必修一函数的图像专题

合集下载

2019高考数学《函数的图像》题型专题汇编

2019高考数学《函数的图像》题型专题汇编

2019高考数学《函数的图像》题型专题汇编题型一 作函数的图象1、分别画出下列函数的图象:(1)y =|lg(x -1)|; (2)y =2x +1-1; (3)y =x 2-|x |-2; (4)y =2x -1x -1.解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x+1-1的图象,如图②所示.(3)y =x 2-|x |-2=⎩⎪⎨⎪⎧x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图④所示.题型二 函数图象的辨识1、函数y =x 2ln|x ||x |的图象大致是( )答案 D解析 从题设解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增.由此可知应选D.2、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |) 答案 C解析 题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C. 3、函数f (x )=1+log 2x 与g (x )=⎝⎛⎭⎫12x在同一直角坐标系下的图象大致是( )答案 B解析 因为函数g (x )=⎝⎛⎭⎫12x 为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B. 4、函数f (x )=⎝⎛⎭⎫21+e x -1·sin x 的图象的大致形状为( )答案 A解析 ∵f (x )=⎝ ⎛⎭⎪⎫21+e x -1·sin x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1·sin(-x ) =-⎝ ⎛⎭⎪⎫2e x1+e x -1sin x =⎝ ⎛⎭⎪⎫21+e x -1·sin x =f (x ),且f (x )的定义域为R , ∴函数f (x )为偶函数,故排除C ,D ;当x =2时,f (2)=⎝ ⎛⎭⎪⎫21+e 2-1·sin 2<0,故排除B , 只有A 符合.5、若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2解析:选B.令f (x )=0,则(ax 2+bx )e x =0,解得x =0或x =-b a ,由图象可知,-b a >1,又当x >-ba 时,f (x )>0,故a >0,结合选项知a =1,b =-2满足题意,故选B.6、如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t (0≤t ≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数y =f (t )的大致图象如图所示,那么平面图形的形状不可能是( )解析:选C.由y =f (t )的图象可知面积递增的速度先快后慢,对于选项C ,后半程是匀速递增,所以平面图形的形状不可能是C.7、函数f (x )=|x |+ax2(其中a ∈R )的图象不可能是( )解析:选C.当a =0时,函数f (x )=|x |+ax 2=|x |,函数的图象可以是B ;当a =1时,函数f (x )=|x |+a x 2=|x |+1x2,函数的图象可以是A ;当a =-1时,函数f (x )=|x |+a x 2 =|x |-1x 2,x >0时,|x |-1x 2=0只有一个实数根x =1,函数的图象可以是D ;所以函数的图象不可能是C.故选C.8、已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )解析:选D.在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D.9、如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B解析 当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2=2 2.∵22<1+5, ∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B.10、已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xx C .f (x )=1x 2-1 D .f (x )=x -1x答案 A解析 由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D ,故选A.11、函数f (x )=e x -e -xx 2的图象大致为( )答案 B解析 ∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.12、已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )答案 D解析 方法一 先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二 先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D. 方法三 当x =0时,y =-f (2-0)=-f (2)=-4.故选D.题型三 函数图象的应用命题点1 研究函数的性质1、已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,单调递增区间是(0,+∞) B .f (x )是偶函数,单调递减区间是(-∞,1) C .f (x )是奇函数,单调递减区间是(-1,1) D .f (x )是奇函数,单调递增区间是(-∞,0) 答案 C解析 将函数f (x )=x |x |-2x ,去掉绝对值,得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.2、已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________. 答案 9解析 作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n 且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2, ∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故nm=9.3、若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于___解析:由图象可得a (-1)+b =3,ln(-1+a )=0,所以a =2,b =5,所以f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1.答案:-14、已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案 C解析 画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.5、已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是____________. 答案 (3,+∞)解析 在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.6、不等式3sin ⎝⎛⎭⎫π2x -12log x <0的整数解的个数为________.答案 2解析 不等式3sin ⎝⎛⎭⎫π2x -12log x <0,即3sin ⎝⎛⎭⎫π2x <12log x .设f (x )=3sin ⎝⎛⎭⎫π2x ,g (x )=12log x ,在同一坐标系中分别作出函数f (x )与g (x )的图象,由图象可知,当x 为整数3或7时,有f (x )<g (x ),所以不等式3sin ⎝⎛⎭⎫π2x -12log x <0的整数解的个数为2.7、已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1,若实数a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是__________. 答案 (2,2 021)解析 函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1的图象如图所示,不妨令a <b <c ,由正弦曲线的对称性可知a +b =1,而1<c <2 020,所以2<a +b +c <2 021.8、已知点A (1,0),点B 在曲线G :y =ln x 上,若线段AB 与曲线M :y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为________.解析:设B (x 0,ln x 0),x 0>0,线段AB 的中点为C ,则C ⎝⎛⎭⎪⎫x 0+12,ln x 02,又点C 在曲线M 上,故ln x 02=2x 0+1,即ln x 0=4x 0+1.此方程根的个数可以看作函数y =ln x 与y =4x +1的图象的交点个数.画出图象(如图),可知两个函数的图象只有1个交点. 答案:19、已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x . (1)求当x <0时,f (x )的解析式;(2)作出函数f (x )的图象,并指出其单调区间; (3)求f (x )在[-2,5]上的最小值,最大值.解:(1)设x <0,则-x >0,因为x >0时,f (x )=x 2-2x .所以f (-x )=(-x )2-2·(-x )=x 2+2x .因为y =f (x )是R 上的偶函数,所以f (x )=f (-x )=x 2+2x . (2)函数f (x )的图象如图所示:由图可得:函数f (x )的单调递增区间为(-1,0)和(1,+∞);单调递减区间为(-∞,-1)和(0,1). (3)由(2)中函数图象可得:在[-2,5]上,当x =±1时,取最小值-1,当x =5时,取最大值15. 10、已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围. 解:(1)因为f (4)=0,所以4|m -4|=0,即m =4.(2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4,f (x )的图象如图所示.(3)f (x )的单调递减区间是[2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,方程f (x )=a 只有一个实数根,即a 的取值范围是(-∞,0)∪(4,+∞). 命题点2 解不等式1、 函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________________.答案 ⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2 解析 当x ∈⎝⎛⎭⎫0,π2时,y =cos x >0.当x ∈⎝⎛⎭⎫π2,4时,y =cos x <0. 结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x 为偶函数,所以在[-4,0]上,f (x )cos x <0的解集为⎝⎛⎭⎫-π2,-1, 所以f (x )cos x<0的解集为⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2. 2、定义在R 上的奇函数f (x ),满足f ⎝⎛⎭⎫-12=0,且在(0,+∞)上单调递减,则xf (x )>0的解集为________. 解析:因为函数f (x )是奇函数,在(0,+∞)上单调递减,且f ⎝⎛⎭⎫-12=0,所以f ⎝⎛⎭⎫12=0,且在区间(-∞,0)上单调递减,因为当x <0,若-12<x <0时,f (x )<0,此时xf (x )>0,当x >0,若0<x <12时,f (x )>0,此时xf (x )>0,综上xf (x )>0的解集为⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12. 答案:⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12 命题点3 求参数的取值范围1、已知函数()12log ,020x x x f x x >⎧⎪⎨⎪≤⎩,=,,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________. 答案 (0,1]解析 作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].2、已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________. 答案 ⎝⎛⎭⎫12,1解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为⎝⎛⎭⎫12,1.3、设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是__________. 答案 [-1,+∞)解析 如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).4、给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________.解析:函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5). 答案:(4,5)5、直线y =k (x +3)+5(k ≠0)与曲线y =5x +17x +3的两个交点坐标分别为A (x 1,y 1),B (x 2,y 2),则x 1+x 2+y 1+y 2=________.解析:因为y =5x +17x +3=2x +3+5,其图象关于点(-3,5)对称.又直线y =k (x +3)+5过点(-3,5),如图所示.所以A ,B 关于点(-3,5)对称,所以x 1+x 2=2×(-3)=-6,y 1+y 2=2×5=10. 所以x 1+x 2+y 1+y 2=4.答案:46、函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点P (x ,y )(x ≠0),则点P 关于(0,1)点的对称点P ′(-x ,2-y )在h (x )的图象上,即2-y =-x -1x +2,即y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x2.因为g (x )在(0,2]上为减函数,所以1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,所以a +1≥4,即a ≥3, 故实数a 的取值范围是[3,+∞).《函数的图像》课后作业1、y =2|x |sin 2x 的图象可能是( )答案 D解析 由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B. 令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2、如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是( )答案 C解析 当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3、已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为( )答案 A解析 方法一 先作出函数f (x )=log a x (0<a <1)的图象,当x >0时,y =f (|x |+1)=f (x +1),其图象由函数f (x )的图象向左平移1个单位得到,又函数y =f (|x |+1)为偶函数,所以再将函数y =f (x +1)(x >0)的图象关于y 轴对称翻折到y 轴左边,得到x <0时的图象,故选A. 方法二 因为|x |+1≥1,0<a <1, 所以f (|x |+1)=log a (|x |+1)≤0,故选A.4、函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1 的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2答案 C解析 由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1,故选C.5、函数f (x )的图象向右平移1个单位,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( ) A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e-x +1D .f (x )=e-x -1答案 D解析与y =e x 的图象关于y 轴对称的函数为y =e -x .依题意,f (x )的图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到. ∴f (x )=e -(x +1)=e -x -1.6、已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则实数a的取值范围为( ) A .(-∞,1) B .(-∞,1] C .(0,1) D .(-∞,+∞)答案 A解析 当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7、设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为______________. 答案 {x |x ≤0或1<x ≤2}解析 画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎨⎧ x >1,f (x )≤0或⎩⎨⎧x <1,f (x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}. 8、设函数y =f (x )的图象与y =2x -a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =________.答案 -2解析 由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9、已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是__________. 答案 ⎝⎛⎭⎫-13,0 解析 由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点, 故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10、给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为__________. 答案 (4,5)解析 作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11、数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域为[0,2],则实数a 的取值范围是_____答案 [1,3]解析 先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a 的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1, 由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0 答案 D解析 函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数, 又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.13、函数f (x )=x|x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-∞,-1+52∪⎝ ⎛⎭⎪⎫1+52,+∞解析 f (x )=⎩⎪⎨⎪⎧1+1x -1,x >1,-1+11-x ,x <1,g (x )=⎩⎪⎨⎪⎧1+x ,x ≥0,1,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x =x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x 的取值范围是⎝ ⎛⎭⎪⎫-∞,5-12∪⎝ ⎛⎭⎪⎫1+52,+∞. 14、函数f (x )=⎩⎪⎨⎪⎧(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,则实数k 的取值范围是__________. 答案 ⎝⎛⎦⎤0,16解析 由题意知,直线y =kx 与函数y =f (x )的图象至少有3个公共点.函数y =f (x ),x ∈[0,6]的图象如图所示,由图知k 的取值范围是⎝⎛⎦⎤0,16.15、已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解? (2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围. 解 (1)令F (x )=|f (x )-2|=|2x -2|, G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解; 当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].16、数()2131log 1,x x x f x x x ⎧≤⎪⎨>⎪⎩-+,,=,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,求实数k 的取值范围.解 对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )=2131log 1,x x x x x ⎧≤⎪⎨>⎪⎩-+,,,的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是⎝⎛⎦⎤-∞,74∪⎣⎡⎭⎫94,+∞.。

