高中化学 第八章电解质溶液及电化学系统
化学电化学反应与电解质溶液

化学电化学反应与电解质溶液化学电化学反应是指在外加电压的作用下,电能转化为化学能的过程。
这种反应需要在电解质溶液中进行,电解质溶液由带电离子的溶质和溶剂组成。
在化学电化学反应中,电解质溶液将起到至关重要的作用,它不仅提供了导电的媒介,还参与了电极反应的过程。
1. 电解质溶液的分类电解质溶液按照离子能不能导电可以分为强电解质溶液和弱电解质溶液。
强电解质溶液中的溶质完全电离,形成大量的离子,能够有效地导电。
而弱电解质溶液中的溶质只有一部分电离,形成的离子相对较少,导电性较差。
根据电解质的性质,我们可以选择适当的溶剂来制备电解质溶液。
2. 电化学反应的基本原理在电解质溶液中,电极反应发生在电解质溶液与电极之间的界面上。
根据电极的不同,电解质溶液可以发生氧化反应和还原反应。
在氧化反应中,溶液中的离子失去电子,形成带正电荷的离子;而在还原反应中,溶液中的离子获得电子,形成带负电荷的离子。
这些离子在电解质溶液中的移动起到了传递电荷的作用。
3. 电解质溶液的电导性电解质溶液的电导性取决于其中的离子浓度和离子迁移率。
离子浓度越高,电导性越好;离子迁移率越大,电导性也越好。
电解质溶液的电导性会随着溶液浓度的变化而发生改变,这也是我们平时所说的稀溶液和浓溶液的概念。
4. 电解质溶液的pH值电解质溶液的pH值是衡量其中酸碱性质的指标。
pH值是一个负对数值,它的大小反映了溶液中氢离子的浓度,从而表征了电解质溶液的酸碱性质。
在电解质溶液中,酸性溶液的pH值小于7,碱性溶液的pH值大于7,而中性溶液的pH值等于7。
5. 电解质溶液的应用电解质溶液在生活和工业中有着广泛的应用。
例如,电解质溶液可用于蓄电池中,通过化学电化学反应将电能转化为化学能,实现能量的储存和释放。
此外,电解质溶液还可以用于电镀、电泳等工艺中,将金属离子沉积在物体表面,起到防腐和装饰的作用。
总结:化学电化学反应与电解质溶液密切相关,电解质溶液为电化学反应提供了重要的条件和参与物质。
电解质溶液理论

6、离子独立运动定律 、
德国科学家Kohlrausch 根据大量的实验数据,发现了一 个规律:在无限稀释溶液中,每种离子独立移动,不受其它 离子影响,电解质的无限稀释摩尔电导率可认为是两种离子 无限稀释摩尔电导率之和:
Λ∞ ( M v + X v − ) = ν + Λ∞ ( M Z + ) + ν − Λ∞ ( X Z − ) m m m
电解池导电机理示意图: 电解池导电机理示意图:
阴 极
_
阳 极
+
阴极: 氧化态 + ze = 还原态 阳极: 还原态 = 氧化态 + ze
−
−
电能 化学能
2、法拉第定律
(Faraday’s Law) ’s
a. 在电极界面上发生化学变化物质的质量与通入的电 量成正比。 b. 通电于若干个电解池串联的线路中,当所取的基本 粒子的荷电数相同时,在各个电极上发生反应的物质, 其物质的量相同,析出物质的质量与其摩尔质量成正比。
如果溶液中有多种电解质,共有 i 种离子,则:
∑t
i
=
∑t
+
+
∑t
−
=1
4、离子迁移数的测定
希托夫(Hittorf) 法 (1)Hittorf迁移管中装入电解质 溶液,接通过直流电解装置。 (2)正、负离子定向迁移,电极上 发生反应。电极附近溶液浓度发生变 化,中部基本不变。
(3)分析阴极部(或阳极部)溶液, 根据输入的电量和极区浓度的变化, 计算离子的迁移数。
a.用NaOH标准溶液滴定HCl b.用NaOH滴定HAc
四、电解质溶液的热力学性质
电解质的平均离子活度因子及德拜电解质的平均离子活度因子及德拜-休克尔极限公式
物理化学08章_电解质溶液

1、
当通电结束,阴、阳两极部溶液浓度相同, 但比原溶液各少了2mol,而中部溶液浓度不变。
2、 3
通电结束,阳极部正、负离子各少了3mol, 阴极部只各少了1mol,而中部溶液浓度仍保持不变。
3、离子的电迁移现象结果
1 向阴、阳两极迁移的正、负离子物质的量总和恰好 等 于通入溶液的总电量
1Au3 e 1Au
3
3
1 H O e 1O +H
22
42
(3) n(O2) 14n(13Au)
