高中物理追及问题
高中物理追击问题解题技巧公式
高中物理追击问题解题技巧公式
高中物理追击问题是指在一维运动中,一个物体从某一位置出发,以一定的速度追赶另一个物体。
解决这类问题可以使用以下公式和技巧:
1. 追及时间公式:
追及时间 = 追及距离 / 相对速度
其中,追及距离为两物体之间的距离,相对速度为追赶物体的速度减去被追赶物体的速度。
2. 追及位置公式:
追及位置 = 追赶物体的初始位置 + 追及时间× 追赶物体的速度
3. 追及速度公式:
追及速度 = 追赶物体的速度 - 被追赶物体的速度
4. 注意事项:
a. 在使用以上公式时,要保持单位一致,如距离单位为米、速度单位为米/秒。
b. 如果追及时间为负数,则表示追不上被追赶物体。
c. 在实际问题中,要注意考虑物体的加速度、运动的方向等因素,可能需要使用更复杂的运动学公式。
总之,解决高中物理追击问题的关键是确定追及时间,然后根据追及时间计算追及位置或追及速度。
(完整版)高中物理相遇和追及问题(完整版)
、考点、热点回顾一、追及问题1. 类型图象 说明匀加速追匀速①t=t 0 以前,后面物体与 前面物体间距离增大②t=t 0 时,两物体相距最 远为 x 0+Δx③t=t 0 以后,后面物体与前面物体间距离减小④能追及且只能相遇一 次匀速追匀减速匀加速追匀减速2. 速度大者追速度小者度大者追速度小者 开始追及时, 后面物体与 前面物体间的距离在减小, 当 两物体速度相等时,即 t=t0 时刻:① 若Δ x=x0, 则恰能追 及,两物体只能相遇一次, 这相遇追及问题匀减速追匀速也是避免相撞的临界条件② 若Δ x<x0, 则不能追 及,此时两物体最小距离为x0- Δ x③ 若Δ x>x0, 则相遇两次,设t1 时刻Δ x1=x0, 两物体第一次相遇 ,则 t2 时刻两物体第 二次相遇① 表中的Δ x 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ② x 0是开始追及以前两物体之间的距离; ③ t 2-t 0=t 0-t 1;④ v 1 是前面物 体的速度, v 2是后面物体的速度 . 二、相遇问题这一类 : 同向运动的两物体的相遇问题 , 即追及问题 .第二类 : 相向运动的物体 , 当各自移动的位移大小之和等于开始时两物体的距离时相遇 . 解此类问题首先应注意先画示意图 , 标明数值及物理量 ; 然后注意当被追赶的物体做匀 减速运动时 , 还要注意该物体是否停止运动了 .求解追及问题的分析思路(1) 根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物 体运动时间之间的关系.(2) 通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追 及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等 时有最大距离; 速度大者减速追赶速度小者, 在两物体速度相等时有最小距离,等等. 利用 这些临界条件常能简化解题 过程.(4)求解此类问题的方法, 除了以上所述根据追及的主要条件和临界条件解联立方程外, 还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:匀速追匀加速匀减速追匀加速相遇问题分为追及相遇和相向运动相遇两种情形, 其主要条件是两物体在相遇处的位置 坐标相同.(1) 列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2) 利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4) 与追及中的解题方法相同.【例 1】物体 A 、B 同时从同一地点, 沿同一方向运动, A 以 10m/s 的速度匀速前进, B 以2m/s 2 的加速度从静止开始做匀加速直线运动,求 A 、 B 再次相遇前两物体间的最大距离.【 解析一 】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度 a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内, A 的速度大于 B 的速度,它们间的距离逐渐变大,当 B 的速度加速到大于 A 的速度后,它们间的距离又逐渐变小; A 、B 间距离有最大值的临界条 件是 υA = υB .①设两物体经历时间 t 相距最远,则 υA = at ② 把已知数据代入①②两式联立得 t =5 s 在时间 t 内, A 、B 两物体前进的距离分别为 s A = υA t =10×5 m = 50 m1 2 1 2s B = at 2= ×2×52 m = 25 m22A 、B 再次相遇前两物体间的最大距离为Δ s m = s A - s B = 50 m -25 m = 25 m解析二 】 相对运动法因为本题求解的是 A 、B 间的最大距离,所以可利用相对运动求解.