2023年新高考数学大一轮复习专题11 函数的图象(解析版)

2023年新高考数学大一轮复习专题11 函数的图象(解析版)

专题11 函数的图象【考点预测】一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数. 二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y fx -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到. 【方法技巧与总结】(1)若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.(2)设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.(3)若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.(4)函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ba x +=对称. (5)函数)(x f y =与函数)2(x a f y -=的图象关于直线a x =对称. (6)函数)(x f y =与函数)2(2x a f b y --=的图象关于点)(b a ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型归纳目录】题型一:由解析式选图(识图) 题型二:由图象选表达式 题型三:表达式含参数的图象问题 题型四:函数图象应用题 题型五:函数图像的综合应用【典例例题】题型一:由解析式选图(识图)例1.(2022·浙江·赫威斯育才高中模拟预测)函数2()sin 12xf x x =++的图象可能是( ) A . B .C .D .【答案】D 【解析】 【分析】通过判断()f x 不是奇函数,排除A ,B ,又因为302f π⎛⎫<⎪⎝⎭,排除C ,即可得出答案. 【详解】因为2()sin 12x f x x =++的定义域为R ,又因为()()222sin()sin 1221xx x f x x x f x -⋅-=-+=-+≠-++,所以()f x 不是奇函数,排除A ,B. 33223322sin()10221212f ππππ⎛⎫=+=-+< ⎪⎝⎭++,所以排除C.故选:D.例2.(2022·陕西·汉台中学模拟预测(理))函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据函数的定义域与奇偶性,排除A 、B 选项;结合导数求得函数在(1,)+∞上的单调性,排除D 选项,即可求解. 【详解】由题意,函数()2ln x f x x =的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x =,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增, 所以排除D 选项,选项C 符合. 故选:C.例3.(2022·天津·二模)函数sin exx xy =的图象大致为( )A .B .C .D .【答案】D 【解析】 【分析】 分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】 令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x ----===, 所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy =>,排除C 选项. 故选:D.例4.(2022·全国·模拟预测)已知函数())lnsin f x x x =⋅则函数()f x 的大致图象为( )A .B .C .D .【答案】A【分析】先利用函数的奇偶性排除部分选项,再根据()0,x π∈时,函数值的正负判断. 【详解】易知函数)lny x =为奇函数,sin y x =也是奇函数,则函数())ln sin f x x x =⋅为偶函数,故排除选项B ,C ;因为)lnln y x ⎛⎫==,当0x >1x >恒成立,所以ln 0⎛⎫<恒成立, 且当()0,x π∈时,sin 0x >,所以当()0,x π∈时,()0f x <,故选项A 正确,选项D 错误, 故选:A .例5.(2022·全国·模拟预测)函数()22e xx xf x -=的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据f (x )的零点和x →+∞时函数值变化情况即可判断求解. 【详解】由()0f x =得0x =或2,故排除选项A ;当x →+∞时,函数值无限靠近x 轴,但与x 轴不相交,只有选项B 满足.例6.(2022·河北·模拟预测)函数4cos3()cos (ππ)33xf x x x =---≤≤的部分图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】利用函数的奇偶性和代入特殊值即可求解. 【详解】由已知条件得函数()f x 的定义域关于原点对称, ∵()()cos 34()cos 33x f x x --=---()4cos3cos 33x x f x -=-=, ∴()f x 为偶函数,函数的图象关于y 轴对称,则排除选项B 、C , 又∵4cos3π(π)cos π33f =--4181333=++=, ∴排除选项D , 故选:A .【方法技巧与总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式例7.(2022·全国·模拟预测)已知y 关于x 的函数图象如图所示,则实数x ,y 满足的关系式可以为( )A .311log 0x y --=B .321xx y-=C .120x y --=D .ln 1x y =-【答案】A 【解析】 【分析】将311log 0x y --=化为11133x x y ---⎛⎫== ⎪⎝⎭,结合图像变换,可判断A;取特殊值验证,可判断B;作出函数12x y -=的图象,可判断C;根据函数ln 1y x =+的性质,可判断D.【详解】 由311log 0x y --=,得31log 1x y=-, 所以3log 1y x -=-,即3log 1y x =--, 化为指数式,得11133x x y ---⎛⎫== ⎪⎝⎭,其图象是将函数1,01333,0xxx x y x ⎧⎛⎫≥⎪⎛⎫⎪==⎨⎝⎭⎪⎝⎭⎪<⎩的图象向右平移1个单位长度得到的, 即为题中所给图象,所以选项A 正确;对于选项B ,取1x =-,则由()31121y---=,得21y =>,与已知图象不符,所以选项B 错误; 由120x y --=,得12x y -=,其图象是将函数2xy =的图象向右平移1个单位长度得到的,如图:与题中所给的图象不符,所以选项C 错误;由ln 1x y =-,得ln 1y x =+,该函数为偶函数,图象关于y 轴对称, 显然与题中图象不符,所以选项D 错误, 故选:A.例8.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x xx x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.例9.(2022·浙江·模拟预测)已知函数()f x 的大致图象如图所示,则函数()y f x =的解析式可以是( )A .()()2211--=xxex y eB .()21sin -=xxex y eC .()()2211-+=xxex y eD .()21cos -=xxex y e【答案】B【解析】 【分析】根据函数图象,可知函数为偶函数,排除A ,D ,根据C 项函数没有零点,排除C 项,最终选出正确结果. 【详解】根据函数图象,可知函数为偶函数,排除A ,D ;对于C ,当0x >时,22110,2-+>≥x xe x e x ,函数显然不存在零点,排除C . 故选:B .例10.(2022·全国·模拟预测)已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .()sin πf x x x =B .()()1πsin f x x x =-C .()()sin π1f x x x =+D .()()1cos πf x x x =-【答案】B 【解析】 【分析】根据已知图象的对称性,结合AC 的奇偶性可排除AC ,根据已知图象f (0)=0可排除D ,从而正确可得B 为正确选项. 【详解】对于A ,()()()sin πsin πf x x x x x f x -=--==,故()sin πf x x x =为偶函数,图象应该关于y 轴对称,与已知图象不符;对于C ,()()sin ππf x x x =+sin πx x =-也为偶函数,故排除AC ; 对于D ,()01f =-,与已知图象不符,故排除D .对于B ,()()()()()()221sin 2(1)sin π1sin ππf x x x x x x x f x -=---=--=-=,故f (x )关于x =1对称,f (0)=0,均与已知图象符合,故B 正确. 故选:B .例11.(2022·河北沧州·模拟预测)下列图象对应的函数解析式正确的是( )A .()cos f x x x =B .()sin f x x x =C .()sin cos f x x x x =+D .()cos sin f x x x x =+【答案】D 【解析】 【分析】由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对选项B 、C :由函数()f x 为偶函数即可判断,对选项A :函数()f x 为奇函数,但()cos 0222f πππ==即可判断;对选项D :函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>即可判断.【详解】解:由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对A :因为()()()cos cos ()f x x x x x f x -=--=-=-,所以函数()f x 为奇函数,但()cos 0222f πππ==,故选项A 错误;对B :因为()()()sin sin ()f x x x x x f x -=--==,所以函数()f x 为偶函数,故选项B 错误;对C :因为()()()()sin cos sin cos ()f x x x x x x x f x -=--+-=+=,所以函数()f x 为偶函数,故选项C 错误; 对D :因为()()()()cos sin cos sin ()f x x x x x x x f x -=--+-=--=-,所以函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>,符合题意,故选项D 正确. 故选:D.例12.(2022·浙江绍兴·模拟预测)已知函数()sin f x x =,()e e x x g x -=+,下图可能是下列哪个函数的图象( )A .()()2f x g x +-B .()()2f x g x -+C .()()⋅f x g xD .()()f xg x【答案】D 【解析】 【分析】根据图象体现的函数性质,结合每个选项中函数的性质,即可判断和选择. 【详解】由图可知,图象对应函数为奇函数,且()011f <<; 显然,A B 对应的函数都不是奇函数,故排除;对C :()()()sin e e x xy f x g x x -=⋅=⋅+,其为奇函数,且当1x =时,11sin1e e 1e 2⎛⎫⋅+>⨯> ⎪⎝⎭,故错误;对D :y =()()f xg x sin e e x xx-=+,其为奇函数,且当1x =时,sin110112e e<<<+,故正确. 故选:D .【方法技巧与总结】1.从定义域值域判断图像位置;2.从奇偶性判断对称性;3.从周期性判断循环往复;4.从单调性判断变化趋势;5.从特征点排除错误选项.题型三:表达式含参数的图象问题(多选题)例13.(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为( ) A . B .C .D .【答案】ABD 【解析】 【分析】讨论0,0,0a b c >=>、0,0,0a b c <=<、0,0,0a b c =><、0,0,0a b c =<<四种情况下,()f x 的奇偶性、单调性及函数值的正负性判断函数图象的可能性. 【详解】当0,0a b ≠=时,22()()()ax axf x f x x c x c--==-=--++;当0,0a c >>时,()f x 定义域为R 且为奇函数,在(0,)+∞上()0f x >,在上递增,在)+∞上递减,A 可能;当0,0a c <<时,()f x 定义域为{|x x ≠且为奇函数,在上()0f x >且递增,在)+∞上()0f x <且递增,B 可能;当0,0,0a b c =≠<时,22()()()b bf x f x x c x c-===-++且定义域为{|x x ≠,此时()f x 为偶函数,若0b >时,在(上()0f x <(注意(0)0f <),在(,)-∞+∞上()0f x >,则C 不可能;若0b <时,在(上()0f x >,在(,)-∞+∞上()0f x <,则D 可能; 故选:ABD(多选题)例14.(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】先判断函数的奇偶性,可排除D 选项,然后对a 的取值进行分类讨论,比如0a =,可判断A 可能,再对a 分大于零和小于零的情况讨论,结合求导数判断函数单调性,即可判断B,C 是否可能. 【详解】 因为2||()x f x x a=+为定义域上的偶函数, 图象关于y 轴对称,所以D 不可能.由于()f x 为定义域上的偶函数,只需考虑,()0x ∈+∞的情况即可. ①当0a =时,函数2||11()||x f x x x x===,所以A 可能; ②当0a >时,2()xf x x a =+,()222()a x f x x a '-=+,所以()f x 在单调递增,在)+∞单调递减,所以C 可能; ③当0a <时,2()x f x x a =+,()222()0a x f x x a -'=<+,所以()f x 在单调递减,在)+∞单调递减,所以B 不可能; 故选:AC.(多选题)例15.(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是( )A .B .C .D .【答案】ABC 【解析】 【分析】根据a 的取值分类讨论函数f (x )的单调性、奇偶性、值域,据此判断图像即可. 【详解】 若a =0,则f (x )=1x,图像为C ;若a >0,则f (x )定义域为{x |x ,f (0)=0,f (-x )=-f (x ),f (x )为奇函数,x ∈(-∞,时,f (x )<0,x ∈(0)时,f (x )>0,x ∈(0,f (x )<0,x ∈+∞)时,f (x )>0,又x ≠0时,f (x )=1a x x-,函数y =x -ax 在(-∞,0)和(0,+∞)均单调递增,∴f (x )在(-∞,(0),(0,∞)均单调递减,综上f (x )图像如A 选项所示; 若a <0,则f (x )定义域为R ,f (x )为奇函数,f (0)=0, 当x >0时,f (x )>0,当x <0时,f (x )<0,当x ≠0时,f (x )=1a x x-+,函数y =x +ax-时双勾函数,x ∈((),时,y 均单调递减,x ∈)(,,+∞-∞时,y 均单调递增,∴f (x )在((),单调递增,在)(,,+∞-∞单调递减,结合以上性质,可知B 图像符合.故选:ABC.(多选题)例16.(2022·湖北武汉·高一期末)设0a >,函数21axx y e ++=的图象可能是( )A .B .C .D .【答案】BD 【解析】令()21,0g x ax x a =++>,得到抛物线的开口向上,对称轴的方程为12x a=-,再根据0,0∆=∆<和0∆>三种情形分类讨论,结合复合函数的单调性,即可求解. 