角平分线的性质

合集下载

角平分线的性质

角平分线的性质

ABCI1234A BCP1234300ABC E1234【三角形內角平分線性質】: 任一∆ABC ,若∠B 平分線與∠C 平分線相交於∆ABC 內的一點I ,則有∠BIC =900+21∠A 。

【三角形外角平分線性質】:任一∆ABC ,若∠B 的外平分線與∠C 的外平分線相交於∆ABC 外的一點P ,則有∠BPC =900-21∠A 。

【證明】∠1=∠2,∠3=∠4(角平分線)∴∠A +(1800-2∠2)+(1800-2∠3)=1800(三角形內角和)⇒∠2+∠3=21800+∠A∴∠BPC =1800-(∠2+∠3)=900-21∠A 【三角形內、外角平分線性質】: 在∆ABC 中,內角∠B 的平分線與∠C 的外角平分線相交於一點E , 則有∠BEC =21∠A 【證明】由外角定理知:∠3+∠4 =(∠1+∠2)+∠A⇒∠4 -∠2=21∠A由外角定理知: ∠4 =∠2+∠BEC ∴∠BEC =∠4 -∠2=21∠A由尺規作圖我們可得:1. SSS 全等性質(三個邊對應相等),2. SAS 全等性質(兩邊一夾角對應相等),3. ASA 全等性質(兩角一夾邊對應相等),AB C D4. AAS全等性質。

及SSA ( ASS) ,AAA 不全等。

平行四邊形平行四邊形的定義:兩雙對邊分別平行的四邊形稱為平行四邊形。

(由角來定義)如圖,若AB//CD且AD//BC,則ABCD稱為平行四邊形,以「□ABCD」表示。

平行四邊形的性質:從平行四邊形的性質來看,我們可以發現基本上都是由之前所學過的平行性質以及三角形的性質所構成,以下列出5點性質,我們將一一來證明。

【性質1】對角線將平行四邊形分為兩個全等三角形。

【性質2】平行四邊形之兩雙對邊分別相等。

【性質3】平行四邊形之兩雙對角分別相等。

【性質4】平行四邊形之兩對角線互相平分。

【性質5】平行四邊形之對邊平行且相等。

(定義+性質一)【性質1】對角線將平行四邊形分為兩個全等三角形。

角的平分线的性质

角的平分线的性质

角的平分线的性质一. 根底知识1.角的平分线的性质(1)内容角的平分线上的点到角的两边的距离相等.(2)书写格式如下列图,∵点P在∠AOB的角平分线上,PD⊥OA,PE⊥OB,∴PD=PE.2.角的平分线的判定(1)内容角的内部到角的两边的距离相等的点在角的平分线上.(2)书写格式如下列图,∵PD⊥OA,PE⊥OB,PD=PE,∴点P在∠AOB的角平分线上.3.运用角的平分线的性质解决实际问题运用角的平分线的性质的前提条件是角的平分线以及角平分线上的点到角两边的距离.在运用角的平分线的性质解决实际问题时,题目中常常出现求到某个角的两边距离相等的点的位置,只要作出角的平分线即可.运用角平分线的性质解决实际问题时,一定要把实际问题中道路、河流等抽象成数学图形直线,并且要求的点是到两线的距离相等,常常确定两线夹角的平分线上的点,这个过程就是建立数学模型的过程,这是在解决实际问题中常用的方法.4.运用角的平分线的判定解决实际问题在实际问题中,如果出现了某个地点到某些线的距离相等,常先把实际问题转化为数学问题,即建立数学模型(角的平分线).然后根据某点到角两边的距离相等,那么常常联想到用角的平分线的判定得到角的平分线来解决问题.解技巧巧用角的平分线的性质和判定解决问题能根据条件联想到角的平分线的性质或判定是解决问题的关键.找到解决问题的切入点就是条件中有点到直线的距离相等或要找到到两条直线的距离相等的点.5.综合运用角的平分线的性质和判定解决实际问题角的平分线的性质和判定的关系如下:对于角的平分线的性质和判定,一方面要正确理解和明确其条件和结论,“性质〞和“判定〞恰好是条件和结论的互换,在应用时不要混淆,性质是证两条线段相等的依据,判定是证明两角相等的依据.析规律构造角的平分线的模型证明线段相等当有角平分线时,常过角平分线上的点向角的两边作垂线,根据角平分线的性质得线段相等.同样,欲证明某射线为角平分线时,只需过其上一点向角的两边作垂线,再证线段相等即可.6.运用角的平分线的性质和判定解决探究型问题在实际问题中,确定位置(如建货物中转站、建集市、建水库等)的问题,常常用到角的平分线的性质来解决.尤其是涉及作图探究的题目,性质“角的内部到角两边的距离相等的点在这个角的平分线上〞的应用是寻找角的平分线的一种比较简单的方法.三角形有三条角平分线交于三角形内部一点,并且交点到该三角形三边的距离都相等,其实只要作出其中两条角平分线的交点,第三条角平分线一定过此交点.三角形两个外角的平分线也交于一点,这点到该三角形三边所在的直线距离相等.三角形外角平分线共有三条,所以到三角形三边所在直线距离相等的点共有4个.【例6】如以下列图所示,三条公路l1,l2,l3两两相交于A,B,C三点,现方案修建一个商品超市,要求这个超市到三条公路的距离相等,可供选择的地方有多少处?你能在图中找出来吗?解:三角形的三条角平分线的交点到该三角形三条边的距离相等;∠ACB,∠ABC的外角平分线交于一点,利用角的平分线的性质和判定定理,可以得到此点也在∠CAB的平分线上,且到公路l1,l2,l3的距离相等;同理还有∠BAC,∠BCA的外角平分线的交点;∠BAC,∠CBA的外角平分线的交点,因此满足条件的点共有4个.作法:(1)如右图所示,作出△ABC两内角∠BAC,∠ABC的平分线的交点O1.(2)分别作出∠ACB,∠ABC的外角平分线的交点O2,∠BAC,∠BCA的外角平分线的交点O3,∠BAC,∠CBA的外角平分线的交点O4;故满足条件的修建点有四处,即点O1,O2,O3,O4处.课堂练习一、填空题1.:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,那么∠AOC的度数为.2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.4.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________. 5.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,那么BC=_____cm.第4题第5题第6题第7题6.