一个方格表示一个座位。

将方格黑白相间地染上颜色,这样黑色座位与白色座位都成了邻座。

因此每位同学都坐到他的邻座相当于所有白格的坐到黑格,所有黑格的坐到白格。

但实际上图中有17个黑格,18个白格,黑格与白格的个数不相等,故不能办到。

例2.右图是学校素质教育成果展览会的展室,每两个相邻的展室之间都有门相通。

有一个人打算从A 室开始依次而入,不重复地看过各室展览之后,仍回到A 室,问他的目的能否达到,为什么?解:采用染色法。

如右下图,共有9个展览室,对这9个展览室,黑白相间地进行染色,从白室A 出发走过第1扇门必至黑室,再由黑室走过第2扇门至白室,由于不重复地走遍每一间展览室,因此将走过黑白相间的8个展览室,再回到白室A ,共走过9扇门。

由于走过奇数次门至黑室,走过偶数次门至白室。

现在,走过9扇门,必至黑室,所以无法回到原来的白室A 。

例3.右图是由14个大小相同的方格组成的图形。

试问能不能剪裁成7个由相邻两方格组成的长方形?解:将这14个小方格黑白相间染色(见右上图),有8个黑格,6个白格。

相邻两个方格必然是一黑一白,如果能剪裁成7个小长方形,那么14个格应当是黑、白各7个,与实际情况不符,所以不能剪裁成7个由相邻两个方格组成的长方形。

四年级数学奥数题知识点《染色问题》专项训练及答案

四年级数学奥数题知识点《染色问题》专项训练及答案

四年级数学奥数题知识点《染色问题》专项训练
及答案
题型:染色问题难度:★★
如图,把A、B、C、D、M这五个部分用5种不同的颜色染色,且相邻的部分不能使用同一种颜色,有的颜色也可以不用,不相邻的部分可以使用同一种颜色,那么这幅图一共有多少种不同的染色方法?
【答案解析】
如果5种颜色全部使用,那么共有5×4×3×2×1=120种染色方法。

如果只使用4种颜色,可以是B和D同色,也可以是A和C 同色,那么共有5×4×3×2×2=240种染色方法。

如果只使用3种颜色,那么有B和D同色并且A和C同色,共有5×4×3=60种染色方法。

120+240+60=420,所以这幅图一共有420种不同的染色方法。

题型:染色问题难度:★★
如图,9条小线段组成了4个小三角形,现在将每条线段分别染上红、黄、蓝三种颜色之一,使得每个三角形三条边的颜色互不相同,那么共有多少种不同的染色方式?
【答案解析】
任选一个小三角形的一条边,当这条边的颜色确定时,这个小三角形的染色方法有2种,同时每种方法都会确定与其相邻的小三角形的一条边的颜色。

