01-结构力学 渐进法知识点小结
(完整版)结构力学最全知识点梳理及学习方法
(完整版)结构⼒学最全知识点梳理及学习⽅法第⼀章绪论§1-1 结构⼒学的研究对象和任务⼀、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的⽅式所组成的构件的体系,⽤以⽀承荷载并传递荷载起⽀撑作⽤的部分。
注:结构⼀般由多个构件联结⽽成,如:桥梁、各种房屋(框架、桁架、单层⼚房)等。
最简单的结构可以是单个的构件,如单跨梁、独⽴柱等。
⼆、结构的分类:由构件的⼏何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远⼤于截⾯的宽度和⾼度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远⼩于其它两个尺度,平⾯为板曲⾯为壳,如楼⾯、屋⾯等。
3.实体结构——结构的三个尺度为同⼀量级,如挡⼟墙、堤坝、⼤块基础等。
三、课程研究的对象材料⼒学——以研究单个杆件为主弹性⼒学——研究杆件(更精确)、板、壳、及块体(挡⼟墙)等⾮杆状结构结构⼒学——研究平⾯杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作⽤下结构各部分不致发⽣相对运动。
探讨结构的合理形式,以便能有效地利⽤材料,充分发挥其性能。
2.计算由荷载、温度变化、⽀座沉降等因素在结构各部分所产⽣的内⼒,为结构的强度计算提供依据,以保证结构满⾜安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使⽤过程中不致发⽣过⼤变形,从⽽保证结构满⾜耐久性的要求。
§1-2 结构计算简图⼀、计算简图的概念:将⼀个具体的⼯程结构⽤⼀个简化的受⼒图形来表⽰。
选择计算简图时,要它能反映⼯程结构物的如下特征:1.受⼒特性(荷载的⼤⼩、⽅向、作⽤位置)2.⼏何特性(构件的轴线、形状、长度)3.⽀承特性(⽀座的约束反⼒性质、杆件连接形式)⼆、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受⼒和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
..分析和...计算三、结构计算简图的⼏个简化要点1.实际⼯程结构的简化:由空间向平⾯简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独⾃绕铰⼼⾃由转动,即各杆端之间的夹⾓可任意改变。
结构力学知识点梳理及学习方法
第一章绪论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦材料力学——以研究单个杆件为主♦弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构♦结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
..分析和...计算三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
结构力学-渐近法
M1 图
4
M 1Fj — —将不平衡力矩变号后, 按劲度系数大小的比例,
分配给各近端;
M 12 — —节点转动 Z 1 角产生的弯矩 分配弯矩 F M 12 — —固端弯矩
F M 14 M 14 M 14
F 同理: M 13 M 13 M 13
远端弯矩(传递弯矩):
i1 l1
4P
1500
2500
C
B
5 P 3 E
2500
A
D
CB
BA 0.625, BC 0.375。 0.5, CD 0.5, DC 0.706, DE 0.294。
A
0.625 0.375 B
1500 -938 -562
0.5 0.5 C
-281 883 -301 -301 29 54 -42 -42
30kN/m B i=1
10m 0.5
160kN C
3m 0.5 +112.5
D i=1
5m
+250.0 -187.5
+32.0 -47.3 -47.3 +4.8 -2.4 -2.4 +0.3 -0.2 -0.2 +237.4 -237.4
B点一次分、传 0.0 C点一次分、传 B点二次分、传 0.0 C点二次分、传 B点三次分、传 0.0 C点第三次分配 最后弯矩 0.0
F
1
1
3 3
2 2
3i12 Z1=1 3i12 Z1=1 2i13 2i13 3
1
1 4i13
3
4i13
M1 图
4 4
i4i14 14
4i14
结构力学最全知识点梳理及学习方法
第一章绪论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦材料力学——以研究单个杆件为主♦弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构♦结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
...计算..分析和三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
结构力学 渐进法
EI=1 6m
D
iBC iCD
M F -60
1 2 S 4 BA 6 3 S 4 1 1 BC 4
1 6 2 1 8 4 1 6
B
分 14.7 配 与 传 1.5 递
0.2
Mij -43.6 43.6 A 21.9
0.3
92.6 -92.6 92.6 B
B
F
CB 0.445 CF 0.222 0.333 CD
单独使用时对连续梁和无结点线位移刚架的 计算特别方便。
一、基本概念
(1)转动刚度(S): 使杆端发生单位转角时需要施加的杆端弯矩。 SAB=4i
A B
SAB=3i
1
A B
1
SAB=i
A B
SAB=0
A
B
1
SAB=4i SAB与杆的i(材料的性质、横截面 的形状和尺寸、杆长)及远端支承 有关, 而与近端支承无关。
F 21 2
A
q 12kN / m
M1
1
M2
2
B
28.6
50
6.1
100
-28.6 -57.1 -42.9
21.4
-9.2 -12.2
1.8 1.8
-6.1
6.1 3.5 2.6
放松结点1(结点2固定):
S12 4i S1 A 3i 12 0.571 1 A 0.429
… … ...