选 B 为参考系,则 A2 相对 B 的初速度、末速度、加速度分别是 υ0=10 m/s 、υt =υA -υB =0、a =- 2 m/s .22 根据 υt 2-υ0=2as .有 0- 102=2× (-2) ×s AB 解得A、 B 间的最大距离为 s AB =25 m . 解析三 】 极值法11物体 A 、 B 的位移随时间变化规律分别是 s A =10t ,s B =2at 2=2×2×t 2 =t 5.B 间 的 距 离 Δs =10t -t 2, 可 见 ,4×( -1)×0- 102 4×(-1) m =25 m【解析四 】 图象法根据题意作出 A 、B 两物体的 υ-t 图象,如图 1-5-1 所示.由图可知,B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得 t 1=5 s A 、 B 间 距 离 的 最 大 值 数 值 上 等 于 ΔO υA P 的 面 积 , 1 Δs m = 2×5×10 m = 25 m .【答案 】25 m【点拨 】相遇问题的常用方法(1) 物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,典型例题且最大值为按(解法一)中的思Δ s m = A 、即设甲、乙两车行驶的总路程分别为 s 、 s ′,则有路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3) 极值法:设相遇时间为 t ,根据条件列方程,得到关于 t 的一元二次方程,用判别 式进行讨论,若△> 0,即有两个解,说明可以相遇两次;若△= 0,说明刚好追上或相碰;若△< 0,说明追不上或不能相碰.(4) 图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.拓展如图 1-5-2 所示是甲、乙两物体从同一地点,沿同一方向做直线运动的 υ- t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是 1s 末和 4s 末B .这两个物体两次相遇的时刻分别是 2s 末和 6s 末C .两物体相距最远的时刻是 2s 末D . 4s 末以后甲在乙的前面【解析 】从图象可知两图线相交点 1s 末和 4s 末是两物速度相等时刻,从 4s 末两物相距最远,到 6s 末追上乙.故选 B . 答案 】 B的加速度大小减小为原来的一半。
高一物理追及相遇问题
高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。
解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。
一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。
解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。
定义变量设被追物体为A,追赶物体为B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。
解决相遇问题的关键是找出两个物体之间的位移和速度关系。
定义变量设相遇的两个物体分别为A、B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
如果A、B不能相遇,还可以求出它们之间的距离。
高一物理追及相遇问题
高一物理追击和相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。
一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。
若甲的速度小于乙的速度,则两者之间的距离。
若一段时间内两者速度相等,则两者之间的距离。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即。
⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
3、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意图象的应用。
二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。
⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