= 11.20 g
4.57103 mol
4 197.0 gmol1/3
Au3 3e Au
3 H O 3e 3O +H
22
42
(3) n(O2) 34n(Au) = 3 1.20 g 4.57103 mol 4 197.0 gmol1
( 2 CuSO4 )
7.17 103 S m2 mol1
二、电导的测定
R1 Rx R3 R4
若已知 l、A、c, 则可求得 、m
电导池常数
K cell
l A
1
R
R
25℃时在一电导池盛以c=0.02mol.dm-3的KCl溶液,测得其电阻为82.4Ω,若在同 一电导池中盛以c=0.0025 mol.dm-3的K2SO4 溶液,测得其电阻为326.0 Ω。已知 25℃0.02mol.dm-3的KCl溶液的电导率为0.2768s.m-1,试求:
2 4 c( K SO ) 2.799 10 s.m .mol
24
三、电导率和摩尔电导率与浓度的关系
强电解质:
浓度增加,电导率升高;
但达一最高点下降
弱电解质: 溶液电导率随浓度变化 不显著
高中化学电化知识点总结

高中化学电化知识点总结电化学是研究在电解质溶液中的电化学现象,以及应用电化学原理和技术进行化学反应和物质分析的学科。
在高中化学课程中,电化学理论是重要的知识点之一,主要包括电解质溶液的导电、电解、原电池、电解池和电化学分析等内容。
下面将从这些方面对电化学知识进行总结。
1. 电解质溶液的导电电解质溶液是由离子组成的,离子在溶液中可以导电。
在电解质溶液中,正离子向电极迁移的速度与负离子向电极迁移的速度相等,保证了电解质溶液中的电中性。
电解质溶液的导电能力受溶液浓度、温度和溶质种类等因素的影响。
浓度越高、温度越高、溶质种类越多的电解质溶液导电能力越强。
对于强电解质溶液而言,其导电能力受浓度影响较大;而对于弱电解质溶液来说,其导电能力受溶质种类和温度影响较大。
2. 电解电解是将电能转化成化学能的过程。
在电解过程中,电解质溶液中的离子会发生氧化还原反应,形成新的物质或原电极上的物质释放出或吸收电子。
电解的条件包括电解质的种类、电解质浓度、电极材料、电解温度等。
电解质溶液中的阳离子被称为阴极的极化物质,而阴离子被称为阳极的极化物质。
电解可以用来制备金属、非金属元素、氢氧化物和酸等。
3. 原电池原电池是将化学能转化成电能的装置,也称为化学电池。
原电池由阳极、阴极和电解液三个部分构成。
在原电池中,化学能转化成电能的过程受三个因素影响:阳极和阴极的化学性质、电解液的种类和温度。
原电池的电动势由阳极和阴极的标准电极电动势决定,与浓度无关,但与温度有关。
原电池的电动势可以通过特定的振铃法、电流法、电位法等方法进行测定。
4. 电解池电解池是将化学能转化成电能的装置,由外电源、电极和电解液三个部分构成。
在电解池中,外电源通过电极向阳离子注入电子,从而在负极处发生氧化反应,而在阳极处发生还原反应。
电解池的工作方式可以采用两种方法,一种是电池操作模式,另一种是电解操作模式。
电解池主要用来生产金属、非金属元素、有机物、氯碱等化学品。
电化学与电解质溶液

电化学与电解质溶液电化学是研究电荷在化学反应中的转移和利用的科学分支,而电解质溶液是电化学研究中的一个重要对象。
本文将从电化学的基本原理开始介绍,深入探讨电解质溶液的相关概念、性质以及应用。
一、电化学基本原理电化学研究的基础是电荷的转移和利用。
电荷通过离子在电解质溶液中传递,从一个电极转移到另一个电极,形成电流。
电池、电解池等电化学系统中的化学反应都是通过电荷的转移来实现的。
电化学反应中,正电荷的转移称为氧化,负电荷的转移称为还原。
氧化还原反应是电化学反应的核心。
当氧化反应和还原反应同时发生并互相制约时,就形成了一个可持续的电池系统。
二、电解质溶液的概念与性质电解质溶液是由可溶于水或其他溶剂的电解质物质所组成的溶液。
电解质是在溶液中能够形成离子的物质,可以分为强电解质和弱电解质两种。
强电解质在溶液中完全或几乎完全离解成离子,具有较高的电导率。
常见的强电解质有盐酸、硫酸、氢氧化钠等。
弱电解质在溶液中只部分离解成离子,电导率较低。
例如,乙酸、醋酸等。
电解质溶液的导电性与其中的离子浓度有关。