41.3
-41.3
0
2 3 0.4 BA 2 1 3 0.6 BC 1 S 4 1 CB 4 S 3 1 1 CD 6 2
结构力学主要知识点归纳
结构力学主要知识点归纳结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。
常具体划分为常变体系和瞬变体系。
2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。
3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。
A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W<0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
结构力学之渐近法
结合具体工程实例,阐述地下工程开挖支护方案选择的实际应用,包括 地质条件分析、支护方案设计与施工等。
05
渐近法优缺点及改进方向
优点总结
高效性
渐近法通过逐步逼近真实解的方 式,可以在相对较少的计算步骤 内得到较为精确的结果,从而提 高计算效率。
适用性广
渐近法可以应用于多种类型的结 构力学问题,如线性、非线性、 静力、动力等问题,具有较强的 通用性。
渐近法将与其他数值方法相结 合,形成更加完善的结构力学 分析方法体系,以满足不断增 长的工程需求。
针对渐近法的研究将不断深入 ,探索其在结构力学中的更多 应用可能性,推动结构力学学 科的发展。
THANK YOU
感谢聆听
计算精度受限于步长选择
渐近法的计算精度与步长选择密切相关,步长过大可能导致计算结 果不准确,步长过小则可能增加计算量。
改进方向探讨
01
02
03
04
改进初始值选择方法
通过引入更先进的初始值选择 算法,如全局优化算法、智能 算法等,提高初始值选择的准 确性和效率。
加强模型验证和修正
在采用渐近法进行结构力学计 算前,应对所使用的模型进行 充分的验证和修正,确保模型 的准确性和稳定性。
奇异积分与近边界效应处理
针对边界元法中出现的奇异积分和近边界效应问题,采用相应的数 学方法进行处理,如坐标变换、特殊函数展开等。
04
工程实例分析与讨论
桥梁结构承载能力评估
桥梁结构类型与特点
工程实例分析
简要介绍桥梁的主要结构类型,如梁 桥、拱桥、悬索桥等,并分析其受力 特点和适用场景。
结合具体工程实例,阐述桥梁结构承 载能力评估的实际应用,包括评估流 程、关键步骤和注意事项等。
渐进法及其它算法简述
第八章渐进法和力矩分配法超静定结构的计算方法: 力法(六)、位移法(七)力法计算步骤1、选取基本体系2、列力法方程3、计算系数及自由项4、解方程5、作内力图位移法计算步骤1、设基本未知量2、列杆端弯矩方程3、列位移法方程4、解方程5、求杆端弯矩6、做内力图为避免解力法和位移法方程,引入一种近似的计算方法,这种方法是位移法的延伸,在计算过程中进行力矩的分配与传递。
渐近法有力矩分配法、无剪力分配法等,它们都是位移法的变体,其共同的特点是避免了组成和解算典型方程,也不需要计算结点位移,而是以逐次渐近的方法来计算杆端弯矩,计算结果的精度随计算轮次的增加而提高,最后收敛于精确解。
力矩分配法适用于连续梁和无结点线位移的刚架;无剪力分配法适用于刚架中除杆端无相对线位移的杆件外,其余杆件都是剪力静定杆件的情况,它是力矩分配法的一种特殊的形式。
对于一般有结点线位移的刚架,可用力矩分配法和位移法联合求解。
§8.1 力矩分配法的基本概念力矩分配法:理论基础:位移法;计算对象:杆端弯矩;计算方法:逐渐逼近的方法;适用范围:连续梁和无侧移刚架。