【典型例题】例1.在十字路口,汽车以3米每二次方秒的加速度从停车线启动做匀加速运动,恰好有一辆自行车以6米每秒的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【针对训练】1、为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v =120km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s.刹车时汽车的加速度为a=4m/s2.该高速公路上汽车间的距离s至少应为多少?(取重力加速度g=10m/s2.)2、客车以20m/s的速度行驶,突然发现同轨前方120m处有一列货车正以6m/s的速度同向匀速前进,于是客车紧急刹车,刹车引起的加速度大小为0.8m/s2,问两车是否相撞?3、如图,A、B两物体相距S=7米,A正以V1=4米/秒的速度向右做匀速直线运动,而物体B此时速度V2=10米/秒,方向向右,做匀减速直线运动(不能返回),加速度大小a=2米/秒2,从图示位置开始计时,经多少时间A追上B.4、某人在室内以窗户为背景摄影时,恰好把窗外从高处落下的一小石子摄在照片中。
2024-2025高一物理专题03 追及相遇问题-专项练习解析版
专题03 追及相遇问题1.在某次遥控车挑战赛中,若a b 、两个遥控车从同一地点向同一方向做直线运动,它们的v t -图像如图所示,则下列说法不正确的是( )A .b 车启动时,a 车在其前方2m 处B .运动过程中,b 车落后a 车的最大距离为1.5mC .b 车启动3s 后恰好追上a 车D .b 车超过a 车后,两车不会再相遇【答案】A【详解】A .b 车启动时,a 车在其前方距离121m 1m 2x ∆=⨯⨯=选项A 错误; B .运动过程中,当两车速度相等时,b 车落后a 车的距离最大,最大距离为1311m 11m 1.5m 22m x +∆=⨯-⨯⨯=选项B 正确;C .b 车启动3s 后,a 车的位移121m 31m 4m 2a x =⨯⨯+⨯=,b 车的位移132m 4m 2b x +=⨯=即b 车恰好追上a 车,选项C 正确;D .b 车超过a 车后,因b 车速度大于a 车,则两车还会再相遇,选项D 正确。
此题选择不正确选项, 故选A 。
2.甲、乙两车在一条平直的公路上同向并排行驶,0=t 时刻甲车开始刹车,甲车的速度随时间变化的图像如图甲所示,以0=t 时刻甲车所在位置为坐标原点0,以甲车速度方向为正方向建立x 轴,乙车的位置坐标随时间变化的图像如图乙所示,图像为顶点在30m 处的抛物线。
下列说法正确的是( )A .甲车做匀变速直线运动的加速度大小为22.5m/sB .乙车做匀变速直线运动的加速度大小为26.25m/sC .4s t =时甲、乙两车相距最远D .甲、乙两车只相遇一次 【答案】A【详解】A .甲车做匀变速直线运动的加速度大小为22120m/s 2.5m/s 8v a t ∆===∆故A 正确; B .由题可知,乙的初速为零,在04s t =内的位移为20m ,则有22012x a t =可得,乙车做匀变速直线运动的加速度大小为22 2.5m/s a =故B 错误;D .若甲车和乙车相遇,则有2212113022v t a t a t -=+甲带入数据解得2s 8s t =<或6s 8s t =<则甲、乙两车相遇两次,故D 错误;C .由图可知,8s 后甲车速度为零,乙车速度不为零,且8s 后乙车在前甲车在后,则8s 后两者间距离一直增大,故C 错误。
高考物理追击及相遇问题必备知识点
高考物理追击及相遇问题必备知识点追及问题是运动学中较为综合且有实践意义的一类习题,它通常会涉及两个以上物体的运动过程,每个物体的运动规律又不尽相同。
下面是小编为大家整理的关于高考物理追击及相遇问题必备知识点,希望对您有所帮助。
欢迎大家阅读参考学习!追击及相遇问题必备知识点一、追及和相遇问题的求解方法两个物体在同一直线上运动,往往涉及追及,相遇或避免碰撞等问题,解答此类问题的关键条件是:两物体能否同时达到空间某位置。
基本思路是:①分别对两物体进行研究;②画出运动过程示意图;③列出位移方程④找出时间关系,速度关系⑤解出结果,必要时进行讨论。
追及问题:追和被追的两物体的速度相等(同向运动)是能否追上及两者距离有极值的临界条件。
第一类:速度大者减速(如匀减速直线运动)追速度小者(如匀减速直线运动)①当两者速度相等时,追者位移追者位移仍小于被追者位移,则永远追不上,此时两者之间有最小距离。
②若两者位移相等,且两者速度相等时,则恰能追上,也是两者避免碰撞的临界条件。
③若两者位移相等时,追着速度仍大于被追者的速度,则被追者还有一次追上追者的机会,当速度相等时两者之间距离有一个最大值。
在具体求解时,可以利用速度相等这一条件求解,也可以利用二次函数的知识求解,还可以利用图象等求解。
第二类:速度小者加速(如初速度为零的匀加速直线运动)追速度大者(匀速直线运动)。
①当两者速度相等时有最大距离。
②当两者位移相等时,则追上。
具体的求解方法与第一类相似,即利用速度相等进行分析还可利用二次函数图象和图象图象。
相遇问题①同向运动的两物体追及即相遇。
②相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时相遇二、分析追及,相遇问题时要注意1、分析问题是,一个条件,两个关系。
一个条件是:两物体速度相等时满足的临界条件,如两物体的距离是最大还是最小及是否恰好追上等。
两个关系是:时间关系和位移关系。