如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、CB于点E、F,FG⊥AB,垂足为G,那么CF______FG,CE________CF.7.如图,AB、CD相交于点E,∠AEC及∠AED的平分线所在的直线为PQ与MN,那么直线MN与PQ的关系是_________.8.三角形的三条角平分线相交于一点,并且这一点到________________相等.9.点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,那么∠BOC的度数为_____________.10.在△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32且BD∶CD=9∶7,那么D到AB的距离为.二、选择题11.三角形中到三边距离相等的点是〔 〕A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点12.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,以下结论错误的选项是〔 〕A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD13.如图,直线l 1,l 2,l 3表示三条相互穿插的公路,现要建一个货物中转站,要求它到三条公路的距离相等,那么可供选择的地址有〔 〕A 、1处B 、2处C 、3处D 、4处14.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,那么△DEB 的周长为〔 〕 A 、4㎝ B 、6㎝ C 、10㎝ D 、不能确定21DAPOEBl 2l 1l 3DCEB第12题第13题第14题15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,那么以下结论中不正确的选项是〔 〕A 、TQ =PQB 、∠MQT =∠MQPC 、∠QTN =90°D 、∠NQT =∠MQTNTQPM第15题16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )EDCBAA .2 cmB .3 cmC .4 cmD .5 cm17.如图,AB =AC ,AE =AF ,BE 与CF 交于点D ,那么对于以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的选项是〔〕A .①B .②C .①和②D .①②③EDC BAF18.如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,那么以下结论正确的选项是〔〕A .OA =OCB .点O 到AB 、CD 的距离相等C .∠BDA =∠BDCD .点O 到CB 、CD 的距离相等19.△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,那么点O 到三边AB 、AC 、BC 的距离为〔〕A .2cm ,2cm ,2cm ;B . 3cm ,3cm ,3cm ;C . 4cm ,4cm ,4cm ;D . 2cm ,3cm ,5cm20.两个三角形有两个角对应相等,正确说法是〔〕A .两个三角形全等B .如果还有一角相等,两三角形就全等C .两个三角形一定不全等D .如果一对等角的角平分线相等,两三角形全等三、解答与证明21.如图,△ABC 中,AB =AC ,D 是BC 的中点,求证:D 到AB 、AC 的距离相等.22.如图,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,假设BD =CD .求证:AD 平分∠BAC .DCBAO 第18题23.如图,BE 平分∠ABC ,CE 平分∠ACD ,且交BE 于E .求证:AE 平分∠FAC .DF CBAE24.如图,AB =AC ,AD =AE ,DB 与CE 相交于O . (1)假设DB ⊥AC 于D ,CE ⊥AB 于E ,试判断OE 与OD 的大小关系.并证明你的结论. (2)假设没有第〔1〕中的条件,是否有这样的结论"试说明理由.DCBAOE25.如图,∠B =∠C =90°M 是BC的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .重点题型讲解1.如图.在△ABC 中,∠A 、∠B 的角平分线交于点O ,过O 作OP ⊥BC 于P ,OQ ⊥AC 于Q ,OR ⊥AB于R,AB=7,BC=8,AC=9.〔1〕求BP、CQ、AR的长.〔2〕假设BO的延长线交AC于E,CO的延长线交AB于F,假设∠A=60゜,求证:OE=OF.2.如图.AE、BD是△ABM的高.AE、BD交于点C,且AE=BE,BD平分∠ABM.〔1〕求证:BC=2AD;〔2〕求证:AB=AE+CE;〔3〕求证:DE平分∠MDB3.如图,点M〔2,2〕,将一个90°的角尺的直角顶点放在点M处,角尺的两边分别交x轴、y轴正半轴于A、B,AP平分∠OAB,交OM于点P,PN⊥x轴于N,把角尺绕点M旋转时:〔1〕求证:OM平分∠AOB;〔2〕求OA+OB的值4.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.〔1〕求证:△ACD≌△BCE;〔2〕求证:CH平分∠AHE;〔3〕求∠CHE的度数.〔用含α的式子表示〕家庭作业1角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.2、∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3、如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.4、如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,那么BC =_____cm .5、三角形的三条角平分线相交于一点,并且这一点到________________相等。

