三角形全等的判定定理教案
三角形全等的判定“边角边”判定定理教案
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解并掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容1. 三角形全等的概念。
2. “边角边”判定定理(SAS)的定义及证明过程。
3. 运用“边角边”判定定理解决实际问题。
三、教学重点与难点1. 教学重点:掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。
2. 教学难点:如何判断两个三角形是否全等,以及如何运用“边角边”判定定理进行证明。
四、教学方法1. 采用讲授法,讲解三角形全等的概念和“边角边”判定定理。
2. 采用案例分析法,分析实际问题,引导学生运用“边角边”判定定理解决问题。
3. 采用小组讨论法,培养学生团队合作精神,提高解决问题的能力。
五、教学过程1. 导入:通过复习三角形全等的概念,引入“边角边”判定定理。
2. 讲解:讲解“边角边”判定定理(SAS)的定义及证明过程,让学生理解并掌握。
3. 案例分析:分析实际问题,引导学生运用“边角边”判定定理解决问题。
4. 小组讨论:让学生分组讨论,运用“边角边”判定定理证明三角形全等。
5. 总结:对本节课的内容进行总结,强调“边角边”判定定理的应用。
6. 作业布置:布置相关练习题,巩固所学知识。
教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在解决问题时的创新意识和逻辑思维能力,为后续教学做好准备。
六、教学评价1. 通过课堂讲解、案例分析和小组讨论,评价学生对“边角边”判定定理(SAS)的理解和掌握程度。
2. 评价学生在解决实际问题时,能否正确运用“边角边”判定定理,以及证明的逻辑性和准确性。
3. 观察学生在小组讨论中的表现,评估其团队合作能力和交流沟通能力。
七、教学拓展1. 引导学生思考其他三角形全等的判定定理,如“角边角”(ASA)、“角角边”(AAS)等,让学生了解并掌握更多判定定理。
三角形全等的判定“边角边”判定定理教案
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的判定方法。
2. 让学生掌握“边角边”(SAS)判定定理,并能运用其判定两个三角形全等。
3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。
二、教学内容1. 三角形全等的概念。
2. “边角边”(SAS)判定定理。
三、教学重点与难点1. 教学重点:三角形全等的概念,SAS判定定理。
2. 教学难点:SAS判定定理在实际问题中的应用。
四、教学方法1. 采用讲授法讲解三角形全等的概念和SAS判定定理。
2. 利用多媒体演示和实物模型辅助教学,增强学生的直观感受。
3. 开展小组讨论和练习,培养学生的合作精神和解决问题的能力。
五、教学过程1. 导入新课:通过复习三角形全等的概念,引入“边角边”判定定理。
2. 讲解三角形全等的概念:三角形全等指的是在平面内,两个三角形的所有对应角度相等,对应边长比例相等。
3. 讲解“边角边”(SAS)判定定理:如果两个三角形的一边和与其相邻的两个角分别与另一个三角形的一边和与其相邻的两个角相等,这两个三角形全等。
4. 演示和练习:利用多媒体演示和实物模型,让学生直观地理解SAS判定定理。
让学生进行一些练习题,巩固所学知识。
5. 小组讨论:让学生分组讨论如何运用SAS判定定理解决实际问题,并分享讨论成果。
6. 总结与拓展:对本节课的内容进行总结,强调SAS判定定理在三角形全等问题中的应用。
提出一些拓展问题,激发学生的学习兴趣。
7. 布置作业:布置一些有关三角形全等和SAS判定定理的练习题,巩固所学知识。
六、教学评价1. 通过课堂讲解、练习和小组讨论,评价学生对三角形全等概念和SAS判定定理的理解程度。