离子浓度越高,导电性越好。
在电解质溶液中,离子能够在外加电场的作用下自由移动,形成离子运动导致的电流。
三、电解质溶液的应用1. 电池电池是电解质溶液的重要应用之一。
电池是一种将化学能转化为电能的装置。
一般由正极、负极和电解质溶液构成。
电解质溶液中的离子流动使得电荷在电池中产生电流,从而实现电能的转换。
目前使用最广泛的一种电池是锂离子电池。
锂离子电池利用锂离子在正负极之间的转移来实现电荷的传递。
它具有高能量密度、长寿命等优点,广泛应用于移动电子设备、电动车辆等领域。
2. 电解过程电解质溶液的电解过程是电化学研究中的另一个重要应用。
在电解过程中,外加电流通过电解质溶液,导致其中的化学反应发生。
例如,电解水可以将水分解为氢和氧气。
在这个过程中,正极释放氢离子,负极释放氧离子,从而导致水的分解反应。
电解过程在化学合成、电镀、电解冶金等领域都有广泛的应用。
物理化学:第08章_电解质溶液

anion anode
返回
2020/11/12
1.电解质溶液的导电机理
在电解池中
阳极上发生氧化作用
-
- 电源 +
e-
+
e-
2Cl aq Cl2(g) 2e
阴
阳
阴极上发生还原作用
极
极
CuCl2
Cu2 aq 2e Cu(s)
电解池
上一内容 下一内容
回主目录
例题
解: 1 Au3+ e = 1 Au
3
3
OH
1 4
O2
1 2
H2O e
(1) Q zF 196500197.01.g20mgol-1 /3 Cmol1
= 1763 C
(2)
t
Q I
1763 C 0.025 A
7.05104
s
(3)
m(O2)
1 4
M
(O2)
=197.01g.20mgol1
返回
2020/11/12
1.电解质溶液的导电机理
在原电池中
阳离子移向阴极
负
负载电阻
正
极
e-
Zn
极
Cu e-
e-
阳 Zn2+ Cu2+ 阴
极 SO24-
SO24- 极
ZnSO4溶液 CuSO4溶液
在阴极上发生还原的是
Cu2 aq 2e Cu(s)
阴离子迁向阳极 在阳极上发生氧化的是
Danill电池
上一内容 下一内容 回主目录
返回
2020/11/12
2. 法拉第定律
人们把在数值上等于1 mol元电荷的电荷量称 为Faraday常数,用F表示。
电化学系统组成

电化学系统组成
电化学系统是由电解质溶液、电极和外部电源组成的。
它是一种将化学能转化为电能或将电能转化为化学能的系统。
电化学系统广泛应用于电池、电解、电镀等领域。
电解质溶液:电解质是指在溶液中可以形成离子的物质。
电解质溶液是指将电解质物质溶解在水或其他溶剂中形成的溶液。
电解质溶液中的离子在电场的作用下可以运动和发生化学反应。
常见的电解质有酸、碱和盐等。
其中,酸和碱是通过水溶液中的水解反应形成的离子,而盐则是由金属和非金属元素组成的离子化合物。
电极:电极是电化学系统中发生氧化还原反应的场所。
它可以分为两种:阳极和阴极。
阳极是氧化反应发生的位置,它由金属或其他导电材料制成。
在氧化反应中,阳极释放出电子给外部电路,同时失去离子,使得阳极处于正离子空穴状态。
阴极则是还原反应发生的位置,它通常由金属或半导体材料制成。
在还原反应中,阴极接收来自外部电路的电子,在获得电子的同时,还原成新的物质,使得阴极处于负离子空穴状态。
外部电源:外部电源是为电化学反应提供能源的设备。
它可以是直流电源或交流电源。
在电化学系统中,外部电源可以通过施加电势或电流的方式,引起电极上的氧化还原反应,从而改变物质的化学状态。
电化学系统组成简单,但是在使用过程中需要严格控制操作条件,才能得到良好的反应效果。
因为反应速率、位置以及方向均受到操作条件的影响。
在电化学过程中,需要准确测量氧化还原电位、电流、电荷等参数,以保证反应的可控性和稳定性。
高三化学电化学反应与电解质溶液的计算

高三化学电化学反应与电解质溶液的计算电化学反应是研究化学反应中发生的电子转移和离子传递的一种方法。
电解质溶液则是指在溶液中形成离子的化合物。
本文将介绍电化学反应的基本原理以及电解质溶液的计算方法。
一、电化学反应的基本原理电化学反应发生在电解池中,电解池由两个电极(阴极和阳极)和电解质溶液组成。