三角形中的角平分线和中线性质

三角形中的角平分线和中线性质

三角形中的角平分线和中线性质一、角平分线性质1.定义:从三角形一个顶点出发,将这个顶点的角平分成两个相等的角的线段,称为这个角的角平分线。

(1)一个角有且只有一条角平分线。

(2)角平分线上的点到这个角的两边的距离相等。

(3)角平分线与这个角的对边相交,交点将对边分为两条线段,这两条线段的长度相等。

二、中线性质1.定义:连接三角形一个顶点与对边中点的线段,称为这个顶点的中线。

(1)一个三角形有且只有三条中线。

(2)中线的长度是该顶点与对边中点距离的一半。

(3)中线平行于第三边,并且等于第三边的一半。

(4)三角形的中线将第三边平分成两条相等的线段。

三、角平分线与中线的交点性质1.定义:三角形的三条角平分线与三条中线的交点,称为三角形的心。

(1)三角形的心是三角形内部的一个点。

(2)三角形的心到三角形的三个顶点的距离相等。

(3)三角形的心到三角形的任意一边的距离相等。

四、角平分线和中线的应用1.判断三角形的形状:(1)如果一个三角形的三条角平分线相等,那么这个三角形是等边三角形。

(2)如果一个三角形的三条中线相等,那么这个三角形是等腰三角形。

2.求解三角形的问题:(1)利用角平分线求解三角形的角度。

(2)利用中线求解三角形的边长。

三角形中的角平分线和中线性质是解决三角形相关问题的重要知识点。

掌握这些性质,可以帮助我们更好地理解和解决三角形的相关问题。

习题及方法:1.习题:在三角形ABC中,角A的角平分线与中线交于点D,若AD=3,BD=4,求AB的长度。

答案:由于点D是角A的角平分线与中线的交点,根据性质可知AD=BD。

又因为AD=3,BD=4,所以AB=5。

2.习题:在等边三角形EFG中,求证:每条角平分线也是中线。

答案:由于三角形EFG是等边三角形,每个角都是60度。

根据角平分线性质,每条角平分线将角平分成两个30度的角。

又因为等边三角形的中线也是角平分线,所以每条角平分线也是中线。

3.习题:在三角形APQ中,若角APQ的角平分线与中线交于点M,且AM=4,PM=6,求AB的长度。

平面几何中的角平分线性质

平面几何中的角平分线性质

平面几何中的角平分线性质在平面几何学中,角平分线是指从一个角的顶点引出的一条线,将该角分成两个相等的角。

角平分线具有一些重要的性质和应用。

本文将介绍角平分线的性质及其在几何学中的应用。

一、角平分线的定义在平面几何学中,给定一个角AOB,点C是角AOB内部的任意一点,线段OC将角AOB平分成两个相等的角。

则线段OC被称为角AOB的角平分线。

二、角平分线的性质1. 角平分线相互垂直对于一个角AOB和其角平分线OC,有角AOC = 角BOC = 0.5 * 角AOB。

根据垂直相交定理,我们可以得出结论:角平分线OC和边AB 相互垂直。

2. 角平分线的唯一性对于一个角AOB,角平分线OC是唯一的。

这意味着从角的顶点引出的任何一条线段,只有一条可以将该角平分成两个相等的角。

3. 角平分线的外角性质外角是指与角的两个内角不相邻的角。

对于一个角AOB和其角平分线OC,它们的外角AOE和BOE之比等于边AO和边BO之比。

即AOE/BOE = AO/BO。

这个性质被称为角平分线的外角性质。

4. 角平分线的内分比性质对于一个角AOB和其角平分线OC,假设OC与边AB的交点为D。

则有AD/DB = AO/BO。

这个性质被称为角平分线的内分比性质。

5. 角平分线与角的平分线性质如果在角平分线OC上选择一点E,使得OE与边AB相交于一点F,则有∠AOC = ∠EOF和∠BOC = ∠EOF。

也就是说,角平分线OC和角AOB的平分线EF重合。

三、角平分线的应用1. 测量角角平分线可以用来测量角的大小。

通过将角分成两个相等的角,可以更容易地计算角的度数。

2. 构造相等角如果我们希望构造一个与给定角相等的角,我们可以利用角平分线的性质。

首先,通过给定角的顶点引出一条角平分线,然后再以该角平分线为边,构造与原角相等的角。

3. 解决几何问题角平分线的性质在几何问题的解决中也有重要的应用。

例如,通过利用角平分线的内分比性质,我们可以解决关于三角形内部点的问题,如垂心、重心、外心和内切圆等。

角平分线的性质

角平分线的性质

推理的理由有三个, 必须写完全,不能
少了任何一个.
判一判:(1)∵ 如下左图,AD平分∠BAC(已知),
∴ BD = CD ,
× ( 在角的平分线上的点到这个角的两边的距离相等 )
B
B
A
D A
D
C
(2)∵ 如上右图, DC⊥AC,DB⊥AB (已知)C .
∴ BD = CD ,
× ( 在角的平分线上的点到这个角的两边的距离相等 )
SPDB

1 2
·AB·PD=28.
B
(3)求∆PDB的周长.
D
CPDB PD PB DB
P
PC PB DB
BC DB AD DB
A
C
AB 14
=
知识与方法
1.应用角平分线性质: 存在角平分线 条件 涉及距离问题
2.联系角平分线性质:
面积 利用角平分线的性
又∵PE∥AB,∴∠1=∠3. B E
(
A
34 P
12 DFC
同理,∠2=∠4.
∴∠3=∠4,∴AD平分∠BAC.
4.如图,已知∠CBD和∠BCE的平分线相交于点F,
求证:点F在∠DAE的平分线上. 证明:过点F作FG⊥AE于G,
ห้องสมุดไป่ตู้E G
FH⊥AD于H,FM⊥BC于M.
C
∵点F在∠BCE的平分线上, FG⊥AE, FM⊥BC.
3.经过分析,找出由已知推出要证的结论的途径, 写出证明过程.
知识要点
性质定理:角的平分线上的点到角的两边的距离相等.
应用所具备的条件:
(1)角的平分线;
(2)点在该平分线上;
(3)垂直距离.