2. 观察学生在练习题中的解题思路和解答过程,评价其运用SAS判定定理的能力。
3. 收集学生的讨论成果,评价其合作精神和解决问题的能力。
七、教学反思1. 反思本节课的教学内容安排是否合适,教学方法是否得当。
三角形全等的判定“边角边”判定定理教案
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的条件。
2. 引导学生学习“边角边”判定定理,并能运用该定理判断三角形全等。
3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。
二、教学内容1. 三角形全等的概念。
2. “边角边”判定定理的内容及运用。
三、教学重点与难点1. 教学重点:三角形全等的概念,边角边判定定理的运用。
2. 教学难点:理解并运用边角边判定定理判断三角形全等。
四、教学方法1. 采用问题驱动法,引导学生探究三角形全等的条件。
2. 运用案例分析法,让学生通过具体案例理解边角边判定定理。
3. 采用小组讨论法,培养学生的合作交流能力。
五、教学过程1. 导入新课:引导学生回顾三角形的基本概念,提问:如何判断两个三角形完全相同呢?2. 探究三角形全等的条件:让学生通过观察、操作,找出两个三角形全等的条件。
引导学生发现,当两个三角形的两边和夹角分别相等时,这两个三角形全等。
3. 引入“边角边”判定定理:讲解边角边判定定理的内容,让学生理解并掌握该定理。
4. 案例分析:展示一组三角形案例,让学生运用边角边判定定理判断三角形全等。
5. 练习巩固:设计一些练习题,让学生独立完成,检验对边角边判定定理的掌握程度。
6. 课堂小结:回顾本节课所学内容,强调三角形全等的条件和边角边判定定理的运用。
7. 作业布置:布置一些有关三角形全等判定的练习题,让学生课后巩固。
六、教学延伸1. 引导学生思考:除了边角边判定定理,还有哪些判定三角形全等的方法?2. 介绍其他判定三角形全等的方法,如ASA(角边角)、AAS(角角边)等。
七、课堂互动1. 组织学生进行小组讨论,探讨如何运用不同的判定方法判断三角形全等。
2. 选取一些判断题,让学生判断题目给出的三角形是否全等,并解释判断依据。
八、课堂总结1. 回顾本节课所学内容,总结三角形全等的判定方法。
2. 强调在实际应用中,要根据题目给出的条件选择合适的判定方法。
三角形全等的判定SAS教案
三角形全等的判定SAS教案一、教学目标:1. 让学生理解并掌握三角形全等的判定定理SAS (Side-Angle-Side,即两边及夹角相等)。
2. 培养学生运用SAS定理证明三角形全等的能力。
3. 引导学生通过观察、思考、交流、总结,提高分析问题和解决问题的能力。
二、教学内容:1. 三角形全等的判定定理SAS。
2. SAS定理的应用和证明。
三、教学重点与难点:1. 教学重点:三角形全等的判定定理SAS,SAS定理的应用。
2. 教学难点:SAS定理的证明,三角形全等的判断。
四、教学方法:1. 采用问题驱动法,引导学生探究三角形全等的判定方法。
2. 运用案例分析法,让学生通过观察、思考、交流、总结,掌握SAS 定理。
3. 采用实践操作法,让学生动手画图,提高运用SAS定理证明三角形全等的能力。
五、教学过程:1. 导入:通过复习三角形全等的定义和已学过的全等判定方法(SSS、AAA),引出本节课的内容——三角形全等的判定定理SAS。
2. 新课讲解:(1)介绍SAS定理的定义:如果两个三角形的一边和夹角分别相等,这两个三角形全等。
(2)讲解SAS定理的证明过程。
(3)通过PPT展示典型案例,让学生观察、思考、交流,总结SAS 定理的应用。
3. 课堂练习:(1)让学生独立完成练习题,运用SAS定理判断三角形全等。
(2)教师选取部分学生的作业进行点评,讲解错误原因,指出需要注意的问题。
4. 拓展与应用:(1)引导学生思考:除了SAS定理,还有哪些方法可以判断三角形全等?(2)让学生尝试运用其他全等判定方法(如SSS、AAA)解决三角形全等问题。
5. 总结:对本节课的内容进行总结,强调SAS定理在三角形全等判断中的应用。