时间关系是指两物体运动时间是否相等,两物体是同时运动还是一先一后等;而位移关系是指两物体同地运动还是一前一后等,其中通过画运动示意图找到两物体间的位移关系是解题的突破口,因此在学习中一定要养成画草图分析问题的良好习惯,对帮助我们理解题意,启迪思维大有好处。
高中物理追及问题详解
匀变速直线运动中的追及问追及问题是运动学中较为综合且有实践意义的一类习题,它往往涉及两个以上物体的运动过程,每个物体的运动规律又不尽相同.对此类问题的求解,除了要透彻理解基本物理概念,熟练运用运动学公式外,还应仔细审题,挖掘题文中隐含着的重要条件,并尽可能地画出草图以帮助分析,确认两个物体运动的位移关系、时间关系和速度关系,在头脑中建立起一幅物体运动关系的图景.一、追及问题的实质研究的两物体能否在相同的时刻到达相同的位置的问题。
二、追及问题剖析1、追及问题中两者速度大小与两者距离变化的关系。
A 物体追赶前方的B 物体,若B A v v >,则两者之间的距离变小。
若B A v v =,则两者之间的距离不变。
若B A v v <,则两者之间的距离变大。
2、追及问题的特征高中物理中遇到的追及问题,常见的情形有三种:⑴快追慢A v 始终大于B v ,二者的距离一直减小。
A 一定会追上B 。
追上的条件是0x x x B A =-其中B A x x -表示A 追B “追近”的距离,原来相距0x ,现在A “追近”0x 就刚好追上B 。
⑵ 先慢后快追 先是B A v v <,后来B A v v >。
例如: ①A 做匀加速直线运动,B 做匀速直线运动。
②A 做匀速直线运动,B 做匀减速直线运动。
开始时B A v v <二者距离越来越大;随着速度的变化,当B A v v =时二者的距离达到最大;当B A v v >后,二者的距离越来越小,最终A 肯定会追上B ,并超越B 远远把B 抛在后面。
这种情形一定能追上(追上的条件是0x x x B A =-)而且只相遇一次。
⑶ 先快后慢追先是B A v v >,后来B A v v <。
例如:①A 做匀速直线运动,B 做匀加速直线运动。
②A 做匀减速直线运动,B 做匀速直线运动。
开始时B A v v >二者距离越来越小;随着速度的变化,可能出现3种情况:①B A v v =时,A 追上B (0x x x B A =-),之后B A v v <,A 被B 远远甩在后面。
追及问题
高中物理追及问题知识归纳、总结:“追及”、“相碰”是运动学中研究同一直线上两个物体的运动时常常涉及的两类问题,也是匀变速直线运动规律在实际问题中的具体应用.两者的基本特征相同,都是在运动过程中两个物体处在同一位置.处理方法也大同小异.1、“追及”、“相碰”的特征:“追及”的主要条件是两个物体在追赶过程中处于同一位置,常见的情形有三种:一是初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙时,一定能追上,在追上之前两者有最大距离的条件是两物体速度相等,即v甲 = v。
二是匀速运动的物体甲追赶同方向做匀加速运动的物体乙时,存在一个恰乙好追上或恰好追不上的临界条件是两物体速度相等,即v甲 = v乙。
此临界条件给出了一个判断此种追赶情形能否追上的方法,即可通过比较两物体处在同一位置时的速度大小来分析,具体方法是:假定在追赶过程中两者能处在同一位置,比较此时的速度大小,若v甲>v乙,则能追上,若v甲<v乙,则追不上,如果始终追不上,当两物体速度相等时,两物体的间距最小;三是匀减速运动的物体追赶同方向的匀速运动物体时,情形跟第二种相类似。
两物体恰能“相碰”的临界条件是两物体处在同一位置时,两物体的速度恰好相同.2、解“追及”、“相碰”问题的思路:解题的基本思路是:(1)根据对两物体运动过程的分析,画出物体的运动示意图(2)根据两物体的运动性质,分别列出两个物体的位移方程.注意要将两物体运动时间的关系反映在方程中.(3)由运动示意图找出两物体位移间的关联方程.(4)联立方程求解.3、分析“追及”“相碰”问题时应注意:(1)分析“追及”、“相碰”问题时,一定要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等.两个关系是时间关系和位移关系.其中通过画草图找到两物体位移之间的数量关系,是解题的突破口。
因此,在学习中一定要养成画草图分析问题的良好习惯,对帮助我们理解题意,启迪思维大有裨益.(2)若被追赶的物体做匀减速运动,一定要注意被追上前该物体是否停止运动.(3)仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件如“刚好”、“恰巧”、“最多”、“至少”等,往往对应一个临界状态,满足相应的临界条件4、解决追及和相碰问题大致分为两种方法,即数学方法和物理方法.求解过程中可以有不同的思路,例如考虑图象法等等.1.汽车正以10 m/s的速度在平直的公路上前进,突然发现正前方有一辆自行车以4 m/s的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为6 m/s的匀减速运动,汽车恰好不碰上自行车,求关闭油门时汽车离自行车多远?2.