X射线衍射XRD.ppt

合集下载

XRD分析课堂PPT

XRD分析课堂PPT
西南科技大学分析测试中心
引言
问题
❖ 科研、生产、商业和日常活动中,我们经常遇到: 这是一种什么物质?含有那些杂质或有害物质?用 什么方法鉴定?
❖ X射线衍射分析(XRD)的原理?仪器?样品? ❖ XRD除物相分析还能做些什么? ❖ 如何从XRD所给出的数据中提取更多的信息?包括
成分、结构、形成方式(条件)、结晶度、晶粒度? 等等。
19
西南科技大学分析测试中心
特征X射线的命名方法
❖ 当K电子被打出K层时,如L层电子来填充K空位时,则 产生Kα辐射。同样当K空位被M层电子填充时,则产生 Kβ辐射。M能级与K能级之差大于L能级与K能级之差, 即一个Kβ光子的能量大于一个Kα光子的能量; 但因 L→K层跃迁的几率比M→K迁附几率大,故Kα辐射强 度比Kβ辐射强度大五倍左右。显然,当L层电子填充K 层后,原子由K激发状态变成L激发状态,此时更外层 如M、N……层的电子将填充L层空位,产生L系辐射。
26
16
西南科技大学分析测试中心
特征X射线产生的机理
❖ 特征X射线光谱产生的原因与连续光谱完全不 同。由阴极飞驰来的电子,在其与阳极的原子 相作用时,把其能量传给这些原子中的电子, 把这些电子激发到更高一级的能阶上;换句话 说,就是把原子的内层电子打到外层或者甚至 把它打到原子外面,而使原子电离,从而在原 子的内电子层中留有缺席的位置。
I k1iZVm
14
西南科技大学分析测试中心
管电流、管电压、阳极靶的原子序数对连续谱的影响
15
西南科技大学分析测试中心
1.4.2 特征X射线(标识X射线)
❖ 从图可见,当电压加到25KV时, Mo 靶 的 连 续 X 射 线 谱 上 出 现 了 两 个 尖 锐 的 峰 Kα 和 Kβ 。 随 着 电 压的增大,其强度进一步增强, 但波长不变。也就是说,这些谱 线的波长与管压和管流无关,它 与靶材有关,对给定的靶材,它 们的这些谱线是特定的。因此, 称之为特征X射线或标识X射线。 产生特征X射线的最低电压称激 发电压。

仪器分析课件X射线衍射分析XRDN

仪器分析课件X射线衍射分析XRDN
2021/2/2
P1 O P2
SS12
C1
F
C2 H1 H2
19
物相分析
每种晶体都有它自己的晶面间距d,而且其中原子按 照一定的方式排布着。这反映在衍射图上各种晶体的谱线 有它自己特定的位置、数目和强度I。因此,只须将未知 样品衍射图中各谱线测定的角度θ及强度I去和已知样品所 得的谱线进行比较就可以达到物相分析的目的。
4
2021/2/2
5
2021/2/2
6
晶体的对称性
固态物质按其原子(或分子、离子)在空间排列是否 长程有序分成晶态和无定形两类。所谓长程有序是指固态 物质的原子(或分子、离子)在空间按一定方式周期性的 重复排列。整个晶体是由晶胞按周期性在三维空间重复排 列而成。
理想的晶体结构可以用具有一定对称性的、周期的、 无限的三维点阵结构加以描述。晶体的理想外形和宏观物 理性质制约于32点群,而原子和分子水平上的空间结构的 对称性则分属于230个空间群。
平均晶粒度的测定
Scherrer方程: Dhkl k coshkl
注意:1.β为半峰宽度,即衍射强
度为极大值一半处的宽度,单位以
d
弧度表示;2. Dhkl只代表晶面法线 D
方向的晶粒大小,与其他方向的晶
粒大小无关;3. k为形状因子,对
球状粒子k=1.075,立方晶体k=0.9,
一般要求不高时就取k=1。
❖ Enough crystals, enough angles, get enough diffraction to determine mineralogy
2021/2/2
18
样品与计数器旋转速度的关系
若样品平面由S1位置绕O轴转 动角θ至S2位置,求满足衍射条件 的∠C1OC2=? ∠FOH1=∠H1OC1, ∠FOH2=∠H2OC2, 2(∠FOH1-∠FOH2)=2θ, ∠C1OC2=∠FOC1-∠FOC2, ∠FOC1=2∠FOH1, ∠FOC2=2∠FOH2, ∠C1OC2=2(∠FOH1-∠FOH2)=2θ