6. 作业布置:布置一些有关三角形全等的练习题,巩固所学知识。
六、教学案例分析1. 案例一:已知三角形ABC和三角形DEF,AB = DE,AC = DF,∠BAC = ∠EDF,判断三角形ABC是否全等于三角形DEF。
数学全等三角形教案8篇
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
三角形全等的判定“边角边”判定定理教案
三角形全等的判定-“边角边”判定定理教案一、教学目标:1. 让学生理解并掌握三角形全等的概念。
2. 让学生了解并掌握“边角边”判定定理。
3. 培养学生运用“边角边”判定定理证明三角形全等的能力。
二、教学内容:1. 三角形全等的定义。
2. “边角边”判定定理的内容及其证明。
3. “边角边”判定定理在实际问题中的应用。
三、教学重点:1. 三角形全等的概念。
2. “边角边”判定定理的证明。
四、教学难点:1. 三角形全等的证明。
2. “边角边”判定定理在实际问题中的应用。
五、教学方法:1. 采用讲授法讲解三角形全等的定义和“边角边”判定定理。
2. 利用图形演示法展示三角形全等的证明过程。
3. 运用练习法巩固学生对“边角边”判定定理的理解和应用。
4. 采用小组讨论法培养学生的合作意识和解决问题的能力。
教案一、导入(5分钟)1. 复习三角形全等的概念。
2. 提问:我们已经学习了三角形全等的哪些判定方法?二、新课讲解(15分钟)1. 讲解三角形全等的定义。
2. 引入“边角边”判定定理,讲解其内容及其证明过程。
3. 通过图形演示,让学生直观地理解“边角边”判定定理。
三、实例分析(10分钟)1. 给出实例,让学生运用“边角边”判定定理证明三角形全等。
2. 引导学生分析实例中的关键步骤,巩固对“边角边”判定定理的理解。
四、课堂练习(10分钟)1. 布置练习题,让学生独立完成。
2. 选取部分学生的作业进行点评,讲解错误原因,纠正错误。
五、课堂小结(5分钟)1. 总结本节课所学内容,强调三角形全等的判定方法。
2. 提醒学生在实际问题中运用“边角边”判定定理时,要注意分析题目条件。
六、课后作业(课后自主完成)1. 复习本节课所学内容,整理笔记。
2. 完成课后练习题,巩固对“边角边”判定定理的理解和应用。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角形全等概念和“边角边”判定定理的理解程度。
2. 观察学生在实例分析和练习中的表现,评估其运用“边角边”判定定理解决问题的能力。
三角形全等的判定SAS教案
三角形全等的判定SAS教案一、教学目标:1. 让学生理解三角形全等的概念,掌握三角形全等的条件。
2. 引导学生学会使用SAS(边-角-边)定理判定两个三角形全等。
3. 培养学生的观察能力、操作能力和推理能力。
二、教学内容:1. 三角形全等的定义。
2. SAS定理的内容及其证明。
3. SAS定理在实际问题中的应用。
三、教学重点与难点:1. 教学重点:三角形全等的概念,SAS定理的判定方法。
2. 教学难点:SAS定理的证明,以及在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解三角形全等的定义和SAS定理。
2. 采用演示法,展示三角形全等的判定过程。
3. 采用练习法,让学生通过实际操作,巩固所学知识。
五、教学过程:1. 导入新课:通过复习三角形相似的概念,引出三角形全等的概念。
2. 讲解三角形全等的定义,让学生理解全等的含义。
3. 讲解SAS定理的内容,让学生掌握判定两个三角形全等的条件。
4. 进行演示,展示三角形全等的判定过程,让学生直观地理解SAS 定理。
5. 布置练习题,让学生运用SAS定理判断两个三角形是否全等。
6. 总结本节课所学内容,强调三角形全等的重要性。
7. 布置课后作业,巩固所学知识。
六、教学评价:1. 通过课堂提问,检查学生对三角形全等概念的理解程度。