一小汽车从静止开始以3 m/s2的加速度行驶,恰有一自行车以6 m/s的速度从车边匀速驶过.(1)汽车从开动后在追上自行车之前经多长时间后两者相距最远?此时距离是多少?(2)汽车什么时候追上自行车,此时汽车的速度是多少?对设问(1)3.甲、乙两车相距s,同时同向运动,乙在前面做加速度为1a、初速度为零的匀加速运动,甲在后面做加速度为2a、初速度为0v的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系.4. 划速为v1的船在水速为v2的河中顺流行驶,某时刻船上一只气袋落水,若船又行驶了t秒后才发现且立即返回寻找(略去调转船头所用的时间),需再经多少时间才能找到气袋?5.在一条平直公路上有甲乙两辆汽车。
高中物理追击、追及和相遇问题
高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。
物理追及问题六大公式
物理追及问题六大公式摘要:1.追及问题的概念2.追及问题的六大公式1.相遇路程速度和相遇时间2.相遇时间相遇路程速度和3.速度和相遇路程相遇时间4.相遇路程甲走的路程乙走的路程5.甲的速度相遇路程相遇时6.其他相关公式正文:一、追及问题的概念追及问题是物理学中的一个基本问题,它描述了一个物体追上另一个物体的过程。
在这个过程中,追击物体和被追击物体的速度、位置和时间之间的关系是研究的重点。
为了解决这类问题,物理学中总结出了六大公式,它们可以帮助我们更好地理解和解决追及问题。
二、追及问题的六大公式1.相遇路程速度和相遇时间:当两个物体在某一点相遇时,它们所走过的路程、速度和相遇时间是可以计算出来的。
根据物理学的知识,我们可以得到如下公式:路程= 速度×时间2.相遇时间相遇路程速度和:如果我们已知两个物体相遇时的时间、路程和速度,可以求出它们相遇时的速度。
根据物理学的知识,我们可以得到如下公式:速度= 路程/ 时间3.速度和相遇路程相遇时间:如果我们已知两个物体的速度、相遇时的路程和时间,可以求出它们相遇时的速度。
根据物理学的知识,我们可以得到如下公式:时间= 路程/ 速度4.相遇路程甲走的路程乙走的路程:当我们知道两个物体相遇时所走过的路程以及它们分别走过的路程时,可以求出它们相遇时的位置关系。
根据物理学的知识,我们可以得到如下公式:甲走的路程= 乙走的路程+ 相遇路程5.甲的速度相遇路程相遇时:如果我们已知甲物体的速度、相遇时的路程和时间,可以求出它与乙物体相遇时的位置关系。
根据物理学的知识,我们可以得到如下公式:甲的位置= 甲的速度×相遇时间6.其他相关公式:在解决追及问题时,还有其他一些有用的公式,如:相对速度= 追击物体的速度- 被追击物体的速度相对路程= 追击物体的路程- 被追击物体的路程三、总结通过以上六大公式,我们可以更好地解决追及问题。
高中物理相遇和追与问题(完整版)
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者匀速追匀减速2.速度大者追速度小者度大者追速度小者次相遇,则①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔO υA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
高一物理追及问题
12.5m
(2)追上时二者位移相等,
5s
练习2:平直公路上,一辆轿车从某处由静止启动,此时恰有一货车以15m/s的速度从轿车旁匀速驶过冲到前方,结果轿车运动到离出发点225m处时恰追上货车。设轿车做匀加速运动,试求轿车的加速度a和追及前两车的最大距离smax。
答案: 2 m/ S2 56.25 m
MOMODA POWERPOINT
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce id urna blandit, eleifend nulla ac, fringilla purus. Nulla iaculis tempor felis ut cursus.
练习4:甲乙两车沿相互垂直的轨道向其交点运动,甲离交点16m,以2m/s的初速度,1m/s2的加速度向交点做匀加速直线运动,乙离交点12m,以7m/s的速度向交点匀速运动,为避免相碰,乙进行刹车,让甲先通过交点,问乙刹车时加速度至少是多大?
amin= -2m/s2
C.匀速运动的物体追及匀加速直线运动的物体 当两者到达同一位置前,就有v加=v匀,则不能追及. 当两者到达同一位置时,v加=v匀,则只能相遇一次. 当两者到达同一位置时, v加<v匀,则有两次相遇的机会. D.匀速运动的物体追及匀减速直线运动的物体,这种情 况一定能追上. E.匀加速运动的物体追及匀减速直线运动的物体,这种情况一定能追上. F.匀减速运动的物体追及匀加速直线运动的物体. 当两者到达同一位置前, v减=v加,则不能追及. 当v减=v加时两者恰好到达同一位置,则只能相遇一次. 当第一次相遇时v减<v加,则有两次相遇的机会.