24×3=48,所以共有48种不同的染色方式。

小学思维数学讲义:乘法原理之染色问题-带详解

小学思维数学讲义:乘法原理之染色问题-带详解

乘法原理之染色问题教学目标1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.知识要点一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?DC B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选.根据乘法原理,不同的涂法有32212⨯⨯=种;当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同).根据乘法原理,不同的涂法有32116⨯⨯⨯=种.综上,根据加法原理,共有12618+=种不同的涂法.【答案】18【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有326⨯=种方法,D 剩下2种方法,对该图的染色方法一共有43332284⨯⨯+⨯⨯=()种方法.【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.【答案】84【例 2】 在右图的每个区域内涂上A 、B 、C 、D 四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.7654321【考点】乘法原理之染色问题 【难度】4星 【题型】解答【解析】 因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有43224⨯⨯=种染色方法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【答案】24【例 3】 如图,地图上有A ,B ,C ,D 四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?例题精讲DCB A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给A 染色,有5种颜色可选.第二步:给B 染色,由于B 不能与A 同色,所以B 有4种颜色可选.第三步:给C 染色,由于C 不能与A 、B 同色,所以C 有3种颜色可选.第四步:给D 染色,由于D 不能与B 、C 同色,但可以与A 同色,所以D 有3种颜色可选.根据分步计数的乘法原理,用5种颜色给地图染色共有5433180⨯⨯⨯=种不同的染色方法.【答案】180【巩固】 如图,一张地图上有五个国家A ,B ,C ,D ,E ,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?ED C BA【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,给A 国上色,可以任选颜色,有四种选择;第二步,给B 国上色,B 国不能使用A 国的颜色,有三种选择;第三步,给C 国上色,C 国与B ,A 两国相邻,所以不能使用A ,B 国的颜色,只有两种选择;第四步,给D 国上色,D 国与B ,C 两国相邻,因此也只有两种选择;第五步,给E 国上色,E 国与C ,D 两国相邻,有两种选择. 共有4322296⨯⨯⨯⨯=种着色方法.【答案】96【例 4】 如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2……,所以一共有:4322222221536⨯⨯⨯⨯⨯⨯⨯⨯=种.【答案】1536【巩固】 用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?ABC【考点】乘法原理之染色问题【难度】2星【题型】解答【解析】涂三块毫无疑问是分成三步.第一步,涂A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了.然后再根据乘法原理.3216⨯⨯=【答案】6【例 5】如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有4322296⨯⨯⨯⨯=种方法.【讨论】如果染色步骤为----C A BD E,那么应该该如何解答?答案:也是4322296⨯⨯⨯⨯=种方法.如果染色步骤为----C AD B E那么应该如何解答?答案:染色的前两步一共有4×3种方法,但染第三步时需要分类讨论,如果D与A颜色相同,那么B有2种染法,E也有2种方法,如果D与A染不同的颜色,那么D有2种染法那么B只有一种染法,E有2种染法,所以一共应该有43(122212)96⨯⨯⨯⨯+⨯⨯=种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所染的区块相邻.【答案】96【巩固】某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】为了便于分析,把地图上的7个县分别编号为A、B、C、D、E、F、G(如左下图).GF DC B AE为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图.那么,为了完成地图染色这件工作需要多少步呢?由于有7个区域,我们不妨按A 、B 、C 、D 、E 、F 、G 的顺序,用红、黑、绿、蓝、紫五种颜色依次分7步来完成染色任务.第1步:先染区域A ,有5种颜色可供选择;第2步:再染区域B ,由于B 不能与A 同色,所以区域B 的染色方式有4种;第3步:染区域C ,由于C 不能与B 、A 同色,所以区域C 的染色方式有3种;第4步:染区域D ,由于D 不能与C 、A 同色,所以区域D 的染色方式有3种;第5步:染区域E ,由于E 不能与D 、A 同色,所以区域E 的染色方式有3种;第6步:染区域F ,由于F 不能与E 、A 同色,所以区域F 的染色方式有3种;第7步:染区域G ,由于G 不能与C 、D 同色,所以区域G 的染色方式有3种.根据分步计数的乘法原理,共有54333334860⨯⨯⨯⨯⨯⨯=种不同的染色方法.【答案】4860【例 6】 用3种颜色把一个33⨯的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有 种不同的染色法.【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 根据题意可知,染完后这个33⨯的方格表每一行和每一列都恰有3个颜色.用3种颜色染第一行,有336P =种染法;染完第一行后再染第一列剩下的2个方格,有2种染法;当第一行和第一列都染好后,再根据每一行和每一列都恰有3个颜色对剩下的方格进行染色,可知其余的方格都只有唯一一种染法.所以,根据乘法原理,共有326⨯=种不同的染法.【答案】6【例 7】 如右图,有A 、B 、C 、D 、E 五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?EDC BA 【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 先采用分步:第一步给A 染色,有5种方法;第二步给B 染色,有4种方式;第三步给C 染色,有3种方式;第四步给D 染色,有3种方式;第五步,给E 染色,由于E 不能与A 、B 、D 同色,但可以和C 同色.此时就出现了问题:当D 与B 同色时,E 有3种颜色可染;而当D 与B 异色时,E 有2种颜色可染.所以必须从第四步就开始分类:第一类,D 与B 同色.E 有3种颜色可染,共有5433180⨯⨯⨯=(种)染色方式;第二类,D 与B 异色.D 有2种颜色可染,E 有2种颜色可染,共有54322240⨯⨯⨯⨯=(种)染色方式.根据加法原理,共有180240420+=(种)染色方式.【注意】给图形染色问题中有的可以直接用乘法原理解决,但如果碰到有首尾相接的图形往往需要分类解决.【答案】420【巩固】 如右图,有A ,B ,C ,D 四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?D C B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有4种颜色可选,然后分类:第一类:B ,D 取相同的颜色.有3种颜色可染,此时D 也有3种颜色可选.根据乘法原理,不同的染法有43336⨯⨯=(种);第二类:当B ,D 取不同的颜色时,B 有3种颜色可染,C 有2种颜色可染,此时D 也有2种颜色可染.根据乘法原理,不同的染法有432248⨯⨯⨯=(种).根据加法原理,共有364884+=(种)染色方法.【答案】84【巩固】用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?学奥而思数【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有32212⨯⨯=种;当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有32116⨯⨯⨯=种.所以,根据加法原理,共有43(222)72⨯⨯⨯+=种不同的涂法.【答案】72【例 8】分别用五种颜色中的某一种对下图的A,B,C,D,E,F六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】先按A,B,D,C,E的次序染色,可供选择的颜色依次有5,4,3,2,3种,注意E与D的颜色搭配有339⨯=(种),其中有3种E和D同色,有6种E和D异色.最后染F,当E与D同色时有3种颜色可选,当E与D异色时有2种颜色可选,所以共有542(3362)840⨯⨯⨯⨯+⨯=种染法.【答案】840【例 9】将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?D CBA【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】如右上图,当A,B,C,D的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A,B,C,D有多少种不同涂法.按先A,再B,D,后C的顺序涂色.按---A B D C的顺序涂颜色:A有3种颜色可选;当B,D取相同的颜色时,有2种颜色可选,此时C也有2种颜色可选,不同的涂法有32212⨯⨯=种;当B,D取不同的颜色时,B有2种颜色可选,D仅剩1种颜色可选,此时C也只有1种颜色可选(与A相同),不同的涂法有32116⨯⨯⨯=(种).所以,根据加法原理,共有12618+=种不同的涂法.【答案】18【例 10】用4种不同的颜色来涂正四面体(如图,每个面都是完全相同的正三角形)的4个面,使不同的面涂有不同的颜色,共有________种不同的涂法.(将正四面体任意旋转后仍然不同的涂色法,才被认为是不同的)【考点】乘法原理之染色问题【难度】4星【题型】填空【关键词】迎春杯,中年级,复赛,第9题【解析】不旋转时共有4×3×2×1=24种染色方式,而一个正四面体有4×3=12种放置方法(4个面中选1个作底面,再从剩余3个面中选1个作正面),所以每种染色方式被重复计算了12次,则不同的染色方法有24÷12=2种。