角平分线的性质

角平分线的性质

角平分线的性质角平分线是指从一个角的顶点出发,将角分成两个相等的角的线段。

在几何学中,角平分线有着许多重要的性质和应用。

本文将详细介绍角平分线的性质,并通过实例来说明其应用。

一、角平分线的定义和性质角平分线是指从一个角的顶点出发,将角分成两个相等的角的线段。

角平分线有以下几个重要的性质:1. 角平分线上的点到角两边的距离相等。

这是因为角平分线将角分成两个相等的角,所以从角平分线上的任意一点到角两边的距离都是相等的。

2. 角平分线与角的两边相交,将角分成两个相等的角。

这是角平分线的定义。

3. 一个角的两条平分线相交于角的顶点,并且将角分成四个相等的角。

这是因为一个角的两条平分线相交于角的顶点,将角分成两个相等的角,而每个相等的角又被另一条平分线分成两个相等的角,所以整个角被平分线分成四个相等的角。

4. 角平分线与角的另一条边垂直相交。

这是因为角平分线将角分成两个相等的角,而相等的角的边垂直相交,所以角平分线与角的另一条边垂直相交。

二、角平分线的应用角平分线在几何学中有着广泛的应用,下面将通过实例来说明角平分线的应用。

例1:已知角ABC的角平分线AD,角ACD=60°,求角ABC的度数。

解:根据角平分线的性质,角ACD=角BCD=60°,所以角ABC=180°-60°-60°=60°。

例2:已知角ABC的角平分线AD,角ACD=40°,角BAD=30°,求角ABC的度数。

解:根据角平分线的性质,角ACD=角BCD=40°,所以角ABC=角ACD+角BAD=40°+30°=70°。

例3:已知角ABC的角平分线AD,角BAD=40°,角BCD=60°,求角ABC的度数。

解:根据角平分线的性质,角ACD=角BCD=60°,所以角ABC=角ACD+角BAD=60°+40°=100°。

角平分线性质定理

角平分线性质定理

角平分线性质定理定理说明在几何学中,角平分线性质定理是一个重要的几何定理。

它指出:如果一条直线将一个角分成两个相等的角(即平分该角),那么这条直线就被称为该角的角平分线。

根据这个定理,我们可以得出一些有趣的推论和性质。

角平分线的性质性质一:角平分线两侧的角相等若一条直线分割一个角,并且它分成的两个角相等,那么这条直线就是该角的平分线。

以角A为例,若BD为角A的角平分线,则∠ABD = ∠CBD。

性质二:角平分线在三角形中的应用在一个三角形中,如果一条角平分线平分了一个内角,那么它将三角形分成两个相似的三角形。

我们可以利用这个性质来求解三角形内部角的度数。

性质三:角平分线长度关系两内锐角平分线的长度之比等于与这两个角的正弦比值。

性质四:角平分线与外切圆关系若角BAC的角平分线交外接圆于点D,那么∠BDC = 90°。

性质五:角平分线的唯一性对于一个给定的角,其角平分线唯一且确定。

应用和分析角平分线性质定理在几何学中有着广泛的应用。

通过合理应用这些性质,我们可以有效地解决角平分线相关的问题,从而推理出更复杂的几何问题的解决方案。

同时,深入了解角平分线的性质也有助于提高我们的几何推理能力,培养我们的数学思维和逻辑推理能力。

结论角平分线性质定理是几何学中一个基础而重要的定理,它揭示了角平分线的一些重要性质和应用。

通过深入理解和应用这个定理,我们可以更好地解决几何学中有关角平分线的问题,并且提高自己的数学分析能力。

对于学习几何学的人来说,掌握角平分线性质定理是必不可少的,它将为我们的数学学习之路增添光彩。

角平分线的定义及性质应用

角平分线的定义及性质应用

角平分线的定义及性质应用角平分线是指从一个角的顶点到其两边上任意一点的线段,将这个角分成两个大小相等的角。

角平分线具有一些重要的性质和应用。

首先,角平分线的定义是从一个角的顶点出发,将这个角分成两个相等的角。

这意味着角平分线与角的两边所夹的角度大小是相等的。

这是角平分线最基本的性质之一。

其次,角平分线具有对称性。

如果一个角的平分线通过其顶点并交于角的另一边上的一个点,那么这个交点将把角分成两个大小相等的角。

同样地,这个交点也可以看作是这个角的另一个平分线通过其顶点并交于另一边上的一个点。

这个交点将角分成两部分,而这两部分的大小是相等的。

此外,角平分线还具有一些其他的重要性质和应用。

以下是其中的一些:1. 角平分线相交于角的内部:角平分线必定在角的内部相交。

这是因为在平面几何中,两点之间的直线是最短的路径,所以角平分线将角分成两部分时必须通过角的内部。

2. 角平分线垂直于角的边:如果一个角的平分线与角的一条边相交,那么它与这条边所夹的角是垂直的。

也就是说,平分线和边的交点处的两个相邻角度是垂直的。

这是一个很有用的性质,可以用来构造垂直角、垂直平分线和垂直双准线等几何图形。

3. 角平分线的长度相等:如果一个角的两条平分线相交,那么它们的长度是相等的。

换句话说,一个角的两条平分线与该角两条边的交点之间的距离是相等的。

这可以通过解析几何或使用三角函数来证明。

4. 角平分线被分成一定比例的线段:如果两个角的平分线相交于一个点,并且它们分别与这两个角的另外一条边相交于不同的点,那么这个交点将把角平分线分成一定比例的线段。

这个性质可以用于求解角平分线上的长度比例,从而解决几何问题。

5. 角平分线和三角形内心:在一个三角形中,三条角的平分线交于一点,这个点称为三角形的内心。

内心是三角形内接圆的圆心,角平分线与三角形内接圆的切点均相交于角的顶点。

内心的存在和性质可以用角平分线来证明。

综上所述,角平分线具有分割角度、对称性、相交于角的内部、垂直于角的边、长度相等、被分成一定比例的线段等性质。

角平分线的性质与应用

角平分线的性质与应用

角平分线的性质与应用角平分线是指将一个角平分成两个相等的角的线段。

在几何学中,研究角平分线的性质与应用有助于解决各种角相关的问题。

本文将探讨角平分线的性质以及它们在几何学中的应用。

一、角平分线的性质1. 定理1:角平分线将角分成两个相等的角。

证明:设角AOB为已知角,AC是角AOB的平分线。

假设角CAC'和角C'AB是不等的,即角CAC'≠角C'AB。

因为角CAC'和角C'AB之和等于角AOB,即角CAC'+角C'AB=角AOB。

又因为角CAC'和角C'AB是不等的,所以它们的和必然小于角AOB,产生矛盾。

因此,角CAC'和角C'AB必然相等。

2. 定理2:如果一个角的两条平分线相交于一个点,则该点在角的内部,并且到角的各边距离相等。

证明:设角AOB为已知角,AC和BD是角AOB的两条平分线,交于点E。

我们分别证明点E在角AOB的内部以及到角的各边距离相等:a) 点E在角AOB的内部的证明:假设点E在角AOB的外部,我们取点F在射线EB上,使得EF = EC。

在△AFC中,角AFC =角AFC’ +角C’FA =角 ABD +角 BDA =90°。

另一方面,在△BFD中,角BFD=角BFD’+角DFB=角ABD’+角DBA=90°。

因此,角AFC和角BFD之和等于180°,即角AFCB为一直线,这与假设矛盾。

因此,点E在角AOB的内部。

b) 到角的各边距离相等的证明:由定理1可知,∠ACB =∠DCB。

又因为∠AEC和∠BEC分别是角ACB的两个相等的角,所以∠AEC=∠BEC。

由于∠AEB是锐角,所以点E到射线AB上的点的距离相等。

二、角平分线的应用角平分线在几何学中有广泛的应用,下面介绍几种常见的应用情况:1. 求角平分线的长度:已知一个角的两条边长以及夹角的大小,可以利用三角函数求出角平分线的长度。