2. 通过课堂练习,评估学生运用SAS定理判断三角形全等的能力。
3. 通过课后作业,检验学生对课堂所学知识的巩固情况。
七、教学反馈:1. 课堂提问环节,学生对三角形全等概念的理解较为扎实,但部分学生对SAS定理的证明过程尚有疑惑。
2. 课堂练习环节,大部分学生能够正确运用SAS定理判断三角形全等,但少数学生在实际应用中仍存在一定的困难。
3. 课后作业反馈,大部分学生能够熟练运用SAS定理解决相关问题,但仍有部分学生在解题过程中出现错误,需加强练习和指导。
八、教学改进:1. 针对学生对SAS定理证明过程的疑惑,可通过举例说明和课后辅导,帮助学生理解证明的依据和方法。
全等三角形的判定ASA和AAS教案
全等三角形的判定ASA和AAS教案教案:全等三角形的判定(ASA和AAS)一、教学目标:1.知识与能力目标:(1)通过观察、发现和归纳,了解和掌握ASA和AAS全等定理;(2)熟练掌握ASA和AAS全等定理的应用,能够判定两个三角形是否全等。
2.过程与方法目标:(1)培养学生的观察、发现和分析问题的能力;(2)引导学生进行合作、探究和交流,培养学生的合作意识和学科交流能力。
二、教学重点:1.ASA和AAS全等定理的理解和掌握;2.ASA和AAS全等定理的应用,判定两个三角形是否全等。
三、教学过程:1.导入:(1)让学生回顾什么是全等三角形,以及如何判定两个三角形是否全等;(2)通过两个相同的三角形,引出全等定理是什么。
2.探索:(2)引导学生讨论、发现,如果两个三角形的一组对边相等并且夹角也相等,那么这两个三角形就是全等的;(3)引出ASA全等定理:如果两个三角形的两个对边和夹角分别相等,那么这两个三角形就是全等的;3.拓展:(1)让学生自己寻找一个例子,来应用ASA全等定理判断两个三角形是否全等;(2)让学生进行交流、展示,分析判断是否正确。
4.归纳:(1)让学生讨论和总结ASA全等定理的判断条件;(2)通过学生的总结,引出AAS全等定理:如果两个三角形的两个角和一边分别相等,那么这两个三角形就是全等的;5.深化:(1)让学生自己寻找一个例子,来应用AAS全等定理判断两个三角形是否全等;(2)让学生进行交流、展示,分析判断是否正确。
6.拓展与巩固:(1)让学生在教师的指导下,完成一些多种方法判定全等的练习题;(2)通过练习题的讲解和学生的互相交流,加深对ASA和AAS全等定理的理解和应用能力。
7.小结与拓展:(1)让学生总结归纳ASA和AAS全等定理的判定条件;(2)引导学生思考,是否只有ASA和AAS这两种情况可以判定三角形全等,还有没有其他的情况可以判定三角形全等。
四、教学评价:1.通过学生的课堂表现、问题回答和练习题的完成情况,评价学生对ASA和AAS全等定理的理解和掌握程度;2.评价学生在合作、探究和交流中的表现和能力。
三角形全等的判定教案 三角形全等的判定教学设计
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
三角形全等的判定教案
三角形全等的判定教案教学目标1。
通过实际操作理解“学习三角形全等的四种判定方法”的必要性。
2。
比较熟练地掌握应用边角边公理时寻找非已知条件的方法和证明的分析法,初步培养学生的逻辑推理能力。
3。
初步掌握“利用三角形全等来证明线段相等或角相等或直线的平行、垂直关系等”的方法。
4。
掌握证明三角形全等问题的规范书写格式。
教学重点和难点应用三角形的边角边公理证明问题的分析方法和书写格式。
教学过程设计一、实例演示,发现公理1.教师出示几对三角形模板,让学生观察有几对全等三角形,并根据所学过的全等三角形的知识动手操作,加以验证,同时写出全等三角形的数学表达式。
2.在此过程当中应启发学生注意以下几点:(1)可用移动三角形使其重合的方法验证图3-49中的三对三角形分别全等,并根据图中已知的三对对应元素分别相等的条件,可以证明结论成立。
如图3-49(c)中,由AB=AC=3cm,可将△ABC绕A点转到B与C重合;由于∠BAD=∠CAE=120°,保证AD能与AE重合;由AD=AE=5cm,可得到D与E重合。