小学奥数模块教程染色问题(一)

小学奥数模块教程染色问题(一)

染色问题(一)染色问题是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

因此,这里的染色问题指的是一种解题方法。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会集中典型的染色方法。

根据具体题目的研究对象,染色方法大致可以分为对点染色、对线段染色、对方格染色和对区域染色。

对方格染色常用的是黑白方格相间染色,也叫自然染色。

例1如右图,在5×5方格的A格中有一只爬虫,它每次总是朝上下左右方向爬到相邻的方格中。

那么他能否不重复的爬满每个方格再回A到A格中?解:有小虫的爬法,可黑白相间对方格自然染色,于是小虫只能由黑格爬到白格或白格爬到黑格。

所以它由A出发回到A,即黑格爬到黑格,必须经过偶数步。

而小方格为5×5=25个,每格爬过一次,就应该为25步,不是偶数。

于是这只爬虫不可能不重复地爬遍每格再回到A格。

例2 有一次车展有6×6=36个展室,如图。

每格展室与相邻的展室都有门相通,入口和出口如图所示。

参观者能否从入口进去,不重复地参观完每格展室在从出口出来?解:如图,对每个展室黑白相间染色,同样每次只能冲黑格到白格或者从白格到黑格。

入口和出口都是白格,故线路黑白相间,首位都是白格,于是应该白格比合格多1个,而实际上白格、黑格都是18个,故不能做到不重复走遍每个展室。

例3 右图是某一套房子的平面图,共12个房间,每相邻两间房间都有门相通。

请问,你能从某个房间出发,不重复地走完每个房间吗?解:如图所示,将房间黑白相间染色,发现只有5个黑格、7个白格。

因为每次只能从黑到白或者白到黑,路线必然是黑白相间,显然应该从多的白格开始。

但路线上1白1黑......直至5白5黑后还多余2白格,不可能从白到黑。

故无法实现不重复地走遍每个房间。

小结:染色问题的解题技巧主要在于染色具体方案的构造,其基本原则是使题目条件出现一定的规律,以利于解题。

六年级染色问题

六年级染色问题

染色问题基本解法:三面涂色和顶点有关 8个顶点。

两面染色和棱长有关。

即新棱长(棱长-2)×12一面染色和表面积有关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6 0面染色和体积有关。

用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

六年级染色问题:难度:高难度下图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?分析:将40个小正方形剪裁成20个相同的长方形,就是将图形分割成 20个1×2的小长方形,将图形黑白相间染色后,发现有21黑, 19白,黑、白格数目不等,而1×2的小长方形覆盖的总是黑白格各一个,所以不可能做到。