【详解】由题意,函数21axx y e ++=,令()21,0g x ax x a =++>,可得抛物线的开口向上,对称轴的方程为102x a=-<, 当140a ∆=-=时,即14a =时,可得()21104g x x x =++≥, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增,且(2)0g -= 可得21axx y e ++=在1(,]2a -∞-递减,在1[,)2a -+∞上递增,且(2)1g e -=; 当140a ∆=-<时,即14a >时,可得()0g x >, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 由复合函数的单调性,可得21ax x y e ++=在1(,]2a -∞-递减,在1[,)2a-+∞上递增,且1y >, 此时选项B 符合题意; 当当140a ∆=->时,即104a <<时,此时函数()21g x ax x =++有两个零点, 不妨设另个零点分别为12,x x 且1212x x a<-<,此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 可得()y g x =在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()0g x g x ==,则21axx y e ++=在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()1g x g x e e ==,此时选项D 符合题意.综上可得,函数的图象可能是选项BD. 故选:BD.(多选题)例17.(2022·广东东莞·高一期末)已知函数()af x x x=+()a R ∈,则其图像可能为( ) A . B .C .D .【答案】BC 【解析】 【分析】按照0a =,0a >,0a <讨论a 的取值范围,利用排除法解决. 【详解】 0a =,()(0)af x x x x x=+=≠,定义域需要挖去一个点,不是完整的直线,A 选项错误;0a <时,y x =在(,0),(0,)-∞+∞上递增,ay x=也在(,0),(0,)-∞+∞递增,两个增函数相加还是增函数,即()f x 在(,0),(0,)-∞+∞上递增,故D 选项错误,C 选项正确.;0a >时,由对勾函数的性质可知B 选项正确. 故选:BC.(多选题)例18.(2021·山西省长治市第二中学校高一阶段练习)在同一直角坐标系中,函数()()()10,1,x f x a a a g x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】根据给定条件对a 值进行分类讨论函数()f x 的单调性及0一侧的函数值,再结合()g x a x =-图象与y 轴交点位置即可判断作答. 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC(多选题)例19.(2021·河北·高三阶段练习)函数()211ax f x x +=+的大致图象可能是( ) A . B .C .D .【答案】ABD 【解析】 【分析】对a 的取值进行分类讨论,利用导数对函数的单调性进行分析即可判断函数的大致图象. 【详解】当0a =时,()01f =,令21y x =+,易知,其在(),0-∞上为减函数,()0,∞+上为增函数,所以()211f x x =+在(),0-∞上为增函数,在()0,∞+上为减函数,故D 正确; 当0a <时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y <,当0x >且0x →时,0y <,所以()'0f x <,故A 正确;当0a >时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y >,当0x >且0x →时,0y >,所以()'0f x >,故B 正确;综上,()f x 的图象不可能为C. 故选:ABD.(多选题)例20.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD【解析】 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD .【方法技巧与总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题例21.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A例22.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H =⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒=而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓, A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例23.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.例24.(2021·山东济南·高三阶段练习)如图,公园里有一处扇形花坛,小明同学从A 点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(路线为AB BO OA →→),则小明到O 点的直线距离y 与他从A 点出发后运动的时间t 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】根据距离随与时间的增长的变化增减情况即可判定.【详解】小明沿AB走时,与О点的直线距离保持不变,沿BO走时,随时间增加与点О的距离越来越小,沿OA走时,随时间增加与点О的距离越来越大.故选:D.例25.(2021·江苏·常州市西夏墅中学高三开学考试)如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP =x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f(x)的大致图像是A.B.C.D.【答案】A【解析】【分析】分两段,当P点在AO之间时,当P点在OB之间时,再由二次函数的性质及增长趋势可知.【详解】当P 点在AO 之间时,f (x )12=x 2(0<x ≤1),排除B,D 当P 点在OB 之间时,y 随x 的增大而增大且增加速度原来越慢,故只有A 正确 故选A . 【点睛】本题主要考查了函数图像的识别的性质,考查分类讨论思想及排除法应用,属于基础题.【方法技巧与总结】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.题型五:函数图像的综合应用例26.(2022·四川·宜宾市教科所三模(理))定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【解析】 【分析】由题可知函数()y f x =与直线()1y m x =+有5个交点,利用数形结合即得. 【详解】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.例27.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【解析】 【分析】利用导数研究函数的性质,作出函数函数33y x x =-与直线2y x =-的图象,利用数形结合即得. 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.例28.(2022·全国·高三专题练习)已知函数()2ln ,0,43,0x x f x x x x >⎧=⎨---≤⎩若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】利用数形结合可得210t mt ++=在[)3,1-上有两个不同的实数根,然后利用二次函数的性质即得. 【详解】设()t f x =,则()21y g t t mt ==++,作出函数()f x 的大致图象,如图所示,则函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点等价于()0g t =在[)3,1-上有两个不同的实数根, 则()()24039310,1110,31,2m g m g m m ⎧->⎪-=-+≥⎪⎪⎨=++>⎪⎪-<-<⎪⎩解得1023m <≤.故选:D. 【点睛】关键点点睛:本题的关键是利用数形结合,把问题转化为方程210t mt ++=在[)3,1-上有两个不同的实数根,即二次方程根的分布问题,利用二次函数的性质即解.例29.(2022·甘肃省武威第一中学模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足( ) A .0m >且0n > B .0m <且0n > C .01m <<且0n = D .10m -<<且0n =【答案】C 【解析】 【分析】令()u f x =,利用换元法可得20u mu n ++=,由一元二次方程的定义知该方程至多有两个实根1u 、2u ,作出函数()f x 的图象,结合题意和图象可得10u =、2u m =-,进而得出结果. 【详解】令()u f x =,作出函数()u f x =的图象如下图所示:由于方程20u mu n ++=至多两个实根,设为1u u =和2u u =,由图象可知,直线1u u =与函数()u f x =图象的交点个数可能为0、2、3、4,由于关于x 的方程()()20f x mf x n ++=有7个不同实数解,则关于u 的二次方程20u mu n ++=的一根为10u =,则0n =,则方程20u mu +=的另一根为2u m =-,直线2u u =与函数()u f x =图象的交点个数必为4,则10m -<-<,解得01m <<. 所以01m <<且0n =. 故选:C.例30.(2022·天津市滨海新区塘沽第一中学模拟预测)已知函数21244,1(),1x x x x f x e x x -⎧-+>=⎨+≤⎩,若不等式1()||022mf x x --<的解集为∅,则实数m 的取值范围为( ) A .1,52ln 34⎡⎤-⎢⎥⎣⎦B .1,53ln 33⎡⎤-⎢⎥⎣⎦C .1,62ln 34⎡⎤-⎢⎥⎣⎦D .1,63ln 32⎡⎤-⎢⎥⎣⎦【答案】D 【解析】 【分析】由不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立.根据相切找临界位置,结合函数的单调性以及图像特征,即可求解. 【详解】 不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立. 当1x >时,2()=244,f x x x -+此时()f x 在1x >上单调递增,当11,()=,x x f x e x -≤+则1()=-1,x f x e -'+当<1x 时,0()<f x ',故()f x 在<1x 上单调递减.当2-y x m =与2()=244f x x x -+相切时,设切点为()00,x y ,所以00()4-4=2f x x '=,解得032x =,35()22f =,此时切线方程为35y=2x-+22⎛⎫ ⎪⎝⎭,该切线与x 轴的交点为1,04A ⎛⎫⎪⎝⎭,同理可得当-2+y x m =与1()=x f x e x -+相切时,切线与x 轴的交点为33-ln 3,02B ⎛⎫⎪⎝⎭,又因为=|2|y x m -与x 轴的交点为,02mC ⎛⎫⎪⎝⎭要使()|2|f x x m ≥-在R 上恒成立,则点C 在,A B 之间移动即可.故133-ln 3422m ≤≤,解得16-3ln 32m ≤≤故选:D例31.(2022·安徽·巢湖市第一中学高三期中(理))已知函数()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩,若函数()()()1g x f x k x =--有4个零点,则实数k 的取值范围为_______________. 【答案】1(0,)4【解析】 【分析】转化求()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像与()1y k x =-图像交点,求出直线与1()11f x x =--相切时的k ,进而得到有4个交点时k 的范围即可 【详解】因为()()()1g x f x k x =--有4个零点, 所以方程()()1f x k x =-有4个实数根,画出()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像,以及()1y k x =-,则两函数的图象有4个公共点.其中直线()1y k x =-经过定点(1,0),斜率为k当直线与()f x 相切时,联立111(1)y x y k x ⎧=-⎪-⎨⎪=-⎩,22(12)40k k ∆=--=,可求出14k =,由图可知,当104x <<时,方程()()1f x k x =-有4个交点,故k 的取值范围为1(0,)4故答案为1(0,)4.【点睛】方法点睛:根据函数零点个数求参数取值范围的注意点:(1)结合题意构造合适的函数,将函数零点问题转化成两函数图象公共点个数的问题处理; (2)在同一坐标系中正确画出两函数的图象,借助图象的直观性进行求解;(3)求解中要注意两函数图象的相对位置,同时也要注意图中的特殊点,如本题中直线(1)y k x =-经过定点(1,0)等.例32.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e 8⎛⎤--⎥⎝⎦【解析】 【分析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意转化为函数()g x 与直线y m =的图象有3个公共点,利用导数求得函数()g x 的极值,画出函数()g x 的图象,结合图象,即可求解. 【详解】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点,即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦. 故答案为:1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦.例33.(2022·全国·高三专题练习)已知函数f (x )=244,01,43,1x x x x x -<≤⎧⎨-+>⎩和函数g (x )=2log x ,则函数h (x )=f (x )-g (x )的零点个数是________. 【答案】3 【解析】 【分析】函数零点个数可转化为()y g x =与()y f x =图象交点的个数问题,作出图象,数形结合即可求解. 【详解】在同一直角坐标系中,作出()y g x =与()y f x =的图象如图,由()()()0h x f x g x =-=可得,()()f x g x =,即函数的零点为(),()y f x y g x ==图象交点的横坐标, 由图知()y f x =与()y g x =的图象有3个交点,即()h x 有3个零点. 故答案为:3例34.(2022·全国·高三专题练习(理))如图,在等边三角形ABC 中, AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是____. 【答案】①② 【解析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解. 【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤, P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤, P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根 故正确的是①②. 故答案为:①② 【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解。