仪器分析课件X射线衍射分析XRDN

仪器分析课件X射线衍射分析XRDN

定期校准仪器
定期更换易损件 严格按照操作规 程使用仪器
确保仪器无破损、污垢和 锈迹。
避免灰尘和污垢影响仪器 性能。
确保测量结果的准确性和 可靠性。
如阳极靶材、真空泵油等 。
避免因误操作导致仪器损 坏或测量误差。
03
X射线衍射分析(XRD )实验技术
样品制备技术
01
02
03
粉末样品
将待测物质研磨成粉末, 以便在XRD实验中获得更 准确的衍射数据。
XRD的基本原理
X射线衍射分析基于晶体对X射线的衍射现象进行物质结构分析。当X射线照射到晶体上时,晶体中的 原子或分子会对X射线产生散射,由于晶体具有周期性结构,散射波之间会产生干涉现象,形成特定 的衍射图形。通过对衍射图形的分析,可以推断出晶体的结构信息。
XRD的基本原理基于布拉格方程:nλ=2dsinθ(其中λ为X射线的波长,d为晶面间距,θ为入射角) 。通过测量不同角度下的衍射强度,可以计算晶面间距,从而确定晶体的晶格常数、晶格类型等结构 参数。
奥秘。
XRD的优缺点
优点
X射线衍射分析具有非破坏性、无损检测的优点,可以快速准确地测定晶体的 结构和相组成。此外,XRD具有较高的精度和可靠性,能够提供较为准确的结 构信息。
缺点
X射线衍射分析需要样品具有较高的结晶度,对于非晶态或无定形样品的分析存 在局限性。此外,对于复杂样品或纳米级样品的分析可能存在散射背景干扰和 峰宽化效应,影响分析结果的准确性。
02
X射线衍射分析(XRD )仪器
XRD仪器的结构
01
02
03
04
X射线发生器
产生X射线,通常采用阳极靶 材(如Cu、Cr、Fe等)在高
能电子束轰击下产生。

XRD的原理及应用ppt课件

XRD的原理及应用ppt课件

.
10
三、X射线衍射方法
• X 射线的波长较短, 大约在10- 8~ 10- 10cm 之间。与晶体中的原子间距数量级相同, 因 此可以用晶体作为X 射线的天然衍射光栅, 这就使得用X射线衍射进行晶体结构分析成 为可能。在研究晶体材料时,X射线衍射方 法非常理想非常有效,而对于液体和非晶 态物固体,这种方法也能提供许多基本的 重要数据。所以X射线衍射法被认为是研究 固体最有效的工具。在各种衍射实验方法 中,基本方法有单晶法、多晶法和双晶法。
衍射),已成为近代X射线衍射技术取得突出成 就的标志。但在双晶体衍射体系中,当两个晶体 不同时,会发生色散现象。因而,在实际应用双 晶衍射仪进行样品分析时,参考晶体要与被测晶
体相同,这使得双晶衍射仪的使用受到限制。
.
24
四、X射线衍射的应用
• X射线衍射技术发展到今天, 已经成为最基 本、最重要的一种结构测试手段, 其主要应 用主要有物相分析 、 精密测定点阵参数、 应力的测定、晶粒尺寸和点阵畸变的测定、 结晶度的测定 、 晶体取向及织构的测定
.
18
德拜相机
德拜相机结构简单,主 要由相机圆筒、光栏、 承光管和位于圆筒中心 的试样架构成。相机圆 筒上下有结合紧密的底 盖密封,与圆筒内壁周 长相等的底片,圈成圆 圈紧贴圆筒内壁安装, 并有卡环保证底片紧贴 圆筒。
.
19
X射线衍射仪法
• X射线衍射仪法以布拉格实验装置为原型,融合了机械与 电子技术等多方面的成果。衍射仪由X射线发生器、X射 线测角仪、辐射探测器和辐射探测电路4个基本部分组成, 是以特征X射线照射多晶体样品,并以辐射探测器记录衍 射信息的衍射实验装置。现代X射线衍射仪还配有控制操 作和运行软件的计算机系统。