六年级染色问题习题难度:中难度下图是学校素质教育成果展览会的展室,每两个相邻的展室之间都有门相通。

有一个人打算从A室开始依次而入,不重复地看过各室展览之后,仍回到A 室,问他的目的能否达到,为什么?分析:采用染色法。

如右下图,共有9 个展览室,对这9个展览室,黑白相间地进行染色,从白室A出发走过第1 扇门必至黑室,再由黑室走过第2 扇门至白室,由于不重复地走遍每一间展览室,因此将走过黑白相间的8个展览室,再回到白室A ,共走过9扇门。

由于走过奇数次门至黑室,走过偶数次门至白室。

现在,走过9扇门,必至黑室,所以无法回到原来的白室A 。

六年级染色问题:难度:中难下图是由14个大小相同的方格组成的图形。

试问能不能剪裁成7个由相邻两方格组成的长方形分析:将这14个小方格黑白相间染色(见下图),有 8个黑格, 6个白格。

相邻两个方格必然是一黑一白,如果能剪裁成7个小长方形,那么14个格应当是黑、白各7个,与实际情况不符,所以不能剪裁成 7个由相邻两个方格组成的长方形。

染色问题练习题及答案。

小学奥数——染色问题(答案)

小学奥数——染色问题(答案)

⼩学奥数——染⾊问题(答案)第9讲染⾊问题【知识要点】染⾊⽅法是⼀种对题⽬所研究的对象⽤直观形象的染⾊来进⾏分类的⽅法。

象国际象棋的棋盘那样,我们可以把研究的对象染上不同的颜⾊,使问题变得浅显明了、⼀⽬了然,有利于我们观察、分析对象之间的关系,再利⽤奇偶性、抽屉原理等多种知识对染⾊图形进⾏分析,从⽽达到对原问题的解决。

【典型例题】例1、教室中有7排位⼦,每排7张,每张位⼦上坐⼀个同学,如果⼀周后,每个同学都必须和他相邻的(前、后、左、右)某⼀个同学换位⼦,问:这种交换可能成功吗?为什么?解:如右图所⽰⿊⽩相间涂⾊,⽩⾊共有25个,⿊⾊24个,要实现题意要求,⼀个⽩⾊位置必须和⼀个⿊⾊位置互换,⿊⽩座位应该⼀样多才⾏,所以办不到。

例2、如图是⼀所房⼦的⽰意图,图中数字表⽰房间号码,每间房⼦都与隔壁的房间相通.问能否从1号房间开始,不重复的⾛遍所有房间⼜回到1号房间? 解:如图所⽰每⼀个奇数号房间旁边⼀定是偶数号房间,反之亦然,那么奇数号房间⼀定⾛到偶数号,偶数号⼀定⾛到奇数号,从⼀号开始⾛奇数步⼀定是到偶数号房间,⾛偶数步⼀定是到奇数号房间,要不重复的⾛遍所有房间回到1号房间,共要⾛9步,应该⾛到偶数号房间,⽽1是奇数,所以办不到。

例3、⼀个8?8国际象棋(下图)去掉对⾓上两格后,是否可以⽤31个2?1的“⾻牌” (形如 )把象棋盘上的62个⼩格完全盖住?解:任意⼀个2?1的“⾻牌”⼀定是⼀⽩⼀⿊的,所以若要⽤31个这样的⾻牌覆盖这个棋盘,⽩⿊格数应该⼀样多,⽽此棋盘中有32个⿊格,30个⽩格,所以办不到。

例4、线段AB 的两个端点,⼀个标以红⾊,⼀个标以蓝⾊。

在此线段中任意插⼊2008个分点,每个分点任意涂上红⾊或蓝⾊,这样分得2009条不重叠的⼩线段,如果把两端涂⾊不同的线段叫做奥运线段,奥运线段的条数是奇数还是偶数?解:原本的线段AB 就是⼀条奥运线段,然后不管中间插⼊的点是什么颜⾊的,都会破坏原来的奥运线段从⽽变成⼀条两端同⾊⼀条奥运线段,再然后如果在⼀条奥运线段中间插⼊任意颜⾊的点,奥运线段会被破坏,但是⼜会⽣成⼀条较短的,那么奥运线段的数量总数不变;如果在⼀条两端同⾊的线段中间插⼊不同⾊ 1 2 3 4 5 6 7 8 9的点,⼀下就增加2条奥运线段,不改变奥运线段数量的奇偶性。

小学奥数——染色问题(答案)

小学奥数——染色问题(答案)

第9讲 染色问题【知识要点】染色方法是一种对题目所研究的对象用直观形象的染色来进行分类的方法。

象国际象棋的棋盘那样,我们可以把研究的对象染上不同的颜色,使问题变得浅显明了、一目了然,有利于我们观察、分析对象之间的关系,再利用奇偶性、抽屉原理等多种知识对染色图形进行分析,从而达到对原问题的解决。