基本概念转动刚度S分配系数μ传递系数 C力矩分配法中符号规定力矩分配法的理论基础是位移法,故力矩分配法中对杆端转角、弯矩及固端弯矩的正负号规定与位移法相同,即都假设对杆端顺时针旋转为正号、对结点或附加刚臂逆时针旋转为正号。
一、转动刚度S:表示杆端对转动的抵抗能力。
在数值等于使杆端产生单位转角时需要施加的力矩。
转动刚度SAB 与杆的线刚度i (材料的性质、横截面的形状和尺寸、杆长)及远端支承有关,而与近端支承无关。
二、分配系数设A 点有力矩M ,求M AB 、M AC 和M AD如用位移法求解:A AB A AB AB S i M θθ==4A AC A AC AC S i M θθ==A AD A AD AD S i M θθ==30=∑AM A AD AC ABS S SM θ)(++=∑=++=AAD AC AB A SMS S S M θ所以有M SS M AABAB ∑=M S S M AAC AC ∑= M S S M AAD AD ∑=M M Aj Aj ⋅=μ ∑=AAjAj SS μ 1=∑μ三、传递系数=远端弯矩/近端弯矩M AB = 4 i ABθAM BA = 2 i ABθA在结点上的外力矩按各杆分配系数分配给各杆近端截面,各杆远端弯矩分别等于各杆近端弯矩乘以传递系数。
结构力学最全知识点梳理及学习方法
第一章绪论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦材料力学——以研究单个杆件为主♦弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构♦结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
..分析和...计算三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(渐进法及其他算法简述)【圣才出品】
第8章渐近法及其他算法简述8.1 复习笔记本章介绍了几种属于位移法类型的渐近方法。
这些渐近方法的基础是力矩分配法,在力矩分配法的基础上,衍生出了适用于不同结构类型的子方法,如无剪力分配法、分层计算法、反弯点法。
渐近法舍弃了一部分精度,但以此换来了更高的效率。
一、力矩分配法的基本概念(见表8-1-1)1.转动刚度、分配系数、传递系数表8-1-1 力矩分配法的基本概念2.基本运算环节(单结点转动的力矩分配)(见表8-1-2)表8-1-2 单结点转动的力矩分配图8-1-1图8-1-2二、多结点的力矩分配(见表8-1-3)表8-1-3 多结点的力矩分配图8-1-3三、无剪力分配法(表8-1-4)表8-1-4 无剪力分配法图8-1-4四、近似法(见表8-1-5)表8-1-5 近似法图8-1-5 分层法五、超静定结构各类解法的比较和合理选用(见表8-1-6)表8-1-6 超静定结构各类解法的比较和合理选用8.2 课后习题详解8-1 试用力矩分配法计算图8-2-1所示结构,并作M图。
图8-2-1解:(a)求固端弯矩M AB F=-F P l/8=-20kN·m,M BA F=F P l/8=20kN·m求分配系数μBA=EI/(EI+EI/2)=1/(1+1/2)=0.667,μBC=(EI/2)/(EI+EI/2)=(1/2)/(1+1/2)=0.333放松B点进行力矩分配(B点的集中力偶应该与固端弯矩一起分配),分配过程如图8-2-2所示,并作出M图如图8-2-2所示。
图8-2-2(b)考虑去掉悬臂部分CD,去掉后在C点施加大小为10kN·m的顺时针力偶矩。