因此△BAD可与△CAE重合,说明△BAD≌△CAE。
(2)每次判断全等,若都根据定义检查是否重合是不便操作的,需要寻找更实用的判断方法——用全等三角形的性质来判定。
(3)由以上过程可以说明,判定两个三角形全等,不必判断三条边、三个角共六对对应元素均相等,而是可以简化到特定的三个条件,引导学生归纳出:有两边和它们的夹角对应相等的两个三角形全等。
3。
画图加以巩固。
教师照课本上所叙述的过程带领学生分析画图步骤并画出图形,理解“已知两边及夹角画三角形”的方法,并加深对结论的印象。
二、提出公理1。
板书边角边公理,指出它可简记为“边角边”或“SAS”,说明记号“SAS’的含义.2.强调以下两点:(1)使用条件:三角形的两边及夹角分别对应相等.(2)使用时记号“SAS”和条件都按边、夹角、边的顺序排列,并将对应顶点的字母顺序写在对应位置上.3.板书定理证明应使用标准图形、文字及数学表达式,正确书写证明过程.如图3-50,在△ABC与△A’B’C’中,(指明范围)三、应用举例、变式练习1.充分发挥一道例题的作用,将条件、结论加以变化,进行变式练习,例1已知:如图3-51,AB=CB,∠ABD=∠CBD.求证:△ABD≌△CBD.分析:将已知条件与边角边公理对比可以发现,只需再有一组对应边相等即可,这可由公共边相等 BD=BD得到.说明:(1)证明全等缺条件时,从图形本身挖掘隐含条件,如公共边相等、公共角相等、对顶角相等,等等.(2)学习从结论出发分析证明思路的方法(分析法).分析:△ABD≌△CBD因此只能在两个等角分别所在的三角形中寻找与AB,CB夹两已知角的公共边BD.(3)可将此题做条种变式练习:练习1(改变结论)如图 3-51,已知 AB=CB,∠ABD=∠CBD。
全等三角形的判定教案
全等三角形的判定教案以下是一份关于全等三角形判定的教学教案:一、教学目标1. 让学生理解并掌握全等三角形的判定方法。
2. 通过实际操作和推理,培养学生的逻辑思维能力和空间想象力。
3. 激发学生对几何学习的兴趣,提高解决问题的能力。
二、教学重难点重点:全等三角形的几种判定方法。
难点:灵活运用判定方法证明三角形全等。
三、教学准备三角板、教学课件四、教学过程师:同学们,咱们今天来学习全等三角形的判定。
那大家想想,什么样的三角形是全等三角形呀?生:能够完全重合的三角形。
师:对啦,那怎么判断两个三角形全等呢?这就是咱们今天要重点研究的啦。
(展示课件上两个三角形)师:大家看看这两个三角形,觉得它们全等吗?生:光看不太确定。
师:那咱们就来找找方法。
首先啊,有一种方法叫边边边,就是如果三条边都相等,那这两个三角形就全等。
大家理解不?生:嗯,有点明白。
师:那老师来画两个三角形,三条边都相等,你们看看它们是不是全等。
(在黑板上画图)师:现在能看出来全等了吧?生:能。
师:这就是边边边判定方法。
那还有其他方法哦,比如边角边。
谁来说说边角边是什么意思呀?生:就是两条边和它们的夹角相等。
师:真不错!那咱们再来看个例子。
(展示课件例子)师:同学们自己来判断一下这个是不是符合边角边。
(学生讨论)师:谁来说说?生:符合,两条边和夹角都相等。
师:非常好!那还有角边角、角角边这些方法,大家自己去探索一下哦。
接下来咱们做几道练习题巩固一下。
五、教学反思在教学过程中,通过师生互动和实例分析,学生较好地掌握了全等三角形的判定方法。
但部分学生在理解和运用上还存在一些困难,需要在后续教学中加强练习和辅导。
要多鼓励学生自己思考和探索,提高他们的学习积极性和主动性。
三角形全等的判定“边角边”判定定理教案
三角形全等的判定——“边角边”判定定理教案一、教学目标:1. 让学生理解并掌握三角形全等的概念。
2. 让学生了解并掌握“边角边”判定定理及其证明过程。
3. 培养学生运用“边角边”判定定理解决实际问题的能力。
二、教学内容:1. 三角形全等的定义。
2. “边角边”判定定理的表述。
3. “边角边”判定定理的证明过程。
4. 运用“边角边”判定定理解决实际问题。