【典型例题】例1、教室中有7排位子,每排7张,每张位子上坐一个同学,如果一周后,每个同学都必须和他相邻的(前、后、左、右)某一个同学换位子,问:这种交换可能成功吗?为什么? 解:如右图所示黑白相间涂色,白色共有25个,黑色24个,要实现题意要求,一个白色位置必须和一个黑色位置互换,黑白座位应该一样多才行,所以办不到。

例2、如图是一所房子的示意图,图中数字表示房间号码,每间房子都与隔壁的房间相通.问能否从1号房间开始,不重复的走遍所有房间又回到1号房间? 解:如图所示每一个奇数号房间旁边一定是偶数号房间,反之亦然,那么奇数号房间一定走到偶数号,偶数号一定走到奇数号,从一号开始走奇数步一定是到偶数号房间,走偶数步一定是到奇数号房间,要不重复的走遍所有房间回到1号房间,共要走9步,应该走到偶数号房间,而1是奇数,所以办不到。

例3、一个8⨯8国际象棋(下图)去掉对角上两格后,是否可以用31个2⨯1的“骨牌” (形如 )把象棋盘上的62个小格完全盖住?解:任意一个2⨯1的“骨牌”一定是一白一黑的,所以若要用31个这样的骨牌覆盖这个棋盘,白黑格数应该一样多,而此棋盘中有32个黑格,30个白格,所以办不到。

例4、线段AB 的两个端点,一个标以红色,一个标以蓝色。

在此线段中任意插入2008个分点,每个分点任意涂上红色或蓝色,这样分得2009条不重叠的小线段,如果把两端涂色不同的线段叫做奥运线段,奥运线段的条数是奇数还是偶数? 解:原本的线段AB 就是一条奥运线段,然后不管中间插入的点是什么颜色的,都会破坏原来的奥运线段从而变成一条两端同色一条奥运线段,再然后如果在一条奥运线段中间插入任意颜色的点,奥运线段会被破坏,但是又会生成一条较短的,那么奥运线段的数量总数不变;如果在一条两端同色的线段中间插入不同色 1 2 3 4 5 6 7 8 9的点,一下就增加2条奥运线段,不改变奥运线段数量的奇偶性。

小学奥数模块教程染色问题(一)

小学奥数模块教程染色问题(一)

染色问题(一)染色问题是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

因此,这里的染色问题指的是一种解题方法。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会集中典型的染色方法。