角平分线的性质和判定

角平分线的性质和判定

角平分线的性质和判定
一、角平分线的性质:
1、角平分线可以得到两个相等的角。

2、角平分线上的点到角两边的距离相等。

3、三角形的三条角平分线交于一点,称作三角形内心。

三角形的内心到三角形三边的距离相等。

二、判定:角的内部到角的两边距离相等的点,都在这个角的平分线上。

因此根据直线公理。

1角平分线定义
1、从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。

2、三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。

三角形的角平分线是一条线段。

由于三角形有三个内角,所以三角形有三条角平分线。

三角形的角平分线交点一定在三角形内部。

三角形三条角平分线的交点叫做三角形的内心。

三角形的内心到三边的距离相等,是该三角形内切圆的圆心。

2角平分线画法
方法1
1、以点O为圆心,以任意长为半径画弧,两弧交角AOB 两边于点M、N。

2、分别以点M、N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。

3、作射线OP。

射线OP即为角平分线。

方法2
1、在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD。

2、连接CN与DM,相交于P。

3、作射线OP。

射线OP即为角平分线。

角的平分线的性质

角的平分线的性质

角的平分线的性质一. 基础知识1.角的平分线的性质(1)内容角的平分线上的点到角的两边的距离相等.(2)书写格式如图所示,∵点P在∠AOB的角平分线上,PD⊥OA,PE⊥OB,∴PD=PE.2.角的平分线的判定(1)内容角的内部到角的两边的距离相等的点在角的平分线上.(2)书写格式如图所示,∵PD⊥OA,PE⊥OB,PD=PE,∴点P在∠AOB的角平分线上.3.运用角的平分线的性质解决实际问题运用角的平分线的性质的前提条件是已知角的平分线以及角平分线上的点到角两边的距离.在运用角的平分线的性质解决实际问题时,题目中常常出现求到某个角的两边距离相等的点的位置,只要作出角的平分线即可.运用角平分线的性质解决实际问题时,一定要把实际问题中道路、河流等抽象成数学图形直线,并且要求的点是到两线的距离相等,常常确定两线夹角的平分线上的点,这个过程就是建立数学模型的过程,这是在解决实际问题中常用的方法.4.运用角的平分线的判定解决实际问题在实际问题中,如果出现了某个地点到某些线的距离相等,常先把实际问题转化为数学问题,即建立数学模型(角的平分线).然后根据已知某点到角两边的距离相等,则常常联想到用角的平分线的判定得到角的平分线来解决问题.解技巧巧用角的平分线的性质和判定解决问题能根据已知条件联想到角的平分线的性质或判定是解决问题的关键.找到解决问题的切入点就是已知条件中有点到直线的距离相等或要找到到两条直线的距离相等的点.5.综合运用角的平分线的性质和判定解决实际问题角的平分线的性质和判定的关系如下:对于角的平分线的性质和判定,一方面要正确理解和明确其条件和结论,“性质”和“判定”恰好是条件和结论的互换,在应用时不要混淆,性质是证两条线段相等的依据,判定是证明两角相等的依据.析规律构造角的平分线的模型证明线段相等当有角平分线时,常过角平分线上的点向角的两边作垂线,根据角平分线的性质得线段相等.同样,欲证明某射线为角平分线时,只需过其上一点向角的两边作垂线,再证线段相等即可.6.运用角的平分线的性质和判定解决探究型问题在实际问题中,确定位置(如建货物中转站、建集市、建水库等)的问题,常常用到角的平分线的性质来解决.尤其是涉及作图探究的题目,性质“角的内部到角两边的距离相等的点在这个角的平分线上”的应用是寻找角的平分线的一种比较简单的方法.三角形有三条角平分线交于三角形内部一点,并且交点到该三角形三边的距离都相等,其实只要作出其中两条角平分线的交点,第三条角平分线一定过此交点.三角形两个外角的平分线也交于一点,这点到该三角形三边所在的直线距离相等.三角形外角平分线共有三条,所以到三角形三边所在直线距离相等的点共有4个.【例6】如下图所示,三条公路l1,l2,l3两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路的距离相等,可供选择的地方有多少处?你能在图中找出来吗?解:三角形的三条角平分线的交点到该三角形三条边的距离相等;∠ACB,∠ABC的外角平分线交于一点,利用角的平分线的性质和判定定理,可以得到此点也在∠CAB的平分线上,且到公路l1,l2,l3的距离相等;同理还有∠BAC,∠BCA的外角平分线的交点;∠BAC,∠CBA的外角平分线的交点,因此满足条件的点共有4个.作法:(1)如右图所示,作出△ABC两内角∠BAC,∠ABC的平分线的交点O1.(2)分别作出∠ACB,∠ABC的外角平分线的交点O2,∠BAC,∠BCA的外角平分线的交点O3,∠BAC,∠CBA的外角平分线的交点O4;故满足条件的修建点有四处,即点O1,O2,O3,O4处.课堂练习一、填空题1.已知:△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为 .2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________.4.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________. 5.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm .6.如图,CD 为Rt △ABC 斜边上的高,∠BAC 的平分线分别交CD 、CB 于点E 、F ,FG ⊥AB ,垂足为G ,则CF ______FG ,CE ________CF .7.如图,已知AB 、CD 相交于点E ,∠AEC 及∠AED 的平分线所在的直线为PQ 与MN ,则直线MN 与PQ 的关系是_________.8.三角形的三条角平分线相交于一点,并且这一点到________________相等. 9.点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,则∠BOC 的度数为_____________.10.在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32且BD ∶CD =9∶7,则D 到AB 的距离为 .第4题第5题第6题第7题二、选择题11.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点 12.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD 13.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A 、1处B 、2处C 、3处D 、4处14.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A 、4㎝B 、6㎝C 、10㎝D 、不能确定21DAPOEBl 2l 1l 3DCEB第12题 第13题 第14题15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正确的是( )A 、TQ =PQB 、∠MQT =∠MQPC 、∠QTN =90°D 、∠NQT =∠MQTNTQPM第15题16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )EDCBAA .2 cmB .3 cmC .4 cmD .5 cm17.如图,已知AB =AC ,AE =AF ,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )A .①B .②C .①和②D .①②③EDC BAF18.如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,则下列结论正确的是( )A .OA =OCB .点O 到AB 、CD 的距离相等C .∠BDA =∠BDCD .点O 到CB 、CD 的距离相等19.△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,则点O 到三边AB 、AC 、BC 的距离为( )A .2cm ,2cm ,2cm ;B . 3cm ,3cm ,3cm ;C . 4cm ,4cm ,4cm ;D . 2cm ,3cm ,5cm 20.两个三角形有两个角对应相等,正确说法是( )A .两个三角形全等B .如果还有一角相等,两三角形就全等C .两个三角形一定不全等D .如果一对等角的角平分线相等,两三角形全等 三、解答与证明21. 如图,已知△ABC 中,AB =AC ,D 是BC 的中点,求证:D 到AB 、AC 的距离相等.DCAO 第18题22. 如图,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD =CD .求证:AD 平分∠BAC .23. 如图,已知BE 平分∠ABC ,CE 平分∠ACD ,且交BE 于E .求证:AE 平分∠FAC .F CAE24. 如图,已知AB =AC ,AD =AE ,DB 与CE 相交于O . (1)若DB ⊥AC 于D ,CE ⊥AB 于E ,试判断OE 与OD 的大小关系.并证明你的结论. (2)若没有第(1)中的条件,是否有这样的结论?试说明理由.DCBAOE25.如图,∠B =∠C =90°M 是BC的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .重点题型讲解1.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.2.如图.AE、BD是△ABM的高.AE、BD交于点C,且AE=BE,BD平分∠ABM.(1)求证:BC=2AD;(2)求证:AB=AE+CE;(3)求证:DE平分∠MDB3.如图,点M(2,2),将一个90°的角尺的直角顶点放在点M处,角尺的两边分别交x轴、y轴正半轴于A、B,AP平分∠OAB,交OM于点P,PN⊥x轴于N,把角尺绕点M旋转时:(1)求证:OM平分∠AOB;(2)求OA+OB的值4.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.(1)求证:△ACD≌△BCE;(2)求证:CH平分∠AHE;(3)求∠CHE的度数.(用含α的式子表示)家庭作业1角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.2、∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________.3、如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________.4、如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm .5、三角形的三条角平分线相交于一点,并且这一点到________________相等。