高中函数图像大全

高中函数图像大全

高中必考函数大全指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。

即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数1.对数函数的概念由于指数函数y=a x在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=log a x(a>0,a≠1).因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=log a x(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数y=log 2x ,y=log 10x ,y=log 10x,y=log 21x,y=log 101x 的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a >0,a ≠1)的图像的特征和性质.见下表. 图 象 a >1a <1性 (1)x >0(2)当x=1时,y=0质(3)当x>1时,y>00<x<1时,y<0 (3)当x>1时,y<0 0<x<1时,y>0(4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1)当x>1时“底大图低”即若a>b则y1>y2当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比名称指数函数对数函数一般形式y=a x(a>0,a≠1) y=log a x(a>0,a≠1)定义域(-∞,+∞) (0,+∞)值域(0,+∞) (-∞,+∞)函数值变化情况当a>1时,⎪⎩⎪⎨⎧<<==>>)0(1)0(1)0(1xxxa x当0<a<1时,⎪⎩⎪⎨⎧<>==><)0(1)0(1)0(1xxxa x当a>1时⎪⎩⎪⎨⎧<<==>>)1(0)1(0)1(0logxxxxa当0<a<1时,⎪⎩⎪⎨⎧<>==><)1(0)1(0)1(0logxxxxa单调性当a>1时,a x是增函数;当0<a<1时,a x是减函数. 当a>1时,log a x是增函数;当0<a<1时,log a x是减函数.图像y=a x的图像与y=log a x的图像关于直线y=x对称.幂函数幂函数的图像与性质幂函数ny x=随着n的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握ny x=,当112,1,,,323n=±±±的图像和性质,列表如下.从中可以归纳出以下结论:①它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数.③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 任何两个幂函数最多有三个公共点.n y x =奇函数偶函数非奇非偶函数1n >01n <<0n <定义域 R R R奇偶性奇奇奇非奇非奇OxyOxyOxyOxyOxyOx yOxyOxyOxy偶在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递减幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:①所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(; ②当21,3,2,1=α时函数y x α=的图像都过原点)0,0(;③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质: (1)图象都通过点)1,1(),0,0(;(2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的;(4)在第一象限内,过点)1,1(后,图象向右上方无限伸展。

高一必修1-函数图象的变换ppt课件.ppt

高一必修1-函数图象的变换ppt课件.ppt
如:y=f(x)±h的图象可由y=f(x)的图象 _向__上__(__下__)__平__移__h_个__单__位__而得到.
练习: 将直线y=2x+1向左平移5个单位,
得到的函数为__y_=_2_x+_1_1_______
左右平移时,发生变化的仅是x本身,如果x的系 数不是1时,需要把系数提出来,再进行变换.
(6)y=f(|x|)的图象:可先作出y=f(x)当x≥0 时的图象,再利用_偶__函__数__的__图__象__关__于__y_轴__对__称, 作出y=f(x)(x≤0)的图象.
函数y=|log2x|的图象是( A )
解析
f
(x)
|
lo g2
x
|
lo g2
lo
g1
2
x, x x,0
1, x
课前练习:
当a>2时,函数 y ax和y (a 1)x2 的图 象只可能是( )
y
y
y
y
0
x
A
0
x
B
0x
C
0x
D
知识回顾:基本初等函数及图象(大致图象)
函数 一次函数 y=kx+b
图象
二次函数
y=ax2+bx+ c
指数函数 y=ax
对数函数 y=logax
知识回顾:
下列二次函数的图象,是由 抛物线y=x2通过怎样的平移变换得 到的?
y f 1(x) 与y=f(x)的图象关于直线y=x对称.
设奇函数 f(x) 的定义域为[-5, 5], 若当x∈[0, 5]时, f(x)的图象如右图所
示. 则不等式 f(x)<0 的解集
是 (-2, 0)∪(2, 5]