求固端弯矩(注意,C点的附加力偶传递到B点的作用不能忽略)M BC F′=-3F P l/16=-18kN·m(集中力引起)M BC F″=1/2×10kN·m=5kN·m(附加力偶引起)M BC F=M BC F′+M BC F″=-13kN·m,M CB F=10kN·m。
结构力学课件12渐近法
了解材料的力学性质(如弹性模量、 泊松比等)对于应用渐近法是必要的 。
渐近法的计算步骤
建立模型
首先需要建立结构的数学模型 ,包括结构的几何形状、材料
属性、边界条件等。
求解线性方程组
利用线性代数的方法求解结构 平衡方程,得到结构的位移分 布。
内力分析
根据位移分布计算结构的内力 分布。
误差估计与迭代修正
CHAPTER
02
渐近法的基本原理
渐近法的数学基础
线性代数
渐近法涉及到线性方程组的求解 ,因此需要掌握线性代数的基本 概念和性质。
微积分
在分析结构位移和内力时,需要 用到微积分的知识,如导数、积 分等。
渐近法的物理基础
弹性力学
结构力学中的渐近法是基于弹性力学 的基本原理,需要理解弹性力学的基 本概念,如应力、应变等。
通过估计误差并进行迭代修正 ,使计算结果逐渐接近真实解
。
CHAPTER
03
渐近法的应用实例
静力分析中的应用
静分析是结构力学中的基础分析方法,主要研究结构在恒 定外力作用下的响应。渐近法在静力分析中的应用,主要是 通过不断逼近真实解来获得近似解,从而提高计算精度。
在静力分析中,渐近法可以应用于解决各种复杂的结构问题 ,如梁、柱、板等。通过迭代计算,可以逐步逼近真实解, 得到更精确的位移、应力等结果。
缺点
精度不足
稳定性较差
由于渐近法采用的是近似计算方法, 因此其计算结果的精度往往不如精确 解高,可能无法满足某些高精度要求 的场合。
在某些情况下,渐近法的计算结果可 能会因为初始值的选取或者计算的步 长设置不当而导致结果不稳定,甚至 出现错误的结果。
适用范围有限
结构力学知识点总结
结构力学知识点总结结构力学是固体力学的一个分支,主要研究工程结构受力和传力的规律,以及如何进行结构优化。
以下是对结构力学主要知识点的总结。
一、结构的计算简图结构计算简图是对实际结构进行力学分析时,经过简化抽象得到的力学模型。
它需要忽略一些次要因素,突出结构的主要特征。
在确定计算简图时,要明确结构的支座形式。
常见的支座有固定支座、可动铰支座和固定铰支座。
固定支座限制结构在水平和竖直方向的移动以及转动;可动铰支座限制结构沿支座链杆方向的移动,允许转动;固定铰支座限制结构在水平和竖直方向的移动,但允许转动。
此外,还需要确定结构的荷载类型。
荷载包括集中荷载和分布荷载。
集中荷载是作用在结构上的一个点的荷载,如重物的压力;分布荷载则是作用在结构一段长度或面积上的荷载,如梁的自重。
二、平面体系的几何组成分析这部分内容主要是判断平面体系的几何不变性。
通过计算自由度,以及运用几何不变体系的组成规则,可以确定体系是否几何不变。
自由度是指确定体系位置所需的独立坐标数。
一个刚片在平面内有三个自由度。
计算平面体系自由度的公式为:W = 3m 2h r ,其中 m为刚片数,h 为单铰数,r 为支座链杆数。
几何不变体系的组成规则包括:两刚片规则、三刚片规则和二元体规则。
两刚片通过一个铰和一根不通过该铰的链杆相连组成几何不变体系;三刚片用不在同一直线上的三个铰两两相连组成几何不变体系;在一个体系上增加或拆除一个二元体不改变体系的几何组成性质。
三、静定结构内力计算静定结构是指在任意荷载作用下,其内力和反力都可以由静力平衡条件唯一确定的结构。
静定梁的内力包括弯矩、剪力和轴力。
