人教版数学高二A版选修4-1预习导航第三讲二平面与圆柱面的截线

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预习导航

1.定理1

圆柱形物体的斜截口是椭圆

与圆柱OO′的轴斜交,则截口是椭圆

判断截口形状是椭圆

2.

(1)定义:平面上到两个定点的距离之和等于定长的点的轨迹叫做椭圆.

(2)组成元素:如图所示,F1,F2是椭圆的焦点,B1B2是F1F2的中垂线.

我们把A1A2叫做椭圆的长轴,B1B2叫做椭圆的短轴,F1F2叫做椭圆的焦距.如果长轴

为2a,短轴为2b,那么焦距2c

(3)Dandelin双球探究椭圆性质:如图所示,设球O1,O2与圆柱的交线(圆)所在的平面分别为α,γ,椭圆所在的斜截面β与它们的交线分别为l1,l2,α,γ与β所成的二面角为θ,母线与平面β的交角为φ.由于α,β,γ都是确定的,因此交线l1,l2也是确定的.

①当点P 在椭圆的任意位置时,过P 作l 1的垂线,垂足为Q ,过P 作平面α的垂线,

垂足为K 1,连接K 1Q ,得Rt △PK 1Q ,则∠QPK 1=φ.从而有PF 1PQ =PK 1PQ

=cos_φ=定值. ②椭圆上任意一点到焦点F 1的距离与到直线l 1的距离之比为定值cos_φ.我们把直线l 1叫做椭圆的一条准线.

③椭圆上任意一点到焦点F 2的距离与到直线l 2的距离之比也为定值cos φ,所以l 2是椭圆的另一条准线.

④记e =cos φ,我们把e 叫做椭圆的离心率.

名师点拨 e 的几何意义是,椭圆上一点到焦点的距离与它到准线的距离的比.当e 越接近于1时,c 越接近于a ,从而b 越小,因此椭圆越扁;反之,e 越接近于0,从而b 越接近于a ,椭圆越接近于圆.当e =0时,c =0,a =b ,两个焦点重合,图形就是圆了.可见离心率是刻画椭圆圆扁程度的量.

思考 Dandelin 双球探求椭圆性质的过程是怎样的?

提示:通过一条直线与相离的两个等圆的内公切线的情形,类比为两个半径相等的球在一个平面的两侧均与球相切的情形,从而得到定理1及有关结论,因而对于平面内直线与两个相离的等圆的内公切的情形要注意研究,这有助于理解椭圆和下一节的知识.

圆柱内嵌入两个球,使它们分别位于斜截面的上方和下方,并且与圆柱和斜截面均相切,这是证明定理的关键.这种方法是数学家Dandelin 创立的,故将嵌入的两球称为Dandelin 双球.要注意对于Dandelin 双球的研究.

相关文档
最新文档