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。

而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。

1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。

高中数学必修一:函数的图象 PPT课件 图文

高中数学必修一:函数的图象 PPT课件 图文

<0 可化为fxx<0,即 xf(x)<0,f(x)的大致图象如图 所示.所以 xf(x)<0 的解集为(-1,0)∪(0,1). 答案:D
返回 3.若不等式(x-1)2<logax(a>0,且a≠1)在x∈(1,2)内恒成立,
则实数a的取值范围为
()
A.(1,2]
B. 22,1
π 4
=f
34π =1+
5 ,f
π 2
=2
2 .∵2
2
<1+
5,∴f
π 2<f
π4=f
34π,从而排除D,故选B.
答案:B
5.如图,不规则四边形ABCD中,AB和CD是线
返回
段,AD和BC是圆弧,直线l⊥AB交AB于E,
当l从左至右移动(与线段AB有公共点)时,把
返回
课 堂 考点突破
练透基点,研通难点,备考不留死角
返回
考点一 函数图象的识辨 [考什么·怎么考]
作为函数关系的一种重要表示方法,函数图象 的识辨是每年高考的热点内容,题型多为选择题, 难度适中,得分较易.
考法(一) 根据函数解析式或图象识辨函数图象
返回
1.函数f(x)=1+log2x与g(x)=
C.(1, 2) D.( 2,2)
解析:要使当x∈(1,2)时,不等式(x-1)2<logax
恒成立,只需函数y=(x-1)2在(1,2)上的图象
在y=logax的图象的下方即可. 当0<a<1时,显然不成立;当a>1时,如图,要使x∈(1,2)时,y
=(x-1)2的图象在y=logax的图象的下方,只需(2-1)2 ≤loga2,即loga2≥1,解得1<a≤2,故实数a的取值范围是 (1,2].故选A. 答案:A

人教A版数学必修一5、函数的图像.docx

人教A版数学必修一5、函数的图像.docx

函数的图像一、考点分解1、熟记常见基本初等函数图像①y=kx+b(k ≠0)) ②y=xk (k ≠0) ③y=ax 2++bx+c (a ≠0) ④y=a x (a>0,a ≠1) ⑤y=log a x (a>0,a ≠1)2、会通过平移变换及对称变换作函数的图像。

3、掌握数形结合的数学思想方法,能利用函数图像解决有关问题。

二、作图例1: 作下列函数的图像:(1)y=1-x(x Z ∈) (2)y=2x 2-4x-3(0<x<3) (3)y=⎪⎩⎪⎨⎧≥<<)1()10(1x x x x (4)y=1+x x(5)y=432-+x x (6)y=2x(7)y=2log 21-x (8)y=x 2-2x -1知识要点归纳(1) 画函数图像不仅要注意函数的解析式还应该注意函数的________________(2) 列表描点是画函数图像的基本方法。

但通过平移变换及对称变换作函数的图像是函数作图的主要方法① 平移变换y=f(x)移移__________0________0<>h h y=f(x-h)y=f(x)移移___________0_________0<>k k y=f(x)+k ② 对称变换y=f(x)对称轴关于x y=_____________ y=f(x)对称轴关于y y=________ y=f(x)对称关于直线a x =y=_____________ y=f(x)对称关于原点y=______________ ③ 翻折变换 y=f(x)对称的图像并作其关于图像去掉图像保留_______________,_________y=f(x ) y=f(x)翻折上去将图像保留_________________y=)(x f 三、用图-------利用数形结合的数学思想方法处理问题题型一、运用数形结合求字母的取值范围例1:不等式12-++x x >a 恒成立,求实数a 的取值范围练习1: 已知a ∈R 讨论关于x 的方程a x x =+-862的实数解的个数2:当m 为怎样的实数时,方程x 2-4x +5=m 有四个不相等的实数根题型二、 利用数形结合求最值例2、已知函数y=x 21-上任意一点M(x,y) ,求 (1) (x-1)2+(y-1)2的取值范围 (2)求11++x y 的取值范围练习:1、 已知直线y=x+m 与函数y=x 21-的图像有两个不同交点,则m 的取值范围是____________2、 求函数y=12+-x x x ]2,3[--∈的值域题型三、 利用数形结合解不等式例3、 解不等式x x ->-2112练习: 解不等式 122≥-x x题型四、由抽象函数性质构建函数图象研究抽象函数例4:定义在R 上的函数y fx =-∞()()在,2上为增函数,且函数y f x =+()2为偶函数则( )A.f f ()()-<13B.f f ()()03>C.f f ()()-=-13D.f f ()()23<练习:若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围( )A.)2,(-∞B.),2(+∞C.),2()2,(+∞--∞D.(-2,2)题型五、 图像的对称原理及应用(1) Y=f(x)的图像关于直线x=a 对称⇔f(a+x)=f(a-x) 或 f(x)=f(2a-x)(2) Y=f(x)的图像关于点(a,b)对称⇔f(a+x)+f(a-x)=2b 或 f(x)+f(2a-x)=2b(3) Y=f(x)与y=g(x)的图像关于直线x=a 对称⇔f(x)=g(2a-x)或 f(a+x)=g(a-x)(4) Y=f(x)与y=g(x)的图像关于点(a,b)对称⇔f(a+x)+g(a-x)=2b 或f(x)+g(2a-x)=2b例5、 函数y=f(x)对任意x ∈R 都有f(3+x)=f(3-x)且f(x)=0的所有实数根之和为24。

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结

03
通过大量的练习和实践,提高对复杂函数图像的识别能力和分
析水平。
观看
REPORTING
复合函数性质
复合函数具有“同增异减”的性质,即内外函数的单调性相同时,复合函数为增函数;内外函数的单 调性不同时,复合函数为减函数。
分段函数表达式及性质
分段函数定义
在自变量的不同取值范围内,用不同的解析式来表示一个函 数,这样的函数叫做分段函数。
分段函数性质
分段函数的定义域是各段定义域的并集;分段函数的值域是 各段值域的并集;分段函数在定义域的不同子集上,具有不 同的对应关系。
坐标平面
由x轴和y轴组成的平面称为坐标 平面,其中x轴和y轴的交点称为 原点,坐标为(0,0)。
函数图像绘制方法
01
02
03
列表法
列出函数自变量与函数值 的对应表,然后在坐标系 中描出各点,最后用平滑 的曲线连接各点。
解析法
根据函数解析式,直接利 用函数的性质绘制出函数 的图像。
图象变换法
通过对基本初等函数的图 像进行平移、伸缩、对称 等变换,得到所求函数的 图像。
PART 02
一次函数图像知识点
一次函数表达式及性质
一次函数表达式
y = kx + b (k ≠ 0)
性质
当 k > 0 时,函数图像为增函数;当 k < 0 时,函数图像为减函数。
一次函数图像特征
直线性
一次函数的图像是一条直 线。
斜率
直线的斜率等于一次函数 表达式中的 k 值。
截距
直线在 y 轴上的截距等于 一次函数表达式中的 b 值 。
PART 05
三角函数图像知识点
三角函数基本概念及性质

函数图像专题PPT课件图文

函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称

高数数学必修一《5.4.1正弦函数、余弦函数的图像》教学课件

高数数学必修一《5.4.1正弦函数、余弦函数的图像》教学课件
过两直线y=1和y=-1所夹的范围.
其中正确的个数是(
)
A.0
B.1
C.2
D.3
答案:D
题型 2 利用“五点法”作三角函数的图象
【问题探究2】 在确定正弦函数的图象形状时,应抓住哪些关键点?
π
2

2
提示:(0,0),( ,1),(π,0),( ,-1),(2π,0)
例2 用“五点法”作出下列函数的图象:
)
(2)函数y=cos
1
2
x,x∈[0,2π]的图象与直线y=- 的交点有________
2
个.
1
2
解析:作出y=cos x,x∈[0,2π]与y=- 的图象(图略),由图象可知,函数y=cos x,x∈[0,2π]的图象与
1
直线y=-2有两个交点.
ቤተ መጻሕፍቲ ባይዱ
随堂练习

1.已知点( ,m)在余弦曲线上,则m=(
____________
________
正(余)弦函数的图象叫做正(余)弦曲线,是一条“波浪
起伏”的连续光滑曲线
【即时练习】
1.观察正弦函数y=sin x,x∈R的图象,下列说法错误的是(
A.过原点
B.与y=cos x的图象形状相同,只是位置不同
C.与x轴有无数个交点
D.关于y轴对称
答案:D
解析:观察题图可得,正弦函数y=sin x,x∈R的图象不关于y轴对称.故选D.
B.介于直线y=1与直线y=-1之间
C.关于x轴对称
D.与y轴仅有一个交点
答案:ABD
微点拨❶
(1)作正弦函数、余弦函数图象时,函数自变量的取值要用弧度制,
以保证自变量的取值与函数值都为实数.