计算内力的方法通常是先求出支座反力,然后通过截面法计算指定截面的内力。
弯矩使梁的受拉一侧纤维受拉为正;剪力以使隔离体顺时针转动为正。
静定刚架的内力计算方法与静定梁类似,但需要注意刚架中各杆的内力可能有弯矩、剪力和轴力。
在计算时,要正确判断各杆的内力方向。
静定桁架的内力计算通常采用节点法和截面法。
结构力学第八章渐近法及其他算法概述)
C
2i H i
μAG=0.5 μCA=0.4 μCE=0.4
μAC=0.5 μCH=0.2
E
1.5m
mAG
201.52 3
15 k N.m
C
CA
CH
0.4
0.2
E
CE
CH
0.4
结点7.11
20kN/m
↓↓↓↓↓↓A↓↓↓↓
7.11
杆端 AG
AC
CA
μ
0.5
0.5
0.4
0m.78 -2.6135 2.63
A
24.5 14.7 9.8
1.7 4.89
M图 (kN m)
2m 4m
BBA 0.3
BC 0.4 BE 0.3
C
CB CD
0.445 0.333
CF 0.222
mBA= 40kN·m mBC= - 41.7kN·m mCB= 41.7kN·m
0.3 B 0.4
0.445 C 0.333
独立使用时只适用于解算无侧移(无独立结点线位 移)的结构。
力矩分配法
理论基础:位移法; 计算对象:杆端弯矩; 计算方法:逐渐逼近的方法; 适用范围:连续梁和无侧移刚架。
基本思路
固定状态:
q 12kN / m B
A EI
B EI
C
M
F B
---不平衡力矩,顺时针为正
10m
10m
固端弯矩---荷载引起的单跨梁两
1、名词解释
(1)转动刚度S: 表示杆端对转动的抵抗能力。
在数值上 = 仅使杆端发生单位转动时需在杆端施加的力矩。
SAB=4i
1
SAB=i
结构力学最全知识点梳理及学习方法
结构力学最全知识点梳理及学习方法
一、结构力学基础知识:
1、力的分类:根据受力作用的物体的性质,可将力分为外力(外力作用于结构物体的外部,如重力、气压力、拉力等)和内力(内力作用于结构物体的内部,如弯矩、剪力等);根据力的方向划分,可将它分为拉力、压力和旋转力;根据力的特性划分,可将它分为特殊力和普通力;根据力的大小和方向,可将它分为大力、小力、稳定力和不稳定力;根据受力物体的形状,可将它分为直线力、非直线力、旋转力和转动力等。
2、构件的类型:构件按照结构的组成形式,又分为横担、梁、柱、支撑、支座、腰椎和压杆等。
3、材料性质:构件的材料性质主要由弹性模量、屈服强度和杨氏模量等物理参数来表示。
4、结构形状:根据不同的表达方式,结构形状可分为直线式结构、曲线式结构、对称结构、反对称结构、非对称结构和无规则结构等。
5、运动学结构:可将力学结构分为机械运动结构和动力学结构,其中机械运动结构主要由动力系统、载荷系统和传动系统等部分组成;而动力学结构主要关注的是结构物体的动力运动情况,其中重点研究的是结构物体的运动特性,如动力传递、动力控制和动力分析等。
结构力学考点归纳总结(最新整理)
结构力学考点归纳总结第一章一、简化的原则1. 结构体系的简化——分解成几个平面结构2. 杆件的简化——其纵向轴线代替。
3. 杆件间连接的简化——结点通常简化为铰结点或刚结点4. 结构与基础间连接的简化结构与基础的连接区简化为支座。
按受力特征,通常简化为:(1)滚轴支座:只约束了竖向位移,允许水平移动和转动。
提供竖向反力。
在计算简图用支杆表示。
(2)铰支座:约束竖向和水平位移,只允许转动。
提供两个反力。
在计算简图用两根相交的支杆表示。
(3)定向支座:只允许沿一个方向平行滑动。
提供反力矩和一个反力。
在计算简图用两根平行支杆表示。