三、教学重点与难点:1. 教学重点:“边角边”判定定理的表述及证明过程。
2. 教学难点:运用“边角边”判定定理解决实际问题。
四、教学方法:1. 采用讲授法,讲解三角形全等的定义及“边角边”判定定理。
2. 采用演示法,展示“边角边”判定定理的证明过程。
3. 采用练习法,让学生通过实际问题巩固“边角边”判定定理的应用。
五、教学过程:1. 导入:复习三角形全等的定义,引导学生思考如何判定两个三角形全等。
2. 新课讲解:讲解“边角边”判定定理的表述及证明过程。
3. 案例分析:分析几个实际问题,引导学生运用“边角边”判定定理解决问题。
4. 课堂练习:布置几道练习题,让学生独立完成,巩固“边角边”判定定理的应用。
5. 总结与拓展:总结本节课的主要内容,布置课后作业,鼓励学生深入研究三角形全等的判定方法。
六、课后作业:1. 复习三角形全等的定义及“边角边”判定定理。
2. 完成课后练习题,运用“边角边”判定定理解决实际问题。
3. 探索其他三角形全等的判定方法,了解其证明过程。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角形全等概念和“边角边”判定定理的理解和掌握程度。
2. 观察学生在解决问题时的思路和方法,评估其运用“边角边”判定定理的能力。
3. 鼓励学生参与课堂讨论,评价其团队合作和沟通能力。
七、教学反思:1. 在教学过程中,关注学生的反应,根据实际情况调整教学内容和教学方法。
2. 针对学生的难点,进行重点讲解和辅导,帮助学生克服困难。
3. 定期检查学生的学习进度,及时发现和解决问题。
初中数学初二数学上册《直角三角形全等的判定》教案、教学设计
-创设轻松愉快的学习氛围,鼓励学生积极参与,勇于提问,敢于表达。
-建立良好的班级纪律,保证课堂教学的有序进行。
-利用学校教学资源,如数学实验室、多媒体教室等,为学生提供丰富的学习资源。
四、教学内容与过程
(一)导入新课
在导入环节,我将采用生活实例引发学生对直角三角形全等判定方法的思考。首先,我会向学生展示一张由两个直角三角形组成的楼梯图片,并提出问题:“如何判断这两个直角三角形是否全等?”让学生在观察图片的基础上,尝试回答问题。接着,我会让学生拿出提前准备好的两个直角三角形纸片,进行实际操作,观察、思考如何判断它们是否全等。
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.复习全等三角形的判定方法,引导学生回顾SSS、SAS、ASA、AAS等判定方法。
2.引导学生观察直角三角形的特殊性,即有一个角是直角,从而得出直角三角形的全等判定方法。
3.逐一讲解直角三角形全等的五种判定方法(SSS、SAS、ASA、AAS、HL),并结合实例进行说明。
4.教学步骤:
-导入:通过生活中的直角三角形实例,引发学生思考,激发学习兴趣。
-探究:引导学生复习全等三角形的判定方法,自主探究直角三角形全等的判定方法。
-讲解:结合实例,详细讲解五种判定方法的适用条件,帮助学生理解和记忆。
-应用:设计不同难度的练习题,让学生在实际操作中巩固所学知识。
-总结:通过师生共同总结,梳理本节课的知识点,形成知识网络。
此外,初二学生的抽象思维能力逐渐增强,他们对于直观、具体的实例更容易产生兴趣。因此,在本章节的教学中,教师应充分关注学生的认知特点,结合实际情境,激发学生的学习兴趣,帮助他们建立清晰的知识体系。
同时,初二学生正处于青春期,个体差异较大,学习态度、学习习惯等方面存在一定差异。教师需针对不同学生的特点,因材施教,使每个学生都能在原有基础上得到提高,从而提高整体教学效果。在此基础上,注重培养学生的团队合作精神,让学生在交流与合作中共同进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教
案
课题三角形全等的条件(SSS)
专业
指导教师
班级
学号
§13.2.5三角形全等的条件(SSS)
一.教学目标
知识目标:掌握“边边边”条件的内容,并能结合已学过的三角形全等的判定定理来判定两个三角形是否全等.