数学人教A版必修第一册5.4.1正弦函数、余弦函数的图象课件

数学人教A版必修第一册5.4.1正弦函数、余弦函数的图象课件
点( ,�� ),将这些点用光滑的曲线连接起来,可得的比较精确的函数 =
, ∈ [,]的图象.
知识梳理
探究二:根据函数 = , ∈ [,]的图象,你能想象函数 = , ∈
的图象吗?
由诱导公式一可知,函数 = , ∈ [, ( + )], ∈ 且 ≠ 的图象



− −



− −


− −















知识梳理
探究三:在确定正弦函数的图象形状时,应抓住哪些关键点?
【提示】
视察图,在函数 = , x∈[0,2π]的图象上,
以下五个点: 0,0 ,

,1
2
, ,0 ,
3
,1
2
, 2,0



= , ∈ 的图


象向左平移 个单位长度而得到.所以,将正弦函数的图象向左平移 个单位长度,
就得到余弦函数的图象,如图所示:
知识梳理

− −






− −


















余弦函数 = , ∈ 的图象叫做余弦曲线.它是与正弦曲线具有相同形状
若把轴上从0到2这一段分成12等份,使



的值分别为0, , , , … ,2,



它们所对应的角的终边与单位圆的交点将圆周12等分,再按上述画点( , )

高一上学期函数专题:函数的图像(含答案解析)

高一上学期函数专题:函数的图像(含答案解析)

高一上学期函数专题:函数的图像学校:___________姓名:___________班级:___________考号:___________一、单选题 1.函数241xy x =+的图象大致为( ) A . B .C .D .2.函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .3.如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其 中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的有( )A.1个B.2个C.3个D.4个4.如图所示,单位圆上一定点A与坐标原点重合.若单位圆从原点出发沿x轴正向滚动一周,则A点形成的轨迹为()A.B.C.D.5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.已知定义在()(),00,-∞⋃+∞上的奇函数()f x 在(),0-∞上单调递增,且满足()12f -=-,则关于x 的不等式()2sin f x x xπ<+的解集为( ). A .()(),11,-∞-+∞B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()()1,00,1-7.已知定义在R 上的函数()[)[)222,0,12,1,0x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩,且()()2f x f x +=,若方程()20f x kx --=有三个不相等的实数根,则实数k 的取值范围是A .1,13⎛⎫⎪⎝⎭B .11,34⎛⎫-- ⎪⎝⎭C .111,,133⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭D .1111,,3443⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭8.已知定义在R 上的奇函数,满足(2)()0f x f x -+=,当(]0,1x ∈时,2()log f x x =-,若函数()()()sin π=-F x f x x ,在区间[]1-,m 上有10个零点,则m 的取值范围是( )A .[)3.54,B .(]3.5,4C .(]5,5.5D .[)55.5,9.函数()218x f x +⎛⎫= ⎪⎝⎭的部分图象大致为A .B .C .D .10.设函数21,2()5,2x x f x x x ⎧-⎪=⎨-+>⎪⎩,若互不相等的实数,,a b c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .(16,32) B .(18,34) C .(17,35) D .(6,7)二、多选题11.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是 A .122x x += B .122x x e e e +>C .1221ln ln 0x x x x +<D .12x x >三、填空题12.设方程24x x +=的根为m ,方程2log 4x x +=的根为n ,则m n +=________;参考答案1.A 【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象. 【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 2.A 【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象. 【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、3.A 【分析】结合几何体的结构和题意知,容器的底面积越大水的高度变化慢、反之变化的快,再由图象越平缓就是变化越慢、图象陡就是变化快来判断. 【详解】A 、因正方体的底面积是定值,故水面高度的增加是均匀的,即图象是直线型的,故A 不对;B 、因几何体下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越平缓,故B 正确;C 、球是个对称的几何体,下半球因下面窄上面宽,所以水的高度增加的越来越慢;上半球恰相反,所以水的高度增加的越来越快,则图象先平缓再变陡;故C 正确;D 、图中几何体两头宽、中间窄,所以水的高度增加的越来越慢后再越来越慢快,则图象先平缓再变陡,故D 正确. 故选A . 【点睛】本题考查了数形结合思想,对于此题没有必要求容器中水面的高度h 和时间t 之间的函数解析式,因此可结合几何体和图象作定性分析,即充分利用数形结合思想. 4.A 【分析】分析当单位圆向x 轴正向滚动π个单位长度时A 的纵坐标,由此判断出A 点形成的轨迹. 【详解】如图所示,记,,B C D 为圆上的三个四等分圆周的点,由题意可知:圆是逆时针滚动的,因为圆的周长为2π,所以2AB BC CD AD π====,且圆上点的纵坐标最大值为2,当圆逆时针滚动π单位长度时,此时,A C 的相对位置互换,所以A 的纵坐标为2,排除BCD , 故选:A.关键点点睛:解答本题的关键是通过特殊位置(向右滚动π个单位长度)分析对应A 点的纵坐标,通过排除法判断出轨迹. 5.B 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力. 6.C 【分析】令()()2g x f x x=-,利用奇偶性定义可知()g x 为奇函数,并可确定()g x 在(),0-∞,()0,∞+上单调递增,由()10g -=知()10g =,结合55sin 22g π⎛⎫< ⎪⎝⎭不成立可确定()g x 与sin y x =π大致图象,由图象可确定解集. 【详解】()f x 为()(),00,-∞⋃+∞上的奇函数,()()f x f x ∴-=-, 令()()2g x f x x =-,则()()()()22g x f x f x g x x x-=-+=-+=-,()g x ∴为()(),00,-∞⋃+∞上奇函数;()f x 在(),0-∞上单调递增,2y x=-在(),0-∞上单调递增,()g x ∴在(),0-∞上单调递增,由奇函数性质知:()g x 在()0,∞+上单调递增;()12f -=-,()()1120g f ∴-=-+=,则()10g =,又()()51122f f f ⎛⎫>=--= ⎪⎝⎭,当52x =时,2459sin sin525x x ππ+=+=, ∴当52x =时,()2sin f x x x π<+不成立,即55sin 22g π⎛⎫< ⎪⎝⎭不成立,由此可在坐标系中画出()g x 与sin y x =π大致图象如下图所示:由图象可知:当()(),10,1x ∈-∞-时,()sin g x x π<,即当()(),10,1x ∈-∞-时,()2sin f x x xπ<+. 故选:C. 【点睛】关键点点睛:本题考查函数不等式的求解,解题关键是能够通过构造函数的方式,结合奇偶性和单调性的知识确定函数的大致图象,利用数形结合的方式求得结果.7.C 【分析】由()()2f x f x +=可得函数周期为2,结合函数在[]1,1-上的解析式,利用周期作出()f x 的函数图象,根据()y f x =和2y kx =+图象交点个数判断k 的范围. 【详解】方程()20f x kx --=有三个不相等的实数根, 等价于()y f x =和2y kx =+图象有三个不同交点, 因为()()2f x f x +=,所以()f x 的周期为2,由函数()[)[)222,0,12,1,0x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩,利用周期性作出()f x 的函数图象,如图所示: 不妨设0,k >当直线2y kx =+过()()3,1,1,1--时,k 的值分别为13与1,由图可知,113k <<时直线2y kx =+与()f x 的图象有三个交点,113k ∴<<时, 方程()20f x kx --=有三个不相等的实数根, 同理,若0k <,可得113k -<<-时,方程()20f x kx --=有三个不相等的实数根,所以实数k 的取值范围是111,,133⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,故选C.【点睛】本题主要考查函数的周期与函数图象的应用,考查了函数零点与方程根的关系,同时考查了转化思想与数形结合思想的应用,属于难题. 函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.8.A 【分析】由()()20f x f x -+=得出函数()y f x =的图象关于点()1,0成中心对称以及函数()y f x =的周期为2,由函数()y f x =为奇函数得出()00f =,并由周期性得出()2f = ()40f =,然后作出函数()y f x =与函数()sin y x π=的图象,列举前10个交点的横坐标,结合第11个交点的横坐标得出实数m 的取值范围. 【详解】由()()20f x f x -+=可知函数()y f x =的图象关于点()1,0成中心对称, 且()()()2f x f x f x -=-=-,所以,()()2f x f x +=, 所以,函数()y f x =的周期为2,由于函数()y f x =为奇函数,则()00f =,则()()240f f ==, 作出函数()y f x =与函数()sin y x π=的图象如下图所示:211log 122f ⎛⎫=-= ⎪⎝⎭,则11122f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,于是得出7311222f f f ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,51122f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,由图象可知,函数()y f x =与函数()sin y x π=在区间[]1,m -上从左到右10个交点的横坐标分别为1-、12-、0、12、1、32、2、52、3、72,第11个交点的横坐标为4, 因此,实数m 的取值范围是[)3.5,4,故选A .【点睛】本题考查方程的根与函数的零点个数问题,一般这类问题转化为两个函数图象的交点个数问题,在画函数的图象时,要注意函数的奇偶性、对称性、周期性对函数图象的影响,属于难题.9.B【分析】根据函数的定义域以及单调性求解.【详解】由题意得,()f x 的定义域为R ,排除C,D ;当2x ≥-时,()218x f x +⎛⎫= ⎪⎝⎭,∵1018<<,∴()f x 在[)2,-+∞上单调递减,排除A , 故选B.【点睛】 本题考查了已知函数表达式,识别函数图象,涉及了函数的定义域以及指数函数的单调性;从函数的定义域可以判断函数图象的“左右”位置,以及是否有断点;单调性可以判断函数的变化趋势.10.B【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得45c <<,从而可得结果.【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=.结合图象可得45c <<,故16232c <<.∴1822234a b c <++<.故选:B .【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质. 11.ABC【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C.【详解】函数x y e =与ln y x =互为反函数,则x y e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1,对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B,122x x e e e ≥=+=,因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与x y e =联立可得2x x e -+=,即20x e x +-=,设()2x f x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭, 故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln ln x x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D,由12x x +≥,解得121x x ≤,由于12x x ≠,则121x x <,故D 错误;故选:ABC【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.12.4【详解】由题意,方程24x x +=的根为m ,方程2log 4x x +=的根为n ,24m m ∴+=……①,24n log n += …… ②由①得24m m =-,24m log m ∴=-( )令4t m =- ,代入上式得24t log t -=24t log t ∴+= 与②式比较得t n =于是44m n m n -=∴+= 故答案为4.【点睛】本题主要考查方程的根,即为相应函数图象交点的横坐标,解题的关键是利用设而不求的思想,充分利用题设条件得到m n +的值.。