角平分线性质

角平分线性质

C A BD A B C A B C DEF 角平分线的性质概念● 角平分线的性质:角平分线上的点到角的两边的距离相等.● 到角的两边距离相等的点在角的平分线上学习目标● 应用三角形全等的知识,解释角平分线的原理● 会用尺规作一个已知角的平分线.● 角的平分线的性质.● 会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上【基础知识扫描】1.三角形中到三边的距离相等的点是( )A .三条边的垂直平分线的交点B .三条高的交点C .三条中线的交点D .三条角平分线的交点2.如图,在Rt △ABC 中,∠C =90°AD 的平分∠BAC , ∠BAD =20°,则∠B 的度数为( )A . 40°B . 30°C . 60°D . 50°第2题图 第3题图 第4题图 第6题图3.如图, ∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =5cm,BD =3cm ,则点D 到AB 的距离为( )A . 5cmB . 3cmC . 2cmD . 不能确定4.如图,AB ∥CD ,PB 平分∠ABC ,PC 平分∠DCB ,则 ∠P =5.角平分线上的点到 相等.【能力训练升级】6.如图,在△ABC 中,∠C =90°,AC=BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,且AB =5cm ,则△DEB 的周长为7.如图,在△ABC 中,AD 是它的角平分线,AB =5cm ,AC=3cm ,则S △ABD ︰S △ACD =第7题图 第8题图 第9题图8.已知∠ABC ,M 求作一个角,使它等于21∠BAC (要求用尺规作图,并写出作法); 基 础 知 识随 堂 练 习 一D C B A A B C P A B C D A B C D EO D CB A A B CD E AB C A B C O 9.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC ,求证:BE=CF【基础知识扫描】1.点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,则∠BOC 的度数为( )A .60°B .90°C .120°D .150°2.如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,则下列结论正确的是( )A . OA =OCB . 点O 到AB 、CD 的距离相等C . 点O 到CB 、CD 的距离相等 D . ∠BDA =∠BDC第2题图3.△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E , OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,则点O 到三边AB 、AC 、BC 的距离为( )A .2cm 2cm 2cmB . 3cm 3cm 3cmC . 4cm 4cm 4cmD . 2cm 3cm 5cm4.到一个角的两边距离相等的点在 ;角平分线上的点到这个角的两边的距离5.如图,△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为第5题图 第6题图 第7题图【能力训练升级】6.如图,P 是∠AOB 的平分线上的一点,PE ⊥OA 于E ,PF ⊥OB 于F ,OP 与EF 的位置关系是7.如图,在△ABC 中,∠C =90°,AC=BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =6cm ,则△DEB 的周长为__ cm .8.如图,已知BE 平分∠ABC ,CE 平分∠ACD ,且交BE 于E ,求证:AE 平分∠FAC第8题图9.如图,已知△ABC 中,AB =AC ,D 是BC 的中点,求证:D 到AB 、AC 的距离相等.第9题图随 堂 练 习 二 A B C D F E E D C B A。

角的平分线的性质

角的平分线的性质

角的平分线的性质汇报人:2023-12-08目录CONTENCT •角的平分线定义与性质•构造方法与证明技巧•在三角形中应用•在四边形和多边形中应用•拓展:关于角平分线其他知识点01角的平分线定义与性质定义及基本性质定义角的平分线指的是将一个角平分为两个相等的小角的射线。