(4) 固定支座:约束了所有位移。
提供两个反力也一个反力矩。
5. 材料性质的简化——对组成各构件的材料一般都假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的6. 荷载的简化——集荷载和分布荷载§1-4 荷载的分类一、按作用时间的久暂荷载可分为恒载和活载二、按荷载的作用范围荷载可分为集荷载和分布荷载三、按荷载作用的性质荷载可分为静力荷载和动力荷载四、按荷载位置的变化荷载可分为固定荷载和移动荷载第二章几何构造分析几何不变体系:体系的位置和形状是不能改变的讨论的前提:不考虑材料的应变2.1.2 运动自由度SS:体系运动时可以独立改变的坐标的数目。
W:W= (各部件自由度总和a )-(全部约束数总和) W=3m-(3g+2h+b)或w=2j-b-r.注意:j与h的区别约束:限制体系运动的装置2.1.4 多余约束和非多余约束不能减少体系自由度的约束叫多余约束。
能够减少体系自由度的约束叫非多余约束。
注意:多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。
2.3.1 二元体法则约束对象:结点 C 与刚片约束条件:不共线的两链杆;瞬变体系§2-4 构造分析方法与例题1. 先从地基开始逐步组装2.4.1 基本分析方法(1)一. 先找第一个不变单元,逐步组装1. 先从地基开始逐步组装2. 先从内部开始,组成几个大刚片后,总组装二. 去除二元体2.4.3 约束等效代换1. 曲(折)链杆等效为直链杆2. 联结两刚片的两链杆等效代换为瞬铰①.分析:1.折链杆AC 与DB 用直杆2、3代替;2.刚片ECD 通过支杆1与地基相连。
结构力学第8章渐近法及其它算法简述
3Pl 16
3 ql 2 16
(3)力矩分配与传递,绘制弯矩图。
0.25
ql 2
6 17ql 2 192
5ql 2
64
0.75
3ql 2 16
51ql 2 192
5ql 2 64
ql2 3
17 ql 2 192
27ql2 64
5 ql 2 64 27 ql 2 64
3
EI 3
AG AC 0.5
结点C:
SCA
4iCA
4
EI 3
4 3
EI
SCE
4iCE
4 EI 3
4 EI 3
EI 2
S CH
iCH
1.5
EI 3
CA CE 0.4
CH 0.2
(3)计算固端弯矩
M
F AG
ql 2 3
15kN m
M
4 8
M
2 EI
M
1 EI 4
EI
3
L
L
围绕“1”结点每个杆端 的转动刚度之和
分母是围绕“1”结点每个 杆端的转动刚度之和
L
计算公式: ij
Sij Sij
i
● 求各杆的分配系数
显然
ij 1
i
12
3i
i i
4i
1 8
13
3i
4i i
4i
4 8
14
3i
3i i
例2.用力矩分配法计算图示刚架, 画M图。
解:1)求分配系数μ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 渐近法(知识点小结)
一、转动刚度与传递系数
使杆端产生单位角位移时需要在该端施加(或产生)的力矩称为转动刚度,它表示杆端对转动的抵抗能力,是杆件及相应支座所组成的体系所具有的特性。
转动刚度与该杆远端支承、近端支承情况及杆件的线刚度有关。
传递系数表示近端有转角时,远端弯矩与近端弯矩的比值。
对等截面杆件来说,传递系数随远端支承情况不同而异,如表9-1所示。
二、分配系数
各杆端在结点A 的分配系数等于该杆在A 端的转动刚度与交于A 点的各杆端转动刚度之和的比值,即:
Aj
Aj Aj S S
μ=∑ 同一结点各杆分配系数之间存在下列关系: 1Aj μ