新人教A版必修一对数函数的概念对数函数图像和性质课件(22张)

新人教A版必修一对数函数的概念对数函数图像和性质课件(22张)
;
(2)下列函数中,是对数函数的是
.(填序号)
①y=log4x;②y=log2(3x);③y=logx2;④y=log3(x-1);⑤y=log2x2;
1
⑥y= 2 log3x.
探究一
探究二
探究三
易错辨析
解析:(1)设 f(x)=logax(a>0,且 a≠1),
1
依题意有 loga4=-1,故 a=4,
探究三
易错辨析
对于含有偶次根式中被开方式为对数式时,要注意被开方的代数
式为非负,还要顾及对数式中本身的真数大于0这一隐含信息,错解
中显然忘记了真数大于0这一隐含条件.
1
2
3
4
5
6
1.下列函数中,是对数函数的是(
A.y=log2x-1
B.y=logx3x
C.y= log 1 x
D.y=3log5x
2
探究一
探究二
探究三
易错辨析
变式训练2函数f(x)=3x(0<x≤2)的反函数的定义域为(
A.(0,+∞)
B.(1,9]
C.(0,1)
D.[9,+∞)
解析:∵ 0<x≤2,∴1<3x≤9,
即函数f(x)的值域为(1,9].
故函数f(x)的反函数的定义域为(1,9].
答案:B
)
探究一
探究二
探究三
易错辨析
C.
2
D.x2
解析:由题意,知 f(x)=logax.∵f(x)的图像过点(√,a),
1
∴a=loga√.∴a=2.∴f(x)=log 1 x.故选 B.
2
答案:B
函数y=logax(a>0,且a≠1)的反函数是y=ax(a>0,且a≠1);函数

(完整word版)高中数学必修一三角函数图像性质总结(精华版)

(完整word版)高中数学必修一三角函数图像性质总结(精华版)

•正弦、余弦、正切函数图象和性质函数正弦函数y =sinx,x运R余弦函数y=cosx, x^R正切函数y = tanx, xHkr +上2有界性有界有界无界疋义域(^□0, +Xi)r 兀i2 x | x式k兀+—, Z ,I 2 J值域[-1,1]当X =3 +2kjl(k 乏Z)时,y max =〔2■JT当x =_二+2kir(k ^Z)时,2『min =-〔3,1]当X=2k H(k€Z)时,y max =1当x =兀+2k n(k€Z)时,『min = -1(^aC, ^C)周期性是周期函数,最小正周期T=2兀是周期函数,最小正周期T =2兀T =兀奇偶性奇函数,图象关于原点对称偶函数,图象关于y轴对称奇函数,图象关于原点对称单调性在[一生+2k兀,壬+2小],(k € z)2 2上是单调增函数在[壬+2kn,竺+2阪],(k乏Z)2 2上是单调减函数在[兀+2kir,2兀+2kn:], (k 乏Z)上是单调增函数在[2k%兀+2kn], (k^Z)上是单调减函数”H 兀在(_一+k兀,一+k兀),(k^ Z) 2 2上是单调增函数对称轴1Tx =k 兀+ = ,(k E Z)2x =kir, (k w Z)对称中心(也,0) (MZ)(k兀+ 匹,0) (k^Z)2k兀(三,0) (HZ)正弦函数、余弦函数、正切函数的图像三角函数的性质1定义域与值域 2、奇偶性(1) 基本函数的奇偶性 奇函数:y = sinx , y = tanx ;偶函数:y = cosx.(2),型三角函数的奇偶性(i) g ( x )=—二匚(x € R )g (x )为偶函数二T ■-匚「•匚O 虫血(曲+®)二虫sm (-蕊+©(XE R) n 迪欧刚片Q (応R) 8$少二 Oo®=fc?r+—优eZ)由此得同理,=虫迎(的物仃E 去)为奇函数sin = 0(p — k7l(k € Z).(丘).;':.■. - ■ J .:!■, ■ /.'■■■.'■.I宀'-■■ : - ■■- - /'为偶函数---::1 ;:—上:-■■- - -;1 为奇函数 (圧 2) 2 .3、周期性1)基本公式(i)基本三角函数的周期 y = sinx , y = cosx 的周期为:•'; ; y = tanx , y = cotx的周期为匚.(ii)「V 」型三角函数的周期2JTy= 4$in(眾x+卩)+kj=i4coK 驱+©+上开y 二虫 tan (临+仍 +匕丁 二 Acot(@z+g) + 上 的周期为|少| . (2) 认知y=ta nxyiy;y=cotx II 丿 /f f / y1 /I112■ z n -2oJ2! , n 212x-JI2o恥312-込:—1 r [ ii f I\tI 1 1 i2 2-1y=cosx(i) 讨型函数的周期开尸恤in(处+©卩屮cos(曲+创的周期为0| ;7T》=|血购(亦+ ©卜=|乂嗽(倾+釧的周期为0 .(ii) 一:“」的周期严|加1伽+©+斗尸血o$伽+©+貝的周期为青;71尸|伽血+ ©+丽二血0t伽+© +上|的周期为0 .均同它们不加绝对值时的周期相同,即对+ 的解析式施加绝对值后,该函数的周期不变•注意这一点与(i)的区别•(ii) 若函数为「川型两位函数之和,则探求周期适于“最小公倍数法”.(iii) 探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明(3)特殊情形研究7T(i) y = tanx —cotx的最小正周期为];(ii) '的最小正周期为];(iii) y = sin 4X + cos4x的最小正周期为 _ .由此领悟“最小公倍数法”的适用类型,以防施错对象.4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的一个周期;②写特解:在所选周期内写出函数的增区间(或减区间);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族.揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域•(2)R 型三角函数的单调区间此类三角函数单调区间的寻求“三部曲”为①换元、分解:令u—二,将所给函数分解为内、外两层:y二f (u), u… ;②套用公式:根据对复合函数单调性的认知,确定出f (u)的单调性,而后利用(1)中公式写出关于u的不等式;③还原、结论:将u=J「二代入②中u的不等式,解出x的取值范围,并用集合或区间形成结论•正弦、余弦、正切、余切函数的图象的性质:/y =s inx y =cosx y =ta nx y =cotxy = Asin®x+申)(A、⑷ > 0)定义域R R- 1 _x|x E R且x #冗岂兀k亡Z卩{x|x^R 且x^k jL k^z}R值域[_1,+1][_1,+1]R RL A, A】周期性2兀2兀312H看奇偶性奇函数偶函数奇函数奇函数当甲式0,非奇非偶当® =0,奇函数单调性n:[——+2kTi,2-+2^I]2上为增函数;TT[—+2kir,23兀丄—■ +2kn]2上为减函数( "Z )[(2k—1兀.2kn]上为增函数[2k 兀,(2k +1 対上为减函数("Z )+k ii,匹+k n〕1 2 2丿上为增函数("Z )(5, (k+1^ )上为减函数(k^Z ) 1[上■上兀 22kn:------- Q2( A)(A),12kn: +— n 一申2( A)(八丿_ 0 」二为增函数;2kn十匹一护(A),O2k兀+^3兀一半2 ( 八)(一八). ⑷一二为减函数注意:①y =-sinx与y =sinx的单调性正好相反;y =-cosx与y =cosx的单调性也同样相反一般地,若y =f(x)在[a,b]上递增(减),则y=-f(x)在[a,b]上递减(增)②y =sin x与y =COSX的周期是二.③y =sin(灼x+巧或y=cos®x+®)(⑷芒0 )的周期T =吾.y=tan x的周期为2兀(T=2L—T=2TT,如图,翻折无效)•2抄厂JT④y =sin(,x •「)的对称轴方程是- (k • Z ),对称中心(k二,0 ) ; y住x )的对称轴方程是x=k二(Z),对称中心(k-);y =a x :)的对称中心(—,0).k 2 ,02原点对称> y - _cos( _2x) - _cos2xy =cos2x⑤当tan : tan 1 =1, : - -k (k Z);ta n : tan 一- _1, : - 一- k (k Z).2 2⑥y =cosx与y =sin i x 2k二是同一函数,而y=(.x・)是偶函数,贝UI 2 丿1y =( x :T)二sin( x k - ) = cos( x).⑦函数yy=tanx为增函数,同样也是错误的].⑧定义域关于原点对称是f (x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f(「x)=f(x),奇函数:f(_x)--f(x))奇偶性的单调性:奇同偶反.例如:y=tanx是奇函数,y =tan(x --)是非奇非偶.(定义域不3关于原点对称)奇函数特有性质:若x的定义域,则f (x)一定有f(o)=o. (O^x的定义域,贝U无此性质)⑨y =sinx不是周期函数;y = sin x为周期函数(T ★);y .cosx是周期函数(如图);y = cos x为周期函数(T二二);y=cos2x』的周期为兀(如图),并非所有周期函数都有最小正周期, 2y、 /一:、X *例如:y =f (x) =5 =f (x k),k R.⑩ y =a cos* 亠bsin - - a2b2sin(x 亠门)cos =b有a2b2y .、形如y =Asin(「x •的函数:11、几个物理量:A—振幅;f二1—频率(周期的倒数);「X •「一相位;‘一初相;2、函数y = Asin()表达式的确定:A由最值确定;• •由周期确定;:由图象上的特殊点确定,如f(x)= Asgx +申"“妙>0宀的图象如图所示,则 f (x)(答:f (x)二2sin^ x3.函数y 二Asin(・x ) B (其中 A 0, ,0)最大值是A最小正周期T十|y= cos|x| 图象yy=| cos2x+1/21图象Q JT频率是f ,相位是,初相是:;其图象的对称轴是直线•■x W:=k (k・Z),凡2兀2是该图象与直线y=B 的交点都是该图象的对称中心 4、 研究函数y =Asin (「x •「)性质的方法:类比于研究y =sin x 的性质,只需将y = Asin ( • x J 中的 看成y =si n x 中的x ,但在求y = A si n (・・x •「)的单调区间时,要特别注意 A 和• ‘的 符号,通过诱导公式先将•’化正。