基本性质平分线将对应的角平分为两个相等的小角,且平分线上的每一点到该角两边的距离相等。

存在性与唯一性定理存在性定理对于任何一个角,都存在一条射线将其平分为两个相等的小角,即存在一条角的平分线。

唯一性定理对于任何一个角,它的平分线是唯一的,即不存在两条不同的射线都可以将该角平分为两个相等的小角。

几何意义角的平分线在几何学中有着非常重要的意义,它可以用于构造等边三角形、等腰三角形等图形,并且是解决一些几何问题的关键。

应用场景在实际问题中,角的平分线常常被用于设计、建筑、工程等领域。

例如,在建筑工程中,可以利用角的平分线来确定某些结构的位置和方向;在机械设计中,可以利用角的平分线来设计齿轮、联轴器等零部件的位置和尺寸。

几何意义及应用场景02构造方法与证明技巧首先利用尺规作图作出给定角的平分线,再通过该平分线构造等腰三角形或利用其他相关性质进行证明。

尺规作图法利用了角的平分线性质,即平分线上的点到角两边距离相等,从而实现了对给定角的精确平分。

尺规作图法原理分析作图步骤三角形内心与外心相关性质三角形的内心到三角形三边的距离相等,且与三角形三顶点连线将三角形划分为三个面积相等的部分。

内心与三角形任意两顶点连线的夹角等于与该顶点相对的角的一半。

外心性质三角形的外心到三角形三个顶点的距离相等,且与三角形三边的中垂线交于一点。

外心与三角形任意两顶点连线的夹角等于与该顶点相对的角的外角的一半。

例题一思路梳理例题二思路梳理典型例题解析及思路梳理已知三角形ABC中,AD是角BAC的平分线,求证:AB/AC=BD/CD。

利用角的平分线性质,构造等腰三角形或利用相似三角形进行证明。

角平分线的性质及应用

角平分线的性质及应用

利用角平分线定理求角度
总结词
通过利用角平分线定理,我们可以求解一些与角度相关的几何问题。
详细描述
在几何问题中,有时候我们需要求解某个角度的大小。利用角平分线定理,我们可以将问题转化为求 解两个相等的线段之间的夹角。例如,如果一个角的平分线将相对边分为两段相等的线段,那么这个 角被平分线分为两个相等的部分,因此可以利用这个性质来求解角度。
总结词
角平分线定理是几何学中的重要定理之一,它可以用于证明 各种几何命题,如三角形中的角平分线性质、平行线性质等 。
详细描述
角平分线定理指出,角平分线将相对边分为两段相等的线段 。利用这个定理,我们可以证明一些与角平分线相关的几何 命题。例如,如果一个角的平分线与另一个角的两边相交, 那么这两个交点到角平分线的距离相等。
利用角平分线定理证明三角恒等式
总结词
通过构造角平分线,可以将复杂的三角恒等式证明问题转化为简单的几何问题,从而证 明三角恒等式。
详细描述
在证明三角恒等式时,我们可以根据题目的特点,构造角平分线,将问题转化为几何问 题。然后利用角平分线定理和三角形的性质,推导出恒等式。这种方法可以简化证明过
程,使证明更加直观和简单。
利用角平分线定理求距离
总结词
通过利用角平分线定理,我们可以求解 一些与距离相关的几何问题。
VS
详细描述
在几何问题中,有时候我们需要求解两个 点之间的距离。利用角平分线定理,我们 可以将问题转化为求解两个相等的线段之 间的距离。例如,如果一个角的平分线将 相对边分为两段相等的线段,那么这两个 相等的线段之间的距离就是所求的距离。 因此,可以利用这个性质来求解距离。
详细描述
这是角平分线的一个非常重要的性质。在几何学中,我们可以通过这个性质来证明一些与角平分线相关的命题。 例如,如果我们从一个固定点向一个角的两边画线,那么这些线中最短的一条必定是角的平分线。这个性质在解 决几何问题时非常有用,因为它可以帮助我们找到最短的路径或线段。

初中数学角平分线的性质知识点

初中数学角平分线的性质知识点

初中数学角平分线的性质知识点
初中数学中,角平分线是一个重要的概念。

下面我们来探讨一下角平分线的性质。

一、角平分线的定义
角平分线是指把一个角平分为两个相等的角的线段。

二、角平分线的性质
1.角平分线与角的两边相交于角的顶点,并把角分为两个相等的角。

2.角平分线所在的平面上,与角的两边的延长线交于一点,这个点称为角的外心。

3.角平分线上的每一个点到角的两边的距离相等。

4.角平分线上的每一个点到角的外心的距离相等。

5.对于同一个角,高度相等的两条角平分线相交于角的外心。

6.角平分线将一个角分为两个相等的角,但是并不一定把一个平面分为两个相等的部分。

三、角平分线的性质应用
1.根据角平分线的定义和性质,可以帮助我们判断一个线段是否为角的平分线。

2.通过利用角平分线的性质,可以求解一些几何问题。

比如,已知一个角的两边和这个角的外心,可以求出这个角的平分线。

3.利用角平分线的性质,可以证明一些角的关系。

比如,可以利用角平分线的性质来证明角平分线是角的垂直平分线。

四、角平分线的相关定理
1.角平分线定理:如果一条直线与一个角的两边相交且把这个角平分为两个相等的角,则这条直线是这个角的平分线。

2.角平分线的外角性质:角平分线所在直径上的角是180度的外角。

五、角平分线的证明方法
1.角平分线的证明方法一般采用反证法或者直接证明。

比如,先假设直线不是角的平分线,然后利用假设得出矛盾,从而得到直线是角的平分线。

2.对于一些特殊的角,可以直接利用三角形的辅助线去证明角平分线的存在性和性质。

角的平分线的性质

角的平分线的性质

角的平分线的性质角的平分线是指将一个角分为相等的两个角的直线。

在几何学中,角的平分线具有以下性质:1. 两个角的平分线相交于角的顶点,并且相交点与角的两边形成的四个角是相等的。

也就是说,如果有一个角ABC,其中CD是角ABC的平分线,那么角ACD与角BCD将是相等的。

2. 平分线将一个角分为两个相等的角度,这意味着平分线将角的总度数分成相等的两部分。

例如,对于一个直角(90度)来说,它的平分线将把它分成两个45度的角。

3. 如果两个角的平分线相等,那么这两个角也是相等的。

也就是说,如果AD和BD是角ABC的两个平分线,并且AD=BD,那么角ACD与角BCD将是相等的。

4. 在一个三角形中,如果一个边上的角被其对边的平分线分成两个相等的角,那么这个边一定是这个三角形的底边。

换句话说,如果在三角形ABC中,AD是角BAC的平分线,并且角DAB=角DAC,那么线段BC是三角形ABC的底边。

这些是角的平分线的一些主要性质。

角的平分线在几何学中具有重要的应用。

它们帮助我们研究和理解角度的关系,以及解决与角度相关的问题。

在证明几何定理和推导几何公式时,角的平分线也经常被使用。

除了以上性质外,角的平分线还有其他一些重要的应用和性质,例如,垂直平分线、角平分线与三角形的外接圆和内切圆的关联等。

这些性质和应用使得角的平分线成为几何学中一个重要的概念。

总结起来,角的平分线是将一个角分为相等的两个角的直线。

角的平分线具有多种性质,包括:相交于角的顶点,相交点与角的两边形成的四个角是相等的,平分线将角的总度数分成相等的两部分等等。

这些性质和应用使角的平分线在几何学中具有重要的地位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.3 角的平分线的性质
一、教学分析
1.教学内容分析
本节课是新人教版教材《数学》八年级上册第12.3节第一课时内容,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.内容包括角平分线的作法、角平分线的性质及初步应用.作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.2.教学对象分析
刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础.
3.教学环境分析
利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律.根据如今各学校实际教学环境及本节课的实际教学需要,我选择多媒体、投影仪等教学系统辅助教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.
二、教学目标
1、知识与技能:
1.掌握作已知角的平分线的尺规作图方法。

2. 利用逻辑推理的方法证明角平分线的性质,并能够利用其解决问题.
2、过程与方法:
1.在探究作已知角的平分线和角平分线的性质的过程中,发展几何直觉。

2.提高综合运用三角形全等的有关知识解决问题的能力.
3.初步了解角的平分线的性质在生活、生产中的应用.
3、情感态度价值观:
充分利用多媒体教学及学生手工操作,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.
三、教学重点、难点
重点:1、利用尺规作图作已知角的平分线。