当外部电源施加在电解池上时,阴极将发生还原反应,而阳极将发生氧化反应。
电解质溶液中的离子在电场的作用下通过导电体(如电极)移动,从而完成电解质的传递。
在电化学反应中,有两种类型的电池:电解池和电池。
电解池是将电能转化为化学能的装置,通过施加电流来推动不可逆的化学反应;而电池则是将化学能转化为电能的装置,通过化学反应释放电流。
二、电解质溶液的计算方法1. 摩尔浓度计算电解质溶液的摩尔浓度是指单位体积内存在溶液中的溶质的物质量。
计算公式为:摩尔浓度(mol/L)= 溶解物的物质量(mol)/ 溶液的体积(L)2. 电流计算电流是电荷在单位时间内通过导体截面的物理量。
计算公式为:电流(A)= 电量(C)/ 时间(s)3. Faraday定律计算Faraday定律是描述电解质溶液中物质转化与电量之间的关系。
根据Faraday定律,电流通过导体所携带的电荷量与所发生的化学反应物质的物质量成正比。
根据Faraday定律,可以通过下述公式计算电解质的计算:物质的物质量(mol)= 电量(C)/ 电子的电荷量(C/mol)三、电解质溶液计算实例假设有一溶液中含有NaCl(氯化钠),求解电流通过该溶液中的氯化钠生成Cl2(氯气)的物质量。
解:首先,我们需要确定反应的电子转移数。
根据反应方程式:2Cl^-(aq) → Cl2(g) + 2e^-可以看出,每释放2个电子才能生成1个氯气分子。
假设电流为3A,通过Faraday的定律,可以计算出电荷量:电量(C)= 电流(A) ×时间(s)假设电流通过该溶液的时间为60秒,则电量为:电量(C)= 3A × 60s = 180C根据1摩尔电子的电荷量为96500C/mol,可以计算出生成氯气的物质量:物质的物质量(mol)= 电量(C)/ 电子的电荷量(C/mol)物质的物质量(mol)= 180C / 96500C/mol = 0.001864 mol由反应方程式可知,1mol氯化钠生成1mol氯气,因此氯化钠的物质量也为0.001864 mol。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章电解质溶液及电化学系统主要内容1.电解质溶液及电化学系统研究的内容和方法2.电解质溶液的热力学性质3.电解质溶液的导电性质4.电化学系统的热力学重点1.重点掌握了解电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.重点掌握离子氛的概念和德拜—休克尔极限定律;3.重点掌握理解原电池电动势与热力学函数的关系;掌握能斯特方程及其计算;难点1.电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.离子氛的概念和德拜—休克尔极限定律;3.原电池电动势与热力学函数的关系;能斯特方程及其计算教学方式1. 采用CAI课件与黑板讲授相结合的教学方式。
2. 合理运用问题教学或项目教学的教学方法。
教学过程第8.1节电解质溶液及电化学系统研究的内容和方法一、电解质溶液及电化学系统研究的内容1、电解质溶液①电解质溶液的热力学性质电解质由于存在电离,正负离子之间的静电作用力使其偏离理想稀薄溶液所遵从的热力学规律,所以引入了离子平均活度和离子平均活度因子等概念。
思考:理想稀薄溶液所遵从的热力学规律是什么?②电解质溶液的导电性质高中阶段就学过电解质溶液的导电性质,为了表征电解质溶液的导电能力,则引入了电导、电导率、摩尔电导率等概念。
2、电化学系统在两相或数相间存在电势差的系统称为电化学系统。
①电化学系统的热力学性质电化学系统的热力学主要研究电化学系统中没有电流通过时系统的性质,即有关电化学平衡的规律。
②电化学系统的动力学电化学系统的动力学主要研究电化学系统中有电流通过时系统的性质,即有关电化学反应速率的规律。
二、电化学研究的对象第8.2节电解质溶液的热力学性质一、电解质的类型1、电解质的分类电解质的定义:解离:电解质在溶剂中解离成正、负离子的现象。
强电解质:弱电解质:强弱电解质的分类除与电解质本身性质有关外,还取决于溶剂的性质。
如CH 3COOH 在水中属弱电解质,而在液NH 3中全部解离,是强电解质。