根据具体题目的研究对象,染色方法大致可以分为对点染色、对线段染色、对方格染色和对区域染色。

对方格染色常用的是黑白方格相间染色,也叫自然染色。

例1如右图,在5×5方格的A格中有一只爬虫,它每次总是朝上下左右方向爬到相邻的方格中。

那么他能否不重复的爬满每个方格再回A到A格中?解:有小虫的爬法,可黑白相间对方格自然染色,于是小虫只能由黑格爬到白格或白格爬到黑格。

所以它由A出发回到A,即黑格爬到黑格,必须经过偶数步。

而小方格为5×5=25个,每格爬过一次,就应该为25步,不是偶数。

于是这只爬虫不可能不重复地爬遍每格再回到A格。

例2 有一次车展有6×6=36个展室,如图。

每格展室与相邻的展室都有门相通,入口和出口如图所示。

参观者能否从入口进去,不重复地参观完每格展室在从出口出来?解:如图,对每个展室黑白相间染色,同样每次只能冲黑格到白格或者从白格到黑格。

入口和出口都是白格,故线路黑白相间,首位都是白格,于是应该白格比合格多1个,而实际上白格、黑格都是18个,故不能做到不重复走遍每个展室。

例3 右图是某一套房子的平面图,共12个房间,每相邻两间房间都有门相通。

请问,你能从某个房间出发,不重复地走完每个房间吗?解:如图所示,将房间黑白相间染色,发现只有5个黑格、7个白格。

因为每次只能从黑到白或者白到黑,路线必然是黑白相间,显然应该从多的白格开始。

但路线上1白1黑......直至5白5黑后还多余2白格,不可能从白到黑。

故无法实现不重复地走遍每个房间。

小结:染色问题的解题技巧主要在于染色具体方案的构造,其基本原则是使题目条件出现一定的规律,以利于解题。

小学数学《染色问题》教案

小学数学《染色问题》教案

小学数学《染色问题》教案教学内容:教学目标:1、知识与技能:初步了解染色问题,运用染色问题知识解决简单的实际问题。

2、过程与方法:经历染色问题的探究过程,通过动手操作、分析、推理等活动,发现、归纳,总结方法。

3、情感与价值:通过“染色问题”的灵活运用感受数学的魅力,提高学生创新思维能力,解决问题的能力和兴趣。

教学重点:经历“染色问题”的探究过程,初步了解染色问题。

教学难点:理解“染色问题”,并对一些简单实际问题加以“模式化”。

教学方法:自主探究、合作交流教学准备:多媒体课件,彩色笔,地图教学过程:一、游戏引入,揭示课题。

寻宝游戏:一幅地图上有7个不同的区域,现要对这7个区域着色,要求用红、黄、蓝、绿、紫5种颜色对这7个区域着色,任意相邻的两个区域涂上不同的颜色。

现在分男女两组,哪组涂得最快最准确,就可以寻找其中的宝物。

(设计意图:把抽象的数学知识与生活中的寻宝游戏有机的结合起来,使教学从学生喜爱的游戏引入,让学生在已有生活经验的基础上初步感知抽象的染色问题,激发学生的探究欲望。

)给出一种涂色情况:A---红色,B---黄色,C---蓝色,D---黄,E---绿,F---蓝,G---紫二、经历“染色问题”的探究过程,理解染色问题1、自主猜想,初步感知用红、黄两种颜色把下列长方形中的每个小方格都随意染成一种颜色。

引导得出结论:不管怎么涂色必有两列的涂色方式完全相同。

2、自主探究,进一步感知。

各组自选两种不同颜色和小方格进行探究,老师选择有代表性的进行板书。

3、老师讲解原理因为每列只有两格,而这上下两格的染色方法只有以下四种。

题中所有的方格共有5列,根据抽屉原理,有5个苹果要放到4个抽屉中,则至少有一个抽屉中放两个,所以至少有两列的染色方式完全相同。

三、数学小知识解决染色问题往往要用到抽屉原理,抽屉原理是指:把N+1个元素,任意放入n个抽屉,则其中必有一个抽屉里至少有2个元素.应用抽屉原理来解一些数学题目,往往会起到较好的效果。

四年级奥数染色问题的知识点

四年级奥数染色问题的知识点

四年级奥数染色问题的知识点小朋友们,咱们来聊聊四年级奥数里神奇的染色问题!啥是染色问题呢?这就好像是给一个大拼图上色,只不过这个拼图可复杂啦!比如说,有一个方格阵,咱要给它们染上不同的颜色,然后看看能发现啥有趣的规律。

就像咱们玩跳棋,每个格子都得有自己独特的颜色,不能乱套。

你想想,如果颜色乱七八糟的,那得多乱呀!染色问题里常常会有一些特别的条件。

比如说,要求相邻的格子不能是同一种颜色。

这就好像你的好朋友不能和你穿一样的衣服去学校,不然多没个性!那怎么解决这些染色问题呢?这可得好好动动脑筋。

咱们可以一个一个格子地去考虑,就像走迷宫,一步一步来,可不能着急。

先选好第一个格子的颜色,然后再想下一个和它挨着的格子该用啥颜色。

比如说有个九宫格,咱们先给左上角的格子染成红色,那它旁边的格子就不能是红色啦,可能就得是蓝色或者黄色。

这是不是有点像排座位,不能让关系好的总坐在一起,得打乱了才有新鲜感!再比如说,给一个图形的顶点染色。

每个顶点就像是一个小将军,它们也得有自己独特的标志颜色。

而且还要注意,相邻顶点的颜色不能一样,不然它们就分不清自己的队伍啦!还有那种复杂的立体图形染色,这可就像是给一个大城堡涂颜色,每个面都得漂漂亮亮的,还不能重样。

解决染色问题的时候,咱们得细心,就像给妈妈准备礼物,得用心包装,不能马虎。

小朋友们,染色问题是不是很有趣呀?只要咱们认真思考,多尝试,就一定能解决这些难题,就像超级英雄打败大怪兽一样厉害!我相信你们都能在奥数的世界里玩得开心,学得快乐!总之,四年级奥数的染色问题虽然有点难,但只要咱们用心,就能找到其中的乐趣和秘密,成为奥数小高手!。

小升初数学思维拓展几何图形专项训练专题12-染色问题

小升初数学思维拓展几何图形专项训练专题12-染色问题

专题12-染色问题小升初数学思维拓展几何图形专项训练(知识梳理+典题精讲+专项训练)1、这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法.染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案.这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会几种典型的染色方法.染色问题基本解法:三面涂色和顶点有关,8个顶点.两面染色和棱长有关.即新棱长(棱长-2)×12一面染色和表面积有关.同样用新棱长计算表面积公式(棱长-2)×(棱长-2)×60面染色和体积有关.用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