2、角平分线的性质定理及其应用。

难点:1、根据角的平分仪器提炼出角的尺规画法。


2、角的平分线的性质的探究。

教学难点突破方法:
(1)利用引导学生动手折纸、投影仪及多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;
(2)通过对比教学让学生选择简单的方法解决问题;
(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.
教学设计流程安排
四、教学过程
(一)教学环节设计
[活动1]创设情景,动手操作
如图,将∠AOB的两边对折,再折个直角三角形(以第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得到什么结论?你能利用所学过的知识,说明你的结论的正确性吗?
学生实验:通过折纸的方法作角的平分线;教师与学生一起动手操作;展示学生作品。

设计意图:(体验角平分线的简易作法,并为角平分线的性质定理的引出做铺垫,为下一步设置问题墙。

通过折纸及作图过程,由学生自己去发现结论.教师要有足够的耐心,要为学生的思考留有时间和空间)
[活动2]探究角平分仪原理
对这种可以折叠的角可以用折叠方法的角平分线,对不能折叠的角怎样得到其角平分线?有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平分线,为什么?
师生行为:教师课件展示实验过程;学生将实物图抽象出数学图形;学生独立运用三角形全等的方法证明AE是∠BAD的平分线。

本次活动中,教师重点关注:
(1)学生是否能从简易角平分仪中抽象出两个三角形;
(2)学生能否运用三角形全等的条件证明两个三角形全等,从而说明线段AE是∠BAD的平分线。

设计意图:(说明用其他实验的方法可以将一个角平分。

培养学生的抽象思维能力和运用三角形全等的知识解决问题的能力。

让学生体验成功这个提问设置为例1的出现做好铺垫,同时例1的证明又验证了学生猜想的正确性,使学生获得成功的体验.将实际问题转化为数学问题,从而顺利解决.)
[活动3]新知掌握1:尺规作图
(1)从上面的探究中,可以得出作已知角的平分线的方法。

(2)把简易平分角的仪器放在角的两边.且平分角的仪器两边相等,从几何角度怎么画?
(3) 简易平分角的仪器BC=DC,从几何角度如何画
(4)OC与简易平分角的仪器中,AE是同一条射线吗?
(5)你能说明OC是∠AOB的平分线吗?
(6)归纳角平分线的作法
师生行为:教师提问,学生与老师一起完成探究过程.
设计意图:(从实验中抽象出几何模型,明确几何作图的基本思路和方法.培养学生运用直尺和圆规作已知角的平分线的能力.让学生体验成功学生独立说明,学生相互讨论,交流,归纳后教师归纳展示作法.)
[活动4]探究角平分线的性质
(1)在已画好的角的平分线OC上任意找一点P,过P点分别作OA、OB的垂线交OA、O于D、E。

PE、PD的长度是∠AOB的平分线上一点到∠AOB 两边的距离。

量出它们的长度,你发现了什么?
(2)你能归纳角的平分线的性质吗?
师生行为:学生实验;学生分组讨论,教师引导得出结论;学生分析已知条件,利用(AAS)证明.;
本次活动中,教师重点关注(1)学生能否从实验中探索、发现角的平分线的性质;(2)学生能否独立运用三角形全等的条件证明两个三角形全等;(3)说明射线OP 是是∠AOB的平分线吗?
设计意图:(从实验探索中发现角的平分线的性质。

培养学生的数学抽象
概括能力及理性精神.让学生体验成功.)
[活动5]验证所得结论
出示大屏,如图:这是按照折纸的顺序画出的角及
折纸形成的三条折痕.请学生结合图形说出已知,求证,
生说(多媒体出示),请同学们对如何证明PD=PE 进行思
考,然后汇报,师点评、板书证明过程。

证明后,教师强调经过证明正确的命题可以作为定理
或性质来用.请学生用文字语言来说说角平分线的这个性质。

然后齐读两遍,再
写出数学符号表达式。

[活动6]应用新知
如图,△ABC 的角平分线BE 、CF 相交于一点O ,求证:点O 到三边AB 、BC 、CA 的距离相等。

师生行为:学生独立练习,同组同学交流,抽学生上来展示分析过程。

并形成知识结论。

F
E
D C B
A
②如图:△ABC 中, ∠C=900,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ,求证CF=EB 。

师生行为:学生独立练习,同组同学交流,老师根据学生的学习情况适当加以指导,获得正确的结论。

抽学生上来展示分析过程。

设计意图:(通过学生对角的平分线的知识进行独立练习,自我评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。

本次活动中,教师重点关注:(1)不同层次的学生对角的平分线的性质的理解程度; (2)对学生在练习中的问题进行针对性的分析、讲解。


[活动7]拓展提高
O B
已知:在等腰直角△ABC 中,AC = BC ,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 于点E 。

AB=15cm, 求△DBE 的周长
D A
B C E
师生行为:学生根据上一问题的解决过程独立解决本问题,在必要时教师适当引导.
设计意图:(在已有成功经验的基础上,继续探究与应用,提升分析解决问题的能力并增进运用数学的情感体验.在说理的过程中加深对角平分线性质、判定定理的理解)
[活动8]总结反思
1、这节课你有哪些收获,还有什么困惑?
2、通过本节课你了解了哪些思考问题的方法?
(通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力.)
[活动9]
作业:寻找生活中运用角平分线的现象
教学反思:本课题设计思路按操作、猜想、验证的学习过程,遵循学生的认知规律,体现了数学学习的必然性.教学始终围绕着问题而展开,先从出示问题开始,鼓励学生思考、探索问题中所包含的数学知识,而后设计了第一个学生活动——折纸,让学生体验三角形角平分线交于一点的事实,并得出了进一步的猜想,紧接着推出了第二个学生活动——尺规作图,以达到复习旧知和再次验证猜想的目的,猜想是否正确?还得进行证明,从而激发了学生学习数学的欲望和兴趣,使教学目标顺利达成.整堂课都以学生操作、探究、合作贯穿始终,在教学过程中给学生的思考留下足够的时间和空间,由学生自己去发现结论,学生在经历“将现实问题转化成数学问题”的过程中,对角平分线性质有了更深刻的认识,培养了学生动手、合作、概括能力,同时也提高了思维水平和应用数学知识解决实际问题的意识.。

相关文档
最新文档