真正电解质:以离子键结合的电解质属于真正电解质。
潜在电解质:以共价键结合的电解质属于潜在电解质。
2、电解质的价型(看书讲解)设电解质S 在溶液中解离成z X +和z Y -z z S v X v Y +-+-→+二、离子的平均活度因子1、电解质和离子的化学势 前面我们讲过化学势的定义,,(,)()B T P n C C B BG n μ≠∂=∂,即:化学势就是偏摩尔Gibbs 自由能。
电解质溶液中的溶质B 和溶剂A 的化学也可定义为: ,,()A B T p n B G n μ∂=∂ ,,()B A T p n AG n μ∂=∂ 同样,电解质溶液中的正、负离子的化学势:,,()T p n G n μ-++∂=∂ ,,()T p n G n μ+--∂=∂ 正、负离子的化学势只是形式上的定义,而无实验意义,因为不可能只改变某一种离子的物质的量。
所以与B μ联系起来。
B v v μμμ++--=+2、电解质和离子的活度及活度因子电解质由于存在电离,正、负离子之间的静电作用力使其偏离理想稀薄溶液所遵从的热力学规律,所以引入了离子平均活度和离子平均活度因子等概念。
理想稀薄溶液中溶质的化学势:ln BB B RT θμμχ=+ 电解质溶液中电解质:ln B B B RT a θμμ=+正离子:ln RT a θμμ+++=+ 负离子:ln RT a θμμ---=+其中B a 、a +、a -分别为电解质和正、负离子活度。
v v B a a a +-+-=正、负离子的活度因子定义为:/a b b θγ+++= /a b b θγ---= 例1:质量摩尔浓度为3mol/KgNa 2SO 4的水溶液,其b +和b -分别为多少?23/6/b mol Kg mol Kg +=⨯= 13/3/b m o l K g m o l K g-=⨯= 所以若电解质完全解离,则:b v b ++= b v b --= 3、离子的平均活度和平均活度因子由于只能由实验测得其平均值,所以引入平均活度和平均活度因子。
平均活度:1/()v v v a a a +-±+-= 平均活度因子:1/()v v v γγγ+-±+-= 例2:用b 及γ±表示完全解离的电解质的离子平均活度a ±。
1/1/()/v v v v B a a v v b b θγ+-±±+-==分别应用到1-1型和2-2型、1-2型和2-1型、1-3型和3-1型。
例8-1离子的平均活度因子γ±的大小反映了电解质溶液的性质偏离理想稀薄溶液的程度,其值可由实验测得。
三、电解质溶液的离子强度1、离子强度的定义从表8-1可以看出在稀溶液范围内,离子价数高的,离子的平均活度因子γ±越小,同价数时,浓度增大,γ±越小,为了体现这两个因素对γ±的综合影响,提出了离子强度这一物理量:212B B I b z =∑ B b 为离子的质量摩尔浓度,B z 为离子的电价例8-22、计算离子平均活度因子的经验公式路易斯根据实验总结出如下公式:ln γ±=-0.01/I mol Kg <四、电解质溶液的互吸理论1、离子氛模型德拜—休克尔假定:电解质溶液对理想稀薄溶液的偏离主要来源于离子间相互作用,而离子间相互作用又以库仑力为主。
2、德拜—休克尔极限定律1/2ln c z z I γ±+--=第8.3节 电解质溶液的导电性质一、电导及电导率和摩尔电导率1、电导及电导率复习1:下列溶液的离子强度是多少?(A )0.1/mol Kg 的NaCl 溶液; (B )0.1/mol Kg 的Na 2C 2O 4溶液;(C )0.1/mol Kg 的CuSO 4溶液;(D )0.1/mol Kg 的BaCl 2溶液和0.1/mol Kg 的KCl 溶液; 解:由212B B I b z =∑得: (A )221(0.110.11)0.1/2I mol Kg =⨯+⨯= (B )221(20.110.12)0.3/2I mol Kg =⨯⨯+⨯= (C )221(0.120.12)0.4/2I mol Kg =⨯+⨯= (D )22221(0.1220.110.110.11)0.4/2I mol Kg =⨯+⨯⨯+⨯+⨯=复习2:下列电解质溶液,离子平均活度系数最小的是哪一个(设浓度都为0.01/mol Kg )? DA ZnSO 4B CaCl 2C KClD LaCl 3解:因为I 越大,γ±越小。