=∑ 这个条件通常用来校核分配系数的计算是否正确。
三、力矩分配法的基本原理
其过程可形象地归纳为以下步骤:
(1)固定结点 在刚结点上加上附加刚臂,使原结构成为单跨超静定梁的组合体。
计算各杆端的固端弯矩,而结点上作用有不平衡力矩,它暂时由附加刚臂承担;
(2)放松结点
取消刚臂,让结点转动。
这相当于在结点上又加入了一个反号的不平衡力矩,于是不平衡力矩被消除而结点获得平衡。
此反号的不平衡力矩按分配系数分配给各近端,于是各近端得到分配弯矩。
同时,各分配弯矩又向其对应远端进行传递,各远端得到传递弯矩。
(3)将各杆端的固端弯矩、分配弯矩、传递弯矩对应叠加,就可以得到各杆端的最后弯矩值,即:近端弯矩等于固端弯矩加上分配弯矩,远端弯矩等于固定弯矩加上传递弯矩。
四、用力矩分配法计算连续梁和无侧移的刚架
多结点的力矩分配法计算步骤如下:
1、将所有刚结点固定,计算各杆端的固端弯矩;
2、依次放松各结点
每次放松一个结点(其余结点仍固定住)进行力矩分配与传递。
对每个结点轮流放松,经多次循环后,结点逐渐趋于平衡。
一般进行2-3个循环就可获得足够精度。
3、将各次计算所得杆端弯矩(固端弯矩及历次得到的分配弯矩和传递弯矩)对应相加,即得各杆端的最终弯矩值。
五、力矩分配法和位移法的联合应用
力矩分配法与位移法的联合应用就是利用力矩分配法解算无侧移结构简便的优点和位移法能够解算具有结点线位移结构的特点,在解题过程中使其充分发挥各自优点的联合方法。
它的基本特点是:
(1)仅取结点线位移作为基本未知量;
(2)施加附加链杆控制结点线位移(不加附加刚臂限制角位移),从而得到相应的基本体系(无侧移刚架);
(3)根据附加链杆约束力等于零的平衡条件(截面剪力投影条件)建立位移法方程;
(4)利用力矩分配法求解系数和自由项:利用力矩分配法作基本结构在外荷载单独作用下的P M 图,以及由单位线位移1i ∆=引起的i M 图,由截面投影平衡条件求出位移法方程中的系数和自由项;
(5)由叠加法作原结构的弯矩图。
六、无剪力分配法
无剪力分配法是在特定条件下的力矩分配法,其应用条件为:刚架中除了无侧移杆件外,其余杆件全是剪力静定杆件。
剪力静定杆的固端弯矩、转动刚度和传递系数,与一端刚结、另一端滑动杆相同。
除此之外,力矩的分配及传递过程与一般力矩分配法完全相同。
七、剪力分配法
1、应用条件
横梁为刚性杆、竖柱为弹性杆的排架或刚架承受水平结点荷载荷载作用。
2、基本原理
在柱顶集中荷载作用下,同层各柱剪力与柱的侧移刚度系数成正比。
将各层总剪力F (任一层的总剪力等于该层及以上各层所有水平荷载的代数和)按各柱侧移刚度之比即剪力分配系数比例分配到各柱。
第j 根柱剪力为:
j Sj j i
D F F F D ν=
=∑ 侧移刚度计算如下: 312j EI D h =
(刚架柱)、3
3j EI D h =(排架柱) 3、由柱的剪力求柱的弯矩 对刚架,求得柱顶剪力后,根据柱弯矩零点(即反弯点)在柱中点的条件,可得到各柱的杆端弯矩等于柱顶剪力与其高度一半的乘积。
对排架,因弯矩零点在柱顶,各柱底弯矩等于柱顶剪力与其高度乘积。
4、求出各立柱弯矩后,刚性横梁的弯矩可按如下方法确定:若结点只连接一根刚性横梁,可直接由结点力矩平衡条件确定横梁在该结点处的杆端弯矩;若结点连接了两根刚性横梁,可近以认为两根刚性横梁的转动刚度相同,从而分配到相同的杆端弯矩。
5、当水平荷载为非结点荷载时,必须等效化成结点荷载。
先在各层结点加水平支杆,求得各杆端固端弯矩及支杆反力;再将支杆反力反向施加于各层结点上,按剪力分配法求出各杆端弯矩;最后将上述两种情况下相应杆端弯矩叠加即可。