X射线衍射实验方法ppt课件

X射线衍射实验方法ppt课件
测量动作:θ-2θ联动
❖位于试样不同部位MNO,处平行于 试样表面的(hkl)晶面可以把各自的反射 线会聚到F点
❖沿测角仪圆移动的计数器只能逐个地 对衍射线进行测量。
❖衍射仪应使试样与计数器转动的角速 度保持1:2的速度比
测角仪要求与 X射线管的线 焦斑联接使用 ,线焦斑的长 边与测角仪中 心轴平行。
根据样品中晶体含量大,衍射峰较强的特 点,比较峰值的大小,来判断结晶程度。 1.欣克利法
一般选取110和111晶面进行对比,根据( A+B)/At大小来判断结晶度
衍射分析当中,如果晶体在空间随机分 布,衍射强度的比值为理论值,如果晶体排 列有一定规律,则在测试中某一晶面的衍射 强度变大或变小,计算测试结果中各衍射峰 的强度与PDF卡片中该物质对应的衍射线相 度强度,得到折合的衍射线强度,如果折合 的强度相同,则无取向度,反之,有一定取 向。
觉衍射线的宽化
点阵常数的确定:
根据布拉格方程,测量衍射角度,根据X射线波 长,计算出各个晶面间的距离,从而确定晶体 的点阵常数。
材料密度的测定
根据X射线测试结果,计算出晶胞结构,结合晶 面间距与原子量,计算出材料的密度。
晶体在受到外部应力或者内部应力时晶面 间距会有相应变化。
晶体所受应力可以分为:宏观应力引起的 的晶体间应力,析晶、晶型转变等引起的晶体 间应力,位错等引起的晶体内应力。
马氏体的含碳量与马氏体的四方度c/a或者由精确测定的点阵
参数按上式直接计算出马氏体含碳量。通常,钢中含碳量低时仅
仅表现出衍射线的宽化,只有当含碳量高于0.6形时,原铁素体的衍射线才明显地分 裂为两条或三条线。
在淬火高碳钢中有时出现奥氏体相,它是碳在g—铁中的过饱
和固溶体。奥氏体的点阵参数a与含碳量。呈直线性关系:

XRD介绍解析PPT课件

XRD介绍解析PPT课件

Bragg’s law
布拉格公式不但能解释劳厄斑点,而且能用于对晶体 结构的研究。
布拉格父子认为当能量很高的X射线射到晶 体各层面的原子时,原子中的电子将发生强迫 振荡,从而向周围发 射同频率的电磁波, 即产生了电磁波的 散射,而每个原子 则是散射的子波波 源;劳厄斑正是散 射的电磁波的叠加。
1
能量差,即 hK WK WL hK hL
特征X射线的命名方法
• 同样当K空位被M层电子填充时,则产生Kβ辐射。M能级 与K能级之差大于L能级与K能级之差,即一个Kβ光子的 能量大于一个Kα光子的能量; 但因L→K层跃迁的几率 比M→K跃迁几率大,故Kα辐射强度比Kβ辐射强度大五 倍左右。
劳厄斑
X射线 晶体
晶体的三维光栅
劳厄(M.von Laue)提出:晶体可以作为X射线的空 间衍射光栅,即当一束 X射线通过晶体时将发生衍射, 衍射波叠加的结果使射线的强度在某些方向上加强, 在其他方向上减弱。分析在照相底片上得到的衍射花 样,便可确定晶体结构。 这在他的实验中得到了证 实
• 劳厄斑:一箭双雕的实验结果 证实了X射线是电磁波,也证明了晶体排列的规律性
发现的X射线是什么呢?人们初步认为是一种电磁波,于是想通过光栅来观察 它的衍射现象,但实验中并没有看到衍射现象。原因是X射线的波长太短,只 有一埃(1Å)。 1912年德国物理学家劳厄想到了晶体,它和x光的波长相近,是天然的光栅, 去找普朗克老师,但没得到支持,去找正在攻读博士的索末菲,两次实验后终 于做出了X射线的衍射实验。
X射线物相定性分析原理
• 目前已知的晶体物质已有成千上万种。事先在 一定的规范条件下对所有已知的晶体物质进行 X射线衍射,获得一套所有晶体物质的标准X射 线衍射花样图谱,建立成数据库。

《X射线衍射仪XRD》PPT课件

《X射线衍射仪XRD》PPT课件

测角仪的构造
X射线发生器
XRD-6000
X射线发生器是高稳定度的 它是由:X射线管
高压发生器
管压管流稳定电路
各种保护电路等




用 的 X
密封式 最大功率≤3KW
射 线
管 分为
视靶材料的不同而异


于 热 电 子
转靶式
是为获得高强度X射 线而设计的

极 管

功率≥9KW

产生条件
高速电子遇靶突然停止产生X-射线 1.灯丝 产生自由电子 2.高压 加速电子
• 试样产生的衍射线也会发散,同 样在试样到探测器的光路中也设 置防散射光栏SS、梭拉光栏S2和 接收狭缝光栏RS,这样限制后仅 让聚焦照向探测器的衍射线进入 探测器,其余杂散射线均被光栏 遮挡。
单色器
晶体单色器
• 晶体单色器的作用与图示
– 作用:消除衍射花样的背底和Kβ散射
衍射束弯曲晶体单色器
应变
77.9%
α(110)
α (200)
400
200
800
600 应变 55%
400
200
400
应变 35.6%
300
α (211)
200
100
1000 应变 0(1γ11)γ
500
(200)
(2γ20) (31γ1)(γ222)
0
20
40
60
80
100
2θ /degrees
基体为304奥氏体不锈钢, 经过冷轧变形后,以样品厚度 的减少量计算样品的应变分别 为35.6%,55.0%,77.9%。图 中γ为奥氏体相,α为马氏体相, 从XRD的结果可以看出,304 基体没有应变的情况下,奥氏 体的5个衍射峰均存在,并且马 氏体(110)晶面上出现衍射峰; 随着应变量的增加,马氏体的 衍射峰逐渐增多,到应变量为 77.9%时,马氏体在(110)、 (200)、(211)晶面上出现 衍射峰,而奥氏体的衍射峰削 弱,只有(220)晶面的衍射 峰存在。

高分辨XRD测量及分析方法.ppt

高分辨XRD测量及分析方法.ppt

X射线衍射仪
X射线衍射是一种无损的研究材料结构的方法,高分辨X 射线衍射(HRXRD)非常适合研究单晶和外延膜等晶体 取向很好的材料。
样品台 Cu(Kα)源
单色器