物体导电能力的大小可以用两个物理量来表示,电阻R 和电导。
电导:衡量电解质溶液导电能力的物理量,电导是电阻的倒数.1A G k R l== 单位:西门子S ,111S -=Ω 式中k 为电导率,单位为:1S m -⋅,是电阻率的倒数。
A 是导体的截面积,l 是导体的长度。
电导池常数:(/)l A l K A=同一电导池有相同的电导池常数 2、摩尔电导率从表8-2可以看出,电解质溶液的电导率随浓度的改变而变,为了对不同浓度或不同类型的电解质的导电能力进行比较,定义了摩尔电导率。
m k cΛ= 单位:21S m mol -⋅⋅ 例:用同一电导池分别测定浓度为30.01/mol dm 和30.1/mol dm 的1-1型电解质溶液,其电阻分别为1000Ω和600Ω,则它们的摩尔电导率之比 6/1 。
解:由m k c Λ=得,1m k c RcΛ== ,1,2112211116:::10000.016000.11m m R c R c ΛΛ===⨯⨯ 注意在表示电解质的摩尔电导率时,应标明物质的基本单元,如:2124()0.02485m K SO S m mol -Λ=⋅⋅ 则:21241()0.012432m K SO S m mol -Λ=⋅⋅ 例8-43、电导率及摩尔电导率与电解质的物质的量浓度的关系①电导率与电解质的物质的量浓度的关系见图8-2②摩尔电导率与电解质的物质的量浓度的关系见图8-3例:设某浓度时,CuSO 4的摩尔电导率为21211.410m mol ---⨯Ω⋅⋅,若在该溶液中加入1m3纯水,这时CuSO 4的摩尔电导率将 BA 降低B 增高C 不变D 无法确定解:m Λ随c 的下降而增高。
二、离子在电场中的运动速率与电导1、离子的电迁移率离子的电迁移率B u :单位电场强度下离子的漂移速率。
漂移速率B v :离子在溶液中以恒定的速率运动时的速率。
B B v u E= B v 的单位:1m s -⋅ E 的单位:1V m -⋅ B u 的单位是:211m V s --⋅⋅2、离子的独立运动定律科尔劳施发现:具有同一阴离子或同一阳离子的盐类,它们的无限稀释的摩尔电导率m ∞Λ之差值在同一温度下为一定值,而与另一阳离子或阴离子的存在无关,见表8-3。
离子的独立运动定律:,,m m m v v ∞∞∞++--Λ=Λ+Λ根据离子独立运动定律,可以应用强电解质无限稀释的摩尔电导率计算弱电解质无限稀释的摩尔电导率。
例8-5例:已知298K 时,NH 4Cl ,NaOH ,NaCl 的无限稀释的摩尔电导率m ∞Λ分别为:21.49910-⨯、22.48710-⨯、21.26510-⨯21S m mol -⋅⋅,则32NH H O ⋅无限稀释的摩尔电导率32()m NH H O ∞Λ⋅为 22.72110-⨯ 21m mol -⋅⋅。
解:3244()()()()()()m m m m m m NH H O NH OH NH Cl NaOH NaCl ∞∞+∞-∞∞∞Λ⋅=Λ+Λ=Λ+Λ-Λ22221.49910 2.48710 1.26510 2.72110----=⨯+⨯-⨯=⨯三、离子迁移数通电后,正、负离子分别向阴、阳两极移动,形成电流,为了表示各种离子传递电量的比例关系,提出了离子迁移数的概念。
离子迁移数t :每种离子所运载的电流的分数(百分数)。
正离子:t + 负离子:t- I t I++= I t I --=第8.3节 电化学系统的热力学电化学:主要研究电能和化学能之间的相互转化及转化过程中有关规律的科学。
电化学的用途:1电解:精炼和冶炼有色金属和稀有金属;电解法制备化工原料; 电镀法保护和美化金属;还有氧化着色等。
2电池:汽车、宇宙飞船、照明、通讯、生化和医学等方面都要用不同类型的化学电源。
3电分析4生物电化学一、电化学系统及其相间电势差有α、β两相,αϕ和βϕ分别代表两相的内电势,则两相间的电势差βαϕϕϕ∆=-,常见的相间电势差有:金属—溶液、金属—金属以及两种电解质溶液间的电势差。