解:第二棒运动员需在20m的接力区内,速度由零加速到12m/s, 代入数值可得: 利用速度公式: 可得运动时间: 计算第一棒运动员在同样时间内通过的位移: 则第一棒运动员距离接棒区起点20m时第二棒运动员开始起跑。
(完整版)高中物理相遇和追及问题(完整版)
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
2025人教版高中物理必修一知识点-专题进阶课三 追及相遇问题
专题进阶课三追及相遇问题核心归纳1.几种追及相遇问题的图像比较:类型图像说明匀加速追匀速(1)t =t 0以前,后面物体与前面物体间距逐渐增大;(2)t =t 0时,v 1=v 2,两物体间距最大,为x 0+Δx ;(3)t =t 0以后,后面物体与前面物体间距逐渐减小;(4)能追上且只能相遇一次匀速追匀减速匀加速追匀减速匀减速追匀速开始时,后面物体与前面物体间的距离在逐渐减小,当两物体速度相等时,即t =t 0时刻:(1)若Δx =x 0,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件;(2)若Δx <x 0,则不能追上,此时两物体有最小距离,为x 0-Δx ;(3)若Δx >x 0,则相遇两次,设t 1时刻Δx =x 0,两物体第一次相遇,则必有匀速追匀加速匀减速追匀加速t2时刻两物体第二次相遇,且t2-t0=t0-t1注意:(1)v1是前面物体的速度,v2是后面物体的速度;(2)x0为开始时两物体之间的距离;(3)Δx为从开始追赶到两者速度相等时,前面或后面的物体多发生的位移2.追及相遇问题情况概述:(1)追及问题①若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度。
②若后者追不上前者,则当后者的速度与前者相等时,两者相距最近。
(2)相遇问题①同向运动的两物体追及即相遇。
②相向运动的两物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。
提醒:(1)若被追赶的物体做匀减速直线运动,一定要注意判断被追上前该物体是否已经停止运动。
(2)仔细审题,注意抓住题目中的关键字眼(如“刚好”“恰好”“最多”“至少”等),充分挖掘题目中的隐含条件。
3.解题思路:(1)根据对两物体运动过程的分析,画出两物体运动的示意图或v-t图像,找到临界状态和临界条件。
(2)根据两物体的运动性质,分别列出两物体的位移方程,注意要将两物体运动时间的关系反映在方程中。
(3)由运动示意图找出两物体位移间的关联方程,这是解题关键。
高中物理追及练习题及讲解
高中物理追及练习题及讲解### 高中物理追及问题练习题及讲解#### 练习题一:速度与时间的关系题目描述:一辆汽车以20m/s的速度行驶,前方100m处有一辆静止的自行车。
汽车开始减速,减速加速度为-2m/s²。
求汽车追上自行车所需的时间。
解题步骤:1. 首先确定汽车的初始速度 \( v_0 = 20 \) m/s 和减速加速度\( a = -2 \) m/s²。
2. 利用匀减速直线运动的公式计算汽车停止所需的时间:\( t =\frac{v_0}{|a|} = \frac{20}{2} = 10 \) 秒。
3. 计算汽车在10秒内行驶的距离:\( s = \frac{v_0^2}{2|a|} =\frac{20^2}{2 \times 2} = 100 \) 米。
4. 由于汽车在10秒内行驶的距离正好等于自行车与汽车之间的距离,所以汽车在10秒时追上自行车。
#### 练习题二:位移与时间的关系题目描述:两辆车从同一地点出发,一辆车以恒定速度10m/s行驶,另一辆车以初速度5m/s和加速度2m/s²加速行驶。
求两车相遇时的时间。
解题步骤:1. 设定两车相遇时间为 \( t \)。
2. 第一辆车行驶的位移:\( s_1 = v_1 \cdot t = 10t \) 米。
3. 第二辆车行驶的位移:\( s_2 = v_0 \cdot t + \frac{1}{2} a t^2 = 5t + \frac{1}{2} \cdot 2t^2 \) 米。
4. 当两车相遇时,它们的位移相等:\( 10t = 5t + t^2 \)。
5. 解方程得 \( t^2 - 5t = 0 \),解得 \( t = 5 \) 秒。
#### 练习题三:追及问题中的相对速度题目描述:一辆摩托车以30m/s的速度行驶,前方200m处有一辆以15m/s速度行驶的汽车。
摩托车以5m/s²的加速度加速,求摩托车追上汽车所需的时间。