【典例一】已知一个大正方体木块能分割成若干个棱长是1cm的小正方体木块,在这个大正方体木块的6个面上涂红色,在分割成的若干个棱长是1cm的小正方体大木块中,两面涂红色的共有108块,那么只有一面涂红色的有几块?【分析】根据两面涂色的小正方体的个数=正方体的棱长数⨯(棱长2)-,可得大正方体的棱长;接下来再根据一2)-即可得到答案。

面涂色的小正方体的个数=正方体的面数⨯(棱长2【解答】解:大正方体的棱长为:10812211()÷+=cm26(112)486⨯-=(块)答:只有一面涂红色的有486块。

【点评】本题主要考查了染色问题,解题的关键是根据两面涂色的小正方体的个数=正方体的棱长数⨯(棱长2)-,求出大正方体的棱长。

【典例二】图中的立体由26个小正立方体组成,外露的部分(包括底部)漆上油漆后再拆散,问有多少个小正立方体有三面漆了油漆?【分析】小正立方体有三面漆了油漆的在大立方体的顶点处,由于大正方体在涂油漆前少了一个角,从而空出一个小正方体,却导致增加了两个小正方体倍涂色三个面;据此得解.【解答】解:三面漆了油漆的在大立方体的顶点处,由于大正方体在涂油漆前少了一个角,从而空出一个小正方体,却导致增加了两个小正方体倍涂色三个面;-+=(个)81310答:有10个小正立方体有三面漆了油漆.【点评】本题考查了学生观察的能力以及找规律的能力,关键是换角度思考,先数出涂色的面数.【典例三】给图中的各点(小圆圈)涂上颜色,相连接的两个点的颜色要不相同,最少要用几种颜色?【分析】图中有5个正方形,每个正方形只要保证每条对角线上的两的点同色,另一条与它不同色即可,这样只需要两种颜色,据此解答.【解答】解:根据分析画图如下:答:最少要用两种颜色.【点评】本题实际是著名的四色问题,四色问题是1852年英国数学家费南希斯 格里斯提出的,结论是:“不论多么复杂的地图,只要用不多于四种颜色就可以解决着色问题.”一.选择题(共8小题)1.一个棱长是3厘米的正方体,表面全部涂上红油漆,然后切成棱长是1厘米的小正方体,有3面是红色的小正方体有()个。

四年级数学思维拓展:染色问题

四年级数学思维拓展:染色问题

【四年级数学思维拓展】趣味入门—神奇的森林王国(一)------白猫侦探黑白染色问题了解黑白染色问题,知道如何染色分析。

网格的黑白染色。

例题1:森林学校某班有25个同学,座位按照5行5列来坐,有天老师决定让同学之间换位置,要求每个同学只能换到它自己原来位置的前后左右的位置之一,结果发现总是不能让所有同学都满足条件。

于是请来了白猫侦探来帮忙解决问题,白猫侦探听完之后就立刻下结论说,这件事是无法办到的。

为什么呢?例题2:如图所示,每个方格代表一间屋子,相邻的屋子有门相通。

白猫侦探要从A屋出发把每间屋子都检查一遍,然后回到A屋。

问能不能不重复的走完每个屋子?1/ 5例题3:这次白猫侦探要从A屋出发把每间屋子都检查一遍,然后到B屋结束。

问这次能不重复的走完每个屋子吗?例题4:如图所示,一个8×8棋盘少了两个格子,问能不能用若干个1×2 的格子恰好盖住这个棋盘?(即是该课程的课后测试)1、乐学课堂某班有35名同学,按5行7列坐。

现在要进行换位,要求每个人只能换到他自己相邻的位置上去,问能否办到?2、如图,规定从每个方格只能走到相邻的方格中去,问能否从A格出发不重复的走完所有的格之后回到A格?2/ 53、如图所示,每个方格代表一间屋子,相邻的屋子有门相通。

小明要从A屋出发把每间屋子都走一遍,然后回到B屋。

问能不能不重复的走完每个屋子?4、如图所示,每个方格代表一间屋子,相邻的屋子有门相通。

小红要从A屋出发把每间屋子都走一遍,然后回到B屋。

问能不能不重复的走完每个屋子?5、如图所示,问能不能用若干个1×2 的格子恰好盖住这个网格?3/ 51、不能。

如果给座位进行黑白相间染色,因为座位数为35个,是奇数,所以黑色和白色个数一个为奇数一个为偶数,肯定不相同。

所以不可能黑色位置和白色位置的人完全相互调换。

2、不能。

先进行黑白相间染色。

除了A格,还有5黑3白一共八个格需要走,因为黑色比白色多两个,不可能相间的走完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