能力目标:在探索三角形全等的判定条件的过程中,培养学生动手画图和观察识图的能力,及类比推理的能力.
情感目标:通过实践,在探索中体验发现数学规律的乐趣,以及获得成功的愉悦感.
1
二.教学重难点
重点:“SSS”判定定理并灵活运用.
难点:尺规作图画全等三角形;及恰当地选择三角形全等的判定定理.
三.教学分析
教学方法:探究式教学法为主、讲练结合法为辅.
教学手段:粉笔、木条、直尺、多媒体.
课型:新授课.
四.教学过程
(一) 复习引入,自然过渡.
问题1:目前我们已经学习了几种三角形全等的判定方法?(找同学回答,在同学回答
问题的过程时,写下他们回答的三个判定定理SAS、ASA、AAS)
问题2:两个三角形具有哪些性质?(找同学回答)
思考1:如果两个三角形只有对应角相等,那么这两个三角形一定全等吗?(在学生回答后,给出图形加以说明)
思考2:如果两个三角形只有对应边相等,那么这两个三角形一定全等吗?(学生猜想结果)
(二)探索发现
1.作出猜想
根据同学的回答,做出猜想——三边分别对应相等的两个三角形一定全等.
2.证明猜想
将班集体分为3个小组,第一组的同学画一个边长为2cm、9cm、12cm的三角形;第二组的同学画一个边长为6cm、8cm、10cm的三角形;第三组的同学画一个边长为7cm、11cm、17cm的三角形.每位同学将自己画好的三角形用剪刀剪下来.(每一组叫两个同学展示他们的图形,同学们可以发现他们是重合的,说明这两个三角形是全等的),此时,证明同学们的猜想正确.
3.得出结论
带领学生总结出结论:三边对应相等的两个三角形一定全等.(SSS)
(三)例题讲解
例1 如下图,在四边形ABCD中,已知,.
AD CB AB CD
==求证ABC CDA
∆≅∆.
证明:在ABC
∆与CDA
∆中,
()
()
()
CB AD
AB CD
AC CA
=
⎧
⎪
=
⎨
⎪=
⎩
已知
已知
公共边
2
3 ).(SSS CDA ABC ∆≅∆∴
(四)课堂练习
练习1 如下图,已知,,,AE CF EB FD AC BD ===证明AEB CFD ∆≅∆. 证明:AC BD =,
AC CB BD CB ∴+=+, AB CD ∴=.
AEB CFD ∆∆在和中,
()EB=FD AB CD AE CF =⎧⎪
=⎨⎪⎩
已知(已知)
).(SSS CFD AEB ∆≅∆∴
(五)课堂小结
(六)作业布置
1. 教科书73页练习1写在书上,练习2写在作业本上.
2. 自己总结归纳所有证明三角形全等的方法.
五.板书设计
§13.2三角形全等的条件
复习巩固板书 定理
例1 练习1 总结 作业
课件展示。