物理追及问题六大公式
物理追及问题六大公式一、引言在物理学中,追及问题是一种常见的问题类型,涉及到物体在运动过程中的相对位置、速度和加速度等物理量的变化。
掌握物理追及问题的解决方法,对于提高物理学习效果具有重要意义。
二、物理追及问题概述1.追及问题的基本条件追及问题通常包含两个或多个物体,它们之间存在相对运动。
解决追及问题的基本条件是:物体间的相对速度、相对加速度和相对位移。
2.追及问题的分类根据物体运动的性质,追及问题可以分为直线追及、曲线追及、匀速追及、匀加速追及和匀减速追及等。
三、物理追及问题六大公式1.基本公式追及问题的基本公式为:d = vt + 1/2 at其中,d为相对位移,v为相对速度,t为时间,a为相对加速度。
2.直线追及公式当物体沿直线运动时,可以使用以下公式求解追及问题:d = vt其中,d为相对位移,v为相对速度,t为时间。
3.曲线追及公式当物体沿曲线运动时,可以使用以下公式求解追及问题:d = vt + 1/2 gt其中,d为相对位移,v为相对速度,t为时间,g为重力加速度。
4.匀速追及公式当追及物体之间速度恒定时,可以使用以下公式求解追及问题:d = vt其中,d为相对位移,v为相对速度,t为时间。
5.匀加速追及公式当追及物体之间存在匀加速运动时,可以使用以下公式求解追及问题:d = vt + 1/2 at其中,d为相对位移,v为相对速度,t为时间,a为相对加速度。
6.匀减速追及公式当追及物体之间存在匀减速运动时,可以使用以下公式求解追及问题:d = vt - 1/2 at其中,d为相对位移,v为相对速度,t为时间,a为相对加速度。
四、公式应用实例解析1.直线追及实例甲、乙两车在直线轨道上行驶,甲车速度为20m/s,乙车速度为10m/s。
假设甲车在乙车前100m处等待,问乙车需要多长时间才能追上甲车?解:由直线追及公式d = vt,可得:100 = (20 - 10) t解得t = 10s2.曲线追及实例在水平面上,甲、乙两球以相同的初速度v0沿曲线轨道滚动,甲球半径为R,乙球半径为2R。
《高一物理追及问题》课件
极值问题
总结词
涉及到速度、距离、加速度等物理量的极值 问题,需要运用物理原理和数学方法求解。
详细描述
这类问题要求求解追及过程中物理量的极值 ,如最大速度、最小距离等。解决这类问题 需要运用物理原理和数学方法,如导数、不 等式等,进行求解和分析。同时,也需要仔 细分析物体的运动状态和过程,找出极值点
根据速度时间公式求出速度,根据速度位移公式求出位移 。
提高练习题
题目
一列火车以速度v匀速前进,从它 进入3000m长的隧道到完全通过 隧道经历的时间是T,则火车通过 隧道的位移为多少?
答案解析
火车通过隧道的位移等于火车的 长度与火车在时间T内所通过的位 移之和。
综合练习题
题目
一列长为L的火车以速度v匀速行驶, 从车头进入隧道到车尾离开隧道所用 的时间为t,则列车在隧道中的长度为 多少?
总结词
相对速度是关键
详细描述
当两个物体在同一直线上同向运动时,后面的物体如果要追上前面的物体,需 要满足一定的条件,即相对速度必须大于前面的物体。
反向运动中的追及问题
总结词
相对距离是关键
详细描述
当两个物体在同一直线上反向运动时,后面的物体如果要追上前面的物体,需要 满足一定的条件,即相对距离必须小于前面的物体。
斜向运动中的追及问题
总结词
相对方向是关键
详细描述
当两个物体在斜向运动时,后面的物体如果要追上前面的物体,需要满足一定的条件,即相对方向必须与前面的 物体的运动方向一致。
PART 04
曲线运动中的追及问题
REPORTING
圆周运动中的追及问题
总结词
速度与加速度方向不断变化
详细描述
高中物理相遇及追及问题[(完整版)]
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习5:以18m/s的速度行驶的汽车,紧
急刹车后做匀减速直线运动,其加速 度的大小为6m/s2,求汽车在6s内通过 的位移?
答案:27m
答案: 2 m/ S2 56.25 m
练习3:在4×100m接力比赛中,第一棒运 动员以12m/s的速度匀速跑向接棒区,第二 棒运动员需在20m的接棒区内加速到这一速 率才能使前一棒运动员不减速以保证取得 好成绩。若把接棒选手在接棒区内的运动 看成是匀加速直线运动,为达到最佳配合, 第二棒运动员起跑的加速度至少是多少? 他需在前一棒运动员距离接棒区起点多远 时开始起跑?