探测器
HRXRD基本光路图
XRD图解
扫描模式



Omega-scan Omega-2theta scan Phi-scan Chi-scan
Phi-scan
φ扫描:取与样品表面有一定夹角的晶面衍射,如六方ZnO的表面为(0001), (1011)面与表面的夹角χ为61. 60º,先将样品倾斜61.60º,然后样品绕表 面法线旋转360º,是为φ扫描,可以观察(1011)面衍射的空间分布。
极图
极图:样品从0º -90º 逐步倾斜,每一步倾 斜,做φ扫描,一系 列φ扫描的数据合起 来作图,就可以得到 极图。可以研究特定 的衍射,即固定的θ2θ,在空间两个方位 (φ和χ)上的分布。
Rocking Curve Scan (ω扫描)
ω扫描,也称摇摆,就是探测器固定在2θ位置,样品在θ左右摇摆, 这时候探测器前面不加狭缝,处于开口状态。
Omega-2theta (θ-2θ) 扫描
θ-2θ扫描,也叫联动,就是样品和探测器都在转动,从衍射峰位可以确 定样品的晶格常数,从而确定外延膜样品晶格的应变。这时,探测器前一 般要狭缝。衍射峰的半高宽与薄膜的厚度、组分及应变的不均匀性有关。
六方晶系的(0001)标准极图(c/a=1.863)
探测器样品台cuk单色器hrxrd基本光路图xrd图解扫描模式omega2thetascanchiscanrockingcurvescan扫描扫描也称摇摆就是探测器固定在2位置样品在左右摇摆这时候探测器前面不加狭缝处于开口状态
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• a、相干散射
经典电动力学理论指出,X射线是一种电磁波,当它 通过物质时,在入射束电场的作用下,物质原子中的电子 将被迫围绕其平衡位置振动,同时向四周幅射出与入射X 射线波长相同的散射X射线,称之为经典散射。由于散射 波与入射波的频率或波长相同,位相差恒定,在同一方向 上各散射波符合相干条件,故又称为相干散射。相干散射 是X射线在晶体中衍射的基础
• a、在单一原子面情况
当一束平行的X射线以角投射到一个 原子面上时,其中任意两个原子A、B的散 射波在原子面反射方向上的光程差为:
=CB-AD
=ABcos -ABcos =0 A、B两原子散射波在原子面反射方向上 的光程差为零,说明它们的相位相同,是干 涉加强的方向。由此看来,一个原子面对X 射线的衍射可以在形式上看成为原子面对入 射线的反射。
X射线的反射并不是任意的,只有当、 和d 三者
之间满足布位格方程时才能发生反射。所以把X射 线的这种反射称为选择反射。
• b、产生衍射的极限条件
在晶体中产生衍射的波长是有限度的。在电磁波的宽 阔波长范围里,只有在X射线波长范围内的电磁波才适合 探测晶体结构。这个结论可以从布拉格方程中得出。
• b、多层原子面的反射
由于X射线的波长短,穿透能力强,它不仅能使晶体表面的原子成 为散射波源,而且还能使晶体内部的原子成为散射波源。在这种情况 下,应该把衍射线看成是由许多平行原子面反射的反射波振幅叠加的 结果。干涉加强的条件是晶体中任意相邻两个原子面上的原于散射波
在原子的反射方向上的相位差为2的整数倍,或者光程差等于波长的 整数倍。
• b、非相干散射
当X射线光量子冲击束缚力较小的电子或自由电子时, 产生一种反冲电子,而入射X射线光置于自身则偏离入射 方向(散射角为)。散射X射线光量子的能量固部分转化为 反冲电子的动能而降低波长增大。散射波的位向与入射波 的位相之间不存在固定关及故这种散射波是不相干的,故 称之为非相干散射或称康普顿-吴有训散射。
X射线衍射分析仪
谢金龙
• 一、X射线产生 • 二、X射线与物质的相互作用 • 三、X射线衍射原理 • 四、试验方法及样品制备 • 五、粉末衍射仪的工作方式
• 一、X射线的产生
• X射线是1895年德国物理学家伦琴在研究阴极射线时发现 的。
• X射线是高速运动的荷电粒子(例如电子)在突然减速时产 生的。