新教材人教版B版必修一 函数的图象 课件(53张)

新教材人教版B版必修一   函数的图象   课件(53张)
()
(2)(2019·宁波九校模拟)已知函数 f(x)=x-ln1x-1,则 y=f(x) 的图象大致为( )
【解析】 (1)设 f(x)=2|x|sin 2x,其定义域关于坐标原点对称, 又 f(-x)=2|-x|·sin(-2x)=-f(x),所以 y=f(x)是奇函数,故 排除选项 A,B;令 f(x)=0,所以 sin 2x=0,所以 2x=kπ(k∈Z), 所以 x=k2π(k∈Z),故排除选项 C.故选 D. (2)由于 f(e)=e-1 2>0,排除 D.由于 f(1e)=e>0,排除 B.由于 f(e2)=e2-1 3<f(e),故函数在(1,+∞)为减函数,排除 C,所 以选 A. 【答案】 (1)D (2)A
②y=f(x) 0<a>a<1,1,纵纵坐坐标标伸缩长短为为原原来来的的a倍a倍,,横横坐坐标标不不变变→ y=_a_f_(x_)____.
判断正误(正确的打“√”,错误的打“×”) (1)当 x∈(0,+∞)时,函数 y=|f(x)|与 y=f(|x|)的图象相 同.( × ) (2)函数 y=af(x)与 y=f(ax)(a>0 且 a≠1)的图象相同.( × ) (3)函数 y=f(x)与 y=-f(x)的图象关于原点对称.( × ) (4)若函数 y=f(x)满足 f(1+x)=f(1-x),则函数 f(x)的图象关 于直线 x=1 对称.( √ ) (5)将函数 y=f(-x)的图象向右平移 1 个单位得到函数 y=f(- x-1)的图象.( × )
(3)作 y=log2|x|的图象,再将图象向右平移一个单位,如图, 即得到 y=log2|x-1|的图象.
函数图象的识别
(高频考点)
函数图象的识别是每年高考的重点,题型为选择题,难度适

高一数学人教版必修一函数的奇偶性 PPT课件 图文

高一数学人教版必修一函数的奇偶性 PPT课件 图文

猜想: f(x)f(x)
x ..3.2 1 0 1 2 3..
... f (x) x2
941
0
14
9..
偶函数的定义
一般地,如果对函数 f (x) 的定义域内任意一个 x, 都有f (x) f (x), 那么函数 f (x)就叫偶函数 .
类比&探究
f(1)f(1) f(2)f(2) f(3)f(3)
1.3.2函数的奇偶性
必修1(人教版)
故宫
女子跳水10米跳台决赛,正反跳映衬对称美
数学&生活
生活中的对称美引入我们的数学领 域中,它又是怎样的情况呢?
请同学们观察下列函数图形,说出 他们各有怎样的对称性?
问题与思考
以上函数图像有什么共同特征呢? 哈哈,我来回答
以上函数图像都关于y轴对称
把图像关于y轴对称函数称为偶函数
问题与思考
以上函数图像有什么共同特征 呢?
以上函数图像都关于原点对称
把图像关于原点对称函数称为奇函数
根据下列函数图象,判断其奇偶性.
y
y
o
奇函数
x
o
x 偶函数
y
b
oLeabharlann x 偶函数yo
x 奇函数
观察 & 发现
f(1)1f(1)
f(2)4f(2)
f( 3)9f(3) ……
2.两个性质:
一个函数为奇函数 它的图象关于原点对称。 一个函数为偶函数 它的图象关于y 轴对称。
3. 判断函数奇偶性的方法和步骤
我来总结
判断函数的奇偶性,注意定 义域优先
1.
课堂小结
f ( x )是 函数f (x)的图像 对函数 f (x)的定义

高一数学函数图像专题(含详解)

高一数学函数图像专题(含详解)

高一数学函数图像专题(含详解)一、函数的概念函数是一种数学关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

在数学中,我们用函数来描述数量之间的关系。

二、函数图像的绘制为了更好地理解函数的性质和规律,我们可以通过绘制函数图像来进行观察和分析。

绘制函数图像时,我们需要确定函数的定义域和值域,并选取一些代表性的输入值,计算出对应的输出值,然后将这些点连接起来,即可得到函数图像。

三、常见函数图像1.直线函数图像:直线函数的图像通常是一条直线,可以通过确定直线的斜率和截距来确定。

2.平方函数图像:平方函数的图像是一条抛物线,开口的方向由平方项的系数决定,开口向上为正,开口向下为负。

3.正弦函数图像:正弦函数的图像是一条波浪形曲线,表现周期性的特点。

4.指数函数图像:指数函数的图像呈现出递增或递减的趋势,斜率随着自变量的增大而增大或减小。

5.对数函数图像:对数函数的图像通常是一条曲线,呈现出随着自变量的增大,函数值增长趋缓的特点。

四、函数图像的性质1.奇偶性:函数图像关于原点对称的称为奇函数,图像关于y轴对称的称为偶函数。

2.单调性:函数图像上的点随着自变量的增大或减小而具有递增或递减的趋势。

3.零点与极值点:函数图像与x轴相交的点称为零点,图像上的极值点包括最大值和最小值。

五、总结函数图像是研究函数性质和规律的重要工具。

通过绘制函数图像,我们可以直观地了解函数的特点,并进行更深入的分析和推理。

在研究函数图像时,需要注意函数的定义域、值域以及一些常见函数的特点和性质。

这对于理解和应用函数概念都非常重要。

以上是关于高一数学函数图像专题的详细解释和内容总结,希望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修一函数的图像专题
知识梳理 一、作图
1、 描点法作图:
(1) 确定函数的定义域(2)化简函数解析式(3)研究函数性质(如单调性、奇偶性、
最值等)(4)画出函数图像。

2、 利用图像变换作图
(1) 平移变换
左右平移()()(0)y f x y f x a a +-=−−−−→=±>“”左移
“”右移
上下平移
()((0)y f x y f x a a +-=−−−−→=±>“”上移“”下移
) (2) 对称变换
()()x y f x y f x =←−−→=-轴
()()y f x y f x =←−−→=-y 轴
()()y f x y f x =←−−→=--原点
(3) 翻折变换
()()y f x y f x =−−−−−−−→=保留y 轴右侧图像
并作其关于y 轴对称图像
()()y f x y f x =−−−−−−−→=保留x 轴上方图像
将x 轴下方图像翻折上去
一、 识图
由函数图像研究解析式,定义域,值域及相关性质。

二、 用图
利用函数图像解决“数量”关系 重视数形结合解题的思想方法。

例题
例1. 作下列函数的图像
(1)21y x x =-++ (2)2(1)y x x =-+
练习:作下列函数图像
(1)21y x x =--+
例2、利用函数2()2f x x x =-的图像,作出下列函数图像。

(1)()2y f x =+ (2)()1y f x =-
(3)()y f x = (4)()y f x =
(5)()y f x =- (6)()y f x =-
练习:由3y x =
图像作211
x y x +=-的图像。

例3. y kx =与y x k =+的曲线可能是下列图形中的( )
A B C D
练习:函数y ax b =+与2y ax bx c =++的图像可能是下列图形中的( )
A B
C D
例2. 求方程
223()
x x a a R --=∈的解的个数。

练习:解不等式212x x ->+
一、选择
1、 函数2
1
21
y x x =-
-+的图像是( )
A B
C D
2、 函数()y f x =与函数()y g x =的图像如下:
则函数()()y f x g x =⋅的图像可能是( )
A B
C D
3、 函数1
()f x x x
=
-的图像关于( )对称 A.y 轴 B.直线y x =- C.原点 D.直线y x =
4、已知()y f x =的图像如下:则()y f x =的图像为( )
A B
C D
5、 函数()11f x x =-+的图像为( )
A B C D
6、 方程(1)x x a -=有两个解,则a 的值为( )
A.
14 B. 14-或0 C.0 D.0或14
二.填空
7.关于x 的方程|x ﹣2|=x 2﹣4x ﹢5的解的个数是_________。

8.关于x 的方程|x ﹢2|﹢|x ﹣1|=a 无解,则a 的取值范围 。

9.关于x 的不等式|x ﹢2|﹣|x ﹣1|<a 解集为R ,则a 的取值范围 。

三.解答:
1.求函数()(2)f x x x =-的单调区间
2.画出函数223y x x =-++的图象,并指出函数的单调区间和最大值。

3.作函数2()21f x x x =+--的图象,并判断奇偶性,求f(x)最小值。

相关文档
最新文档