(2)基本形式: A.匀加速直线运动的物体追匀速直线运动的物体 这种情况只能追上一次两者追上前有最大距离,条 件:v加=v匀 B.匀减速直线运动追及匀速运动的物体 当v减=v匀时两者仍没达到同一位置,则不能追上 当v减=v匀时两者在同一位置,则恰好能追上,也是两 者避免相撞的临界条件 当两者到达同一位置时,v减>v匀,则有两次相遇的 机会
练习1:一辆汽车在十字路口遇红灯,
当绿灯亮时汽车以4m/s2的加速度开始 行驶,恰在此时,一辆摩托车以10m/s 的速度匀速驶来与汽车同向行驶,汽 车在后追摩托车,求: (1)汽车从路口开始加速起,在追上摩 托车之前两车相距的最大距离是多少; (2)汽车经过多少时间能追上摩托车?
解:(1)速度相等时距离最大,
S 0-v02=2as 得 2a 但在一般情况下要求的往往是刹车多少时间后的位移. v0
2
故:
(1)先求刹车时间
t
0
v0 a
(2)t0与所经时间比较 A.若t>t0,则刹车位移就是t秒内的位移 B.若t=t0,则刹车位移就是t秒内的位移,可 以用位移公式和导出公式求解. C.若t<t0,则刹车位移就大于t秒内的位移 可以用位移公式和导出公式求解.
d vt 1 2 at
2
t
v a
10 4
s 2 .5 s
10 2 . 5
1 2
4 2 .5
2
12.5m
vt 1 2 at
2
(2)追上时二者位移相等, Nhomakorabeat
5s
练习2:平直公路上,一辆轿车从某处 由静止启动,此时恰有一货车以15m/s的 速度从轿车旁匀速驶过冲到前方,结果 轿车运动到离出发点225m处时恰追上货 车。设轿车做匀加速运动,试求轿车的 加速度a和追及前两车的最大距离smax。
L s 1 s 2 20m
则第一棒运动员距离接棒区起点20m时第二棒运动员开始起跑。
练习4:甲乙两车沿相互垂直的轨道向其交点运 动,甲离交点16m,以2m/s的初速度,1m/s2的加速 度向交点做匀加速直线运动,乙离交点12m,以 7m/s的速度向交点匀速运动,为避免相碰,乙进 行刹车,让甲先通过交点,问乙刹车时加速度至 少是多大? amin= -2m/s2
C.匀速运动的物体追及匀加速直线运动的物体 当两者到达同一位置前,就有v加=v匀,则不能追及. 当两者到达同一位置时,v加=v匀,则只能相遇一次. 当两者到达同一位置时, v加<v匀,则有两次相遇的机会. D.匀速运动的物体追及匀减速直线运动的物体,这种情 况一 定能追上. E.匀加速运动的物体追及匀减速直线运动的物体,这种情况一 定能追上. F.匀减速运动的物体追及匀加速直线运动的物体. 当两者到达同一位置前, v减=v加,则不能追及. 当v减=v加时两者恰好到达同一位置,则只能相遇一次. 当第一次相遇时v减<v加,则有两次相遇的机会.
二.相遇问题
相遇问题
{
同一直线上相遇 交叉线上相遇
{
同向追及相遇 相向运动相遇
两个运动的物体相遇,即相对同一参考系来说它 们的位移相等.在解题中一定要注意相遇时间小于运 动的总时间.
三.关于刹车问题
刹车的过程是一个匀减速的过程,当汽车速度减为零后, 汽车就停止运动.因此这里存在一个刹车时间问题,如果 要求刹车位移,一般利用公式
追及问题
一、追及问题
题中 的关键条件是:两物体能否同 时到达空间某一位置。因此分别对两物体研究, 列出位移方程,然后利用时间关系、速度关系、 位移关系求解。 2.分类及基本形式 (1)分类: A. 同一直线上位置不同 B. 同一位置出发相互追逐(包括从同一位置先 后不同时刻出发)
1.两物体在同一条直线上的追及或避免相撞问
解:第二棒运动员需在20m的接力区内,速度由零加速到12m/s,
v t v 0 2 as 2
2 2
代入数值可得:a 利用速度公式:
3 . 6m / s
2
v t v 0 at
t 10
s 可得运动时间: 3 计算第一棒运动员在同样时间内通过的位移:
s 1 v 1 t 40m