对于同一物质,线吸收系数正比于它的密度,为此引
入质量吸收系数m, m= l/。
• 质量吸收系数 很大程度上取决于物质的化学成分和被吸收
的入射x射线波长。
当X射线透过多种元素组成的物质时,X射线的衰减情况 受到组成该物质的所有元素的共同影响,由被照射物质原子本 身的性质决定,而与这些原子间的结合方式无关。多种元素组 成物质的质量吸收系数由下式表示:
hK=hc/KeVK
式发的最
长波长,称为K系特征辐射的激发限
• d、X射线的衰减
X射线穿透过物质时,其强度要衰减。衰减的程度随 所穿过物质厚度的增加按指数规律减弱,即:
I=I0e- lx
式中 I0和I分别为入射X射线强度和穿透过厚度为x的物质
后的X射线强度;l为衰减系数也称线吸收系数。
• c、荧光辐射
当X射线光量子具有足够高的能量时,可以将被照射 物质原子中的内层电子激发出来,使原子处于激发状态, 通过原子中壳层上的电子跃迁辐射出X射线特征谱线。这 种利用X射线激发作用而产生的新特征谱线称为二次特征 辐射也称为荧光辐射。
入射X射线光量子的能量加必须等于或大于特此原子 某一壳层的电子激发出所需要的脱出功。即:
N
m
( m )i wi
i 1
式中 (m)i为第i 种元素的质量吸收系数,wi为各元素的重量百
分比,N表示该物质是由N 种元素组成的。
X射线经过物质时的相互作用
三、X射线衍射原理-布拉格定律
• 1、布拉格方程的导出
布拉格定律是应用起来很方便的一种衍射几 何规律的表达形式。用布拉格定律描述X射线在晶 体中的衍射几何时,是把晶体看作是由许多平行 的原子面堆积而成,把衍射线看作是原子面对入 射线的反射。这也就是说,在X射线照射到的原子 面中所有原子的散射波在原子面反射方向上的相 位是相同的,是干涉加强的方向。
• (b)粒子性:
X射线在空间传播具有粒子性,或者说X射线是由 大量以光速运动的粒子组成的不连续的粒子流,这些粒 子叫光量子,每个光量子具有能量:
E h h c
每个光量子的能量是X射线的最小能量单位。当它 和其他元素的原子或电子交换能量时只能一份一份地以 最小能量单位被原子或电子吸收。
二、X射线与物质相互作用

一束波长为的X射线以角投射到面间距为d的一组平行原子面上。
从中任选两个相邻原子面Pl、P2作原子面的法线与两个原子面相交于A、 B。过A、B绘出代表Pl、P2原子面的入射线和反射线。由图可以看出,
经Pl、P2两个原子面反射的反射波光程差为: =EB+BF=2dsin,干
涉加强的条件为:

2dsin =n
• 上式是X射线在晶体中产生衍射必须满足的基本条件,它反 映了衍射线方向与晶体结构之间的关系。这个关系式首先 由英国物理学家布拉格父子于1912年导出,故称为布拉格 方程。
2、布拉格方程的讨论
• a、选择性反射
在晶体中的衍射实质上是晶体中各原子散射波 X射线之间的干涉结果。只是由于衍射线的方向恰 好相当于原子面对入射线的反射,所以才借用镜 面反射规律来描述X射线的衍射几何。但原子面对
• 高速运动的电子与靶材作用可能存在两种情况: • (a) 电子与原子的核心电场作用 • (b) 电子与核外电子作用
X 射线的波动性与粒子性是X 射线具有的客 观属性
• (a) 波动性:
1913年德国物理学家劳厄(M.V. Laue)等发现X 射线衍射现象,从而证实了X射线本质是一种电磁波, 它与可见光一样,X射线以光速沿直线传播,其电场 强度矢量E和磁场强度矢量H相互垂直,并位于垂直于 X射线传播方向的平面上。通常X射线波长范围为10~ 0.001nm,衍射分析中常用波长在0.05~0.25nm范围 内。
相关文档
最新文档