染色问题
【知识要点】
这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法。

染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意染色问题的分析思路,学会几种典型的染色方法。

【典型例题】
例1.六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫作它的邻座。

如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?
解:画一个57⨯的方格表,其中每一个方格表示一个座位。

将方格黑白相间地染上颜色,这样黑色座位与白色座位都成了邻座。

因此每位同学都坐到他的邻座相当于所有白格的坐到黑格,所有黑格的坐到白格。

但实际上图中有17个黑格,18个白格,黑格与白格的个数不相等,故不能办到。

例2.右图是学校素质教育成果展览会的展室,每两个相邻的展室之间都有门相通。

有一个人打算从A 室开始依次而入,不重复地看过各室展览之后,仍回到A 室,问他的目的能否达到,为什么?
解:采用染色法。

如右下图,共有9个展览室,对这9个展览室,黑白相间地进行染色,从白室A 出发走过第1扇门必至黑室,再由黑室走过第2扇门至白室,由于不重复地走遍每一间展览室,因此将走过黑白相间的8个展览室,再回到白室A ,共走过9扇门。

由于走过奇数次门至黑室,走过偶数次门至白室。

现在,走过9扇门,必至黑室,所以无法回到原来的白室A 。

例3.右图是由14个大小相同的方格组成的图形。

试问能不能剪裁成7个由相邻两方格组成的长方形?
解:将这14个小方格黑白相间染色(见右上图),有8个黑格,6个白格。

相邻两个方格必然是一黑一白,如果能剪裁成7个小长方形,那么14个格应当是黑、白各7个,与实际情况不符,所以不能剪裁成7个由相邻两个方格组成的长方形。

例4.用11个和5个能否盖住88⨯的大正方形?
A
A
解:如右图,对88⨯的正方形黑白相间染色后,发现必然盖住2白2黑,5个则盖住10白10黑。

则盖住了3白1黑或3黑1白,从奇偶性考虑,都是奇数。

而这种形状共11个,奇数个奇数相加仍为奇
数,故这种形状盖住的黑格和白格都是奇数,加上另一种形状的10白10黑,两种形状共盖住奇数个白格奇数个黑格。

但实际染色后共32个白格32个黑格,故不可能按题目要求盖住。

注意:本题中每个盖3白1黑或3黑1白,11个这种形状盖住的不一定是33白11黑或33黑11白,
因为可能一部分盖3白1黑,另一部分盖3黑1白。

这是一个容易犯错的地方。

例5.1个22⨯正方形和15个41⨯长方形能不能拼出88⨯的大正方形?请说明理由。

解: 若仍然将88⨯的大正方形黑白相间染色,则22⨯和41⨯两种形状盖住的都是两白两黑。

必须寻找其他的染色方法。

新的方法必须使得22⨯和41⨯长方形无论放在何处,都分别符合一定的规律。

采用如右图的染色方法,则:41⨯长方形必盖住两黑两白,共15个41⨯,盖住30黑30白;22⨯长方形可盖住3白1黑或3黑1白。

可以发现,总共只能盖住31黑33白或31白33黑,而图中实际有32个黑格32个白格,故不可能用15个41⨯和1个22⨯的长方形盖住88⨯的大正方形。

对区域染色也可理解为对多个方格染色,但此时方格染色范围更广,染色方案更加灵活。

例6.用9个14⨯的长方形能不能拼成一个66⨯的正方形?请说明理由。

解:本题若用传统的自然染色法,不能解决问题。

因为要用14⨯来覆盖,我们对66⨯正方形用四种颜色染色。

为了方便起见,这里用1、2、3、
4分别代表四种颜色。

为了使每个14⨯长方形在任何位置盖住的都一样,我们采用沿对角线染色,如右图。

这样,可以发现无论将14⨯长方形放于何处,盖住的必然是1、2、3、4各一个。

要不重叠地拼出66⨯,需9个14⨯长方形,则必然盖住1、2、3、4各9个。

但实际上图中一共是9个1、10个2、9个3、8个4,因而不可能用9个14⨯长方形拼出66⨯正方形。

44
4444
433
333
333
22222
22
2
21111111
14321
练习题
1.某班有45名同学按9行5列坐好.老师想让每位同学都坐到他的邻座(前后左右)上去,问这能否办到?
2.下图是某一套房子的平面图,共12个房间,每相邻两房间都有门相通.请问:你能从某个房间出发,不重复地走完每个房间吗?
3.下图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?
4.用若干个2×2和3×3的小正方形不能拼成一个11×11的大正方形,请你说明理由!。

